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Abstract. An (I, J,K)-generalized Finsler structure on a 3-manifold is a general-
ization of a Finslerian structure, introduced by R. Bryant in order to separate and clarify
the local and global aspects in Finsler geometry making use of Cartan’s method of exterior
differential systems. In this paper, we show that there is a close relation between (I, J, 1)-
generalized Finsler structures and a class of contact circles, namely the so-called Cartan struc-
tures. This correspondence allows us to determine the topology of 3-manifolds that admit
(I, J, 1)-generalized Finsler structures and to single out classes of (I, J, 1)-generalized Finsler
structures induced by standard Cartan structures.

1. Introduction. A classical Finsler structure (M,F) is a smooth manifold M en-
dowed with a Banach norm on each tangent space TxM that varies smoothly with the base
point all over the manifold, for any x ∈ M . A Riemannian manifold is a particular case when
each of these Banach norms are induced by a quadratic form. Geometrically, this is equivalent
to the choice of a unit sphere in each tangent space, such that one obtains a smooth hypersur-
face Σ ⊂ T M which has the property that each fiber Σx := Σ ∩ TxM is a smooth, strictly
convex hypersurface in T M which surrounds the origin Ox ∈ TxM .

Except the preference for local computations, a peculiarity of Finsler structures is that,
unlike the Riemannian case, one has no means to specify a canonical Finsler structure on a
given manifold, therefore, constructing models for Finslerian structures with given geomet-
rical properties (such as constant flag curvature) is an important topic that rises interesting
questions about the local and global generality of such structures.

A generalization of classical Finsler structures has been introduced by R. Bryant by
defining the notion of (I, J,K)-generalized Finsler structures (see [3]), namely a 3-manifold
Σ endowed with a coframing satisfying some specific structure equations (see Section 2 for
the precise definition). We use here only such structures on 3-manifolds, but these can be
defined in any dimension (see [4]). Generalized Finsler structures were introduced with the
specific intention of ‘micro-localization’ of classical Finsler structures that allows separating
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the local geometrical properties of coframes satisfying certain differential geometric condi-
tions, or solving PDE’s, from the global geometrical properties of the manifolds Σ or M

related with the behavior of the leaf space of certain foliations.
There are a lot of questions and problems that this new notion brings about. For instance,

the absence of results on the existence of globally defined Finsler structures motivates one to
study the existence of globally defined generalized Finsler structures on a 3-manifold Σ as
well as the case when this is realizable as a classical Finsler structure on a surface M . For the
case of constant flag curvature one, the only available constructions are Bryant’s. In particular,
making use of generalized Finsler structures, he was able to construct for the first time globally
defined Finsler structures, of constant flag curvature one, on spheres [3], [4], proving in this
way the importance of generalized Finsler structures and that a more detailed study of these
is worthy.

The existence of Finsler structures on surfaces with vanishing Landsberg scalar, i.e.,
J = 0 (see Section 2 for definition), is an old open problem in Finsler geometry (see [10] for
the background of the problem). A progress in solving this problem was obtained by showing
the existence of non-trivial generalized Finsler structures with J = 0, [10], [11], proving one
more time the incontestable utility of generalized Finsler structures.

Therefore, since the essential ingredient used by Bryant in constructing generalized
Finsler structures is the contact structure, it is natural to attempt the use of refined contact
topology methods, which have been developed within the last 25 years.

On the other hand, let us also recall a classical result, namely that any closed, oriented
3-manifold admits a parallelization by contact forms (see for example [6], [8]). It is worth
mentioning that the history behind this results has started with the following S. S. Chern’s
simple, but extremely fruitful question in 1966: “Does a closed, oriented 3-manifold always
admit contact structures?” The answer is affirmative and it was given in 1971 by R. Lutz
proving the existence on the 3-sphere, and by J. Martinet in the general case.

Taking these into account, it is natural to ask the problem of existence of two or three
linearly independent contact forms on 3-manifolds satisfying supplementary conditions, such
as to determine the same volume, or even more, that any S1-linear (or S2-linear) combination
to determine the same volume, respectively. In this way one obtains the notions of taut contact
circle and taut contact sphere, respectively, introduced and studied by H. Geiges and J. Gon-
zalo in [5], [6], [7]. These notions turn out to be extremely fruitful leading to a complete
classification of these structures using the 8-geometries of Thurston, moduli space dimension
and many other interesting results (see especially [5], [7]).

We believe that all these are strong enough reasons to motivate our attempt hereafter to
apply Geiges and Gonzalo’s results and methods in the study of globally defined (I, J,K)-
generalized Finsler structures on 3-manifolds.

In the present paper we study the relation between (I, J,K)-generalized Finsler struc-
tures on closed 3-manifolds and taut contact circles defined on the same manifold, in particular
Cartan structures (see [5], [7] for details on these structures).
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Our study goes two directions. We show that an (I, J,K)-generalized Finsler structure,
defined on a closed 3-manifold Σ , naturally induces a taut contact circle on Σ , which is in
fact a K-Cartan structure, provided K = 1 (Proposition 4.1). Conversely, if we start with
a K-Cartan structure, then the coframe (21) is an (I, J, 1)-generalized Finsler structure on
a quotient manifold Σ = G/Γ , provided we are able to find a Γ -invariant 1-form ϕ on G

that satisfies the structure equation (20) with non-constant coefficients. Here G and Γ have
the meanings in the theorem below. This approach allows us to obtain several new (I, J, 1)-
generalized Finsler structures on Σ and to write explicitly their form (Section 6).

The (I, J,K)-generalized Finsler structures are more general geometrical structures than
taut contact circles and Cartan structures, however there is very few that we know about them.
The present paper shows how the topology of closed 3-manifolds Σ that admit an (I, J, 1)-
generalized Finsler structure is restricted. Indeed, here is our main result:

THEOREM 1.1. Let Σ be a closed 3-manifold. Then Σ admits an (I, J, 1)-generalized
Finsler structure if and only if it is diffeomorphic to the quotient of a Lie group G by a discrete
subgroup Γ , where G is one of the following:

1. S3 = SU(2), the universal cover of SO(3),
2. ˜SL2, the universal cover of PSL2(R),
3. ˜E2, the universal cover of the Euclidean group, i.e., orientation preserving isometries

of R2.

In the theorem above, both trivial and non-trivial cases of (I, J, 1)-generalized Finsler
structures are included. However, we show that for each G ∈ {SU(2), ˜E2, ˜SL2} there exist
non-trivial globally defined (I, J, 1)-generalized Finsler structures on each 3-manifold of type
G/Γ for a discrete subgroup Γ of G.

Concrete constructions and local forms are given in Section 6. Indeed, the easier way to
obtain such (I, J, 1)-generalized Finsler structures is to start with Liouville-Cartan structures
obtained from Riemannian surfaces and then apply the construction we give in Section 5.
Another method is to work directly on G with Γ -invariant 1-forms ϕ as we do in Subsection
6.1.

In Section 7, we study (I, J, 1)-generalized Finsler structures induced by Cartan struc-
tures in the context of conformal classes of taut contact circles on a closed 3-manifold Σ . In
the case of SU(2)/Γ , we point out a one to one correspondence of a special class of (I, J, 1)-
generalized Finsler structures, namely the K-induced (I, J, 1)-generalized Finsler structures
(see Section 7 for definition), and K-Cartan structures with K > 0, which allows us to com-
pute the moduli space dimension of these (I, J, 1)-generalized Finsler structures in a special
case.

We remark that the construction of taut contact structures from (I, J,K)-generalized
structures (in Proposition 4.1) is far from unique. We describe in Appendix another way of
doing this, namely we pair (I, 0,K)-generalized Finsler structures with K-Cartan structures
linking in this way the present paper with our past works [10] and [11]. In this case, the
topology of Σ is also restricted in a similar way as described in Theorem 1.1.
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Our present study is in the same time a generalization of the work of Bryant [3], [4],
where (I, J, 1)-generalized Finsler structures are constructed by means of a Zoll metric(S2, g)

which gives a classical Finsler structure on the round sphere S2 (compare with our construc-
tions in Subsection 6.1). Interpreted in the context of taut contact circles, our study gives a
more geometrical explanation of the constructions in [4].

Finally, we point out that the present paper is only the beginning of the study of (I, J,K)-
generalized Finsler structures on quotient manifolds G/Γ and there are many things left to
be clarified in the future. For a given (I, J,K)-generalized Finsler structure on a closed 3-
manifold Σ , we are mainly interested in relating the discrete subgroups Γ of G with the
Finslerian isometry groups acting on the space M := Σ/{ω1, ω2}, that is an orbifold in
the general case. We have clarified in the present paper the relation between taut contact
circles, more precisely K-Cartan structures, and (I, J, 1)-generalized Finsler structures on Σ ,
but relating other types of contact circles (see [6] for definitions) with (I, J,K)-generalized
Finsler structures is still an open problem. These topics, as well as many others, will be the
subject of a forthcoming paper.

Acknowledgments. We would like to express our thanks to Professors Hideo Shimada and Martin
Guest who supported us with many useful suggestions during the preparation of this manuscript. We are
also indebted to Professor Reiko Miyaoka for suggestions that have improved the manuscript.

2. Finsler and generalized Finsler structures. Let us start by recalling that a Finsler
norm on a real smooth, n-dimensional manifold M is a function F : T M → [0,∞) that is
positive and smooth on ˜T M = T M\{0}, has the homogeneity property F(x, λv) = λF(x, v),
for all λ > 0 and all v ∈ TxM , and has also the strong convexity property that the Hessian
matrix

(1) gij = 1

2

∂2F 2

∂yi∂yj
(x, y)

is positive definite at any point u = (xi, yi) ∈ ˜T M .
The fundamental function F of a Finsler structure (M,F) determines, and it is deter-

mined by, the (tangent) indicatrix, or the total space of the unit tangent bundle ΣF := {u ∈
T M; F(u) = 1}, which is a smooth hypersurface of T M such that at each x ∈ M the indica-
trix at x, namely Σx := {v ∈ TxM ; F(x, v) = 1} = ΣF ∩ TxM , is a smooth, closed, strictly
convex hypersurface in TxM .

A Finsler structure (M,F) can be therefore regarded as smooth hypersurface Σ ⊂ T M

for which the canonical projection π : Σ → M is a surjective submersion and having the
property that for each x ∈ M , the π-fiber Σx = π−1(x) is strictly convex including the origin
Ox ∈ TxM .

A generalization of this notion is the generalized Finsler structure introduced by Bryant
(see [3], [4] for definitions and fundamental properties, as well as [10] and [11] for some
recent developments).
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DEFINITION 2.1. A 3-dimensional manifold Σ endowed with a coframing ω =
(ω1, ω2, ω3) which satisfies the structure equations

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3 ,

dω2 = −ω1 ∧ ω3,

dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3

(2)

will be called an (I, J,K)-generalized Finsler structure on Σ , where I , J , K are smooth
functions on Σ , called the invariants of the generalized Finsler structure (Σ,ω).

As pointed out in [3], the difference between a classical Finsler structure and a gen-
eralized one is global in nature, in the sense that every generalized Finsler structure on a
3-manifold is locally diffeomorphic to a classical Finsler surface structure.

By taking the exterior derivative of the structure equations (2), one obtains the Bianchi
equations

(3) J = I2 , K3 + KI + J2 = 0 ,

where we denote by subscripts the directional derivatives with respect to the coframing ω, i.e.,
df = f1ω

1 + f2ω
2 + f3ω

3 for any smooth function f on Σ .
Taking now one more exterior derivative of the last formula written above, one obtains

the Ricci identities with respect to the generalized Finsler structure

f21 − f12 = −Kf3 ,

f32 − f23 = −f1 ,

f31 − f13 = If1 + f2 + Jf3 .

As long as we work only with generalized Finsler surfaces, it might be possible that this
generalized structure does not lead to a classical Finsler structure on a surface M . Indeed,
the following fundamental result gives necessary and sufficient conditions for a generalized
Finsler structure to be a Finsler structure [3]:

THEOREM 2.2. The necessary and sufficient conditions for an (I, J,K)-generalized
Finsler structure (Σ,ω) to be realizable as a classical Finsler structure on a surface M are

1. the leaves of the codimension two foliation F = {ω1 = 0, ω2 = 0} are compact;
2. it is amenable, i.e., the leaf space M of the foliation F is a smooth surface such that

the natural projection π : Σ → M is a smooth submersion;
3. the canonical immersion ι : Σ → T M , given by ι(u) = π∗,u(ê2), is one-to-one

on each π-fiber Σx , where (ê1, ê2, ê3) is the dual frame of the coframing ω =
(ω1, ω2, ω3).

REMARK. We point out that the definitions of generalized Finsler structures given in
[3] and [4] are slightly different. Our Definition 2.1 is the same as [3], while the definition in
[4] adds supplementary conditions (see [4, Definition 1] for details).
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Special cases of generalized Finsler structures are easily obtained by taking particular
values for the structure functions I , J , K .

If I = 0, then from Bianchi equations one obtains J = 0 and the resulting generalized
Finsler structures will be called trivial hereafter. A (0, 0,K)-generalized Finsler structure is a
K-Cartan structure. We will discuss this type of structure in detail in next section. A (0, 0,K)-
generalized Finsler structure that satisfies the conditions in Theorem 2.2 above induces a
Riemannian metric of Gauss curvature K on the leaf space M of the foliation {ω1 = 0, ω2 =
0}.

Another special case is an (I, J, 1)-generalized Finsler structure. Such a structure sat-
isfying the conditions in Theorem 2.2 provides a Finsler structure of constant flag curvature
on the leaf space M (see [1] and [4] for details on constant flag curvature Riemann-Finsler
structures).

Let us point out, for later reference, that an (I, J, 1)-generalized Finsler structure is a
coframe (ω1, ω2, ω3) on the 3-manifold Σ that verifies the structure equations

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3 ,

dω2 = −ω1 ∧ ω3 ,

dω3 = ω1 ∧ ω2 − Jω1 ∧ ω3 .

(4)

In this case, the Bianchi equations read

(5) J = I2 , I = −J2 .

3. Contact circles. A quick look at the structure equations (2) shows that for a gen-
eralized Finsler structure (ω1, ω2, ω3) on a 3-manifold Σ , the 1-forms ω1 and ω2 are contact
forms. In the “non-flat” case K 	= 0 everywhere on Σ , one can easily see that ω3 is also a
contact form.

All these suggest that some concepts and ideas in contact geometry might be useful in
the study of generalized Finsler structures.

Let us recall here few basic facts (for details, see [5], [7]).

DEFINITION 3.1. A 3-manifold Σ is said to admit a contact circle if it admits a pair
of contact forms (α1, α2) such that for any (λ1, λ2) ∈ S1, i.e., λ1, λ2 ∈ R, (λ1)

2 + (λ2)
2 = 1,

the linear combination λ1α
1 + λ2α

2 is also a contact form.

Concerning contact circles, it is known that on every closed, orientable 3-manifold there
are contact circles realizing any of the two orientations [6, Theorem 1.2].

DEFINITION 3.2. A contact circle (α1, α2) is called a taut contact circle if the contact
forms λ1α

1 + λ2α
2 define the same volume form for all (λ1, λ2) ∈ S1.
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By a straightforward computation, one can verify that the contact circle (α1, α2) is a taut
contact circle if and only if the conditions

α1 ∧ dα1 = α2 ∧ dα2 	= 0 ,

α1 ∧ dα2 + α2 ∧ dα1 = 0
(6)

hold.
The following definition [5] is also natural.

DEFINITION 3.3. The contact circle (α1, α2) is called a Cartan structure on a 3-
manifold Σ if the following conditions are satisfied:

α1 ∧ dα1 = α2 ∧ dα2 	= 0 ,

α1 ∧ dα2 = 0, α2 ∧ dα1 = 0 .
(7)

It results immediately the following lemma.

LEMMA 3.4 ([7]). If (α1, α2) is a Cartan structure on a 3-manifold Σ , then there
exists a unique 1-form η on Σ such that

(8) dα1 = α2 ∧ η, dα2 = η ∧ α1 .

From this Lemma it follows that (α1, α2, η) is a coframe on Σ . Indeed, taking into
account that α1, α2 are contact forms and (8), it follows α1 ∧ α2 ∧ η 	= 0.

The structure equations of the 1-form η can be complicated for a general point of Σ ,
without further conditions. A special case of Cartan structure is given in the following defini-
tion.

DEFINITION 3.5 ([7]). The Cartan structure (α1, α2) is called a K-Cartan structure if
the unique form η in Lemma 3.4 satisfies the structure equation

(9) dη = Kα1 ∧ α2 .

By abuse of language, the coframe (α1, α2, η) on the 3-manifold Σ is called a K-Cartan
structure if it satisfies the structure equations

(10) dα1 = α2 ∧ η , dα2 = η ∧ α1 , dη = Kα1 ∧ α2 .

Obviously, a K-Cartan structure coincides with a (0, 0,K)-generalized Finsler structure.
One can easily remark that for any K-Cartan structure, the differential of the structure

function K must satisfy dK = K1α
1 +K2α

2, i.e., the function K lives on the leaf space of the
codimension two foliation {α1 = 0, α2 = 0}. In general this is not necessarily a differentiable
manifold.

One of the main results of this theory is the following

THEOREM 3.6 ([5]). Let Σ be a closed 3-manifold. Then Σ admits a taut contact
circle if and only if Σ is diffeomorphic to the quotient of a Lie group G by a discrete subgroup
Γ , acting by left multiplication, where G is one of the following:

1. S3 = SU(2), the universal cover of SO(3),
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2. ˜SL2, the universal cover of PSL2(R),
3. ˜E2, the universal cover of the Euclidean group, i.e., orientation preserving isometries

of R2.

3.1. Standard Cartan structures. If one denotes by α0 the Maurer-Cartan form on
the Lie group G, where G is one of the Lie groups in Theorem 3.6, then we can write

(11) α0 = α1e1 + α2e2 + α3e3 ,

where (e1, e2, e3) is a basis for the Lie algebra g of the Lie group G, and we can assume that
this basis satisfies the structure equations

(12) [e1, e2] = −εe3 , [e2, e3] = −e1 , [e3, e1] = −e2 ,

where ε = 1 for SU(2), ε = −1 for ˜SL2, and ε = 0 for ˜E2.
Equivalently, we obtain the structure equations

(13) dα1 = α2 ∧ α3 , dα2 = α3 ∧ α1 , dα3 = εα1 ∧ α2 ,

where (α1, α2, α3) is the dual coframe of (e1, e2, e3), and ε has the same meaning as above.
These structures are 1-, 0-, and −1-Cartan structures on SU(2), ˜E2 and ˜SL2, respectively.
They are called standard Cartan structures.

For any given discrete subgroup Γ of G, it is obvious now that (α1, α2) is a Cartan
structure on G which descends to the left-quotient G/Γ .

3.2. Liouville-Cartan structures. For a Riemannian surface (Λ, g) with local coor-
dinates (x1, x2), let us consider its cotangent bundle T ∗Λ with local coordinates (x1, x2, p1,

p2). Then

(14) θ1 = p1dx1 + p2dx2 , θ2 = −p2dx1 + p1dx2

is a pair of 1-forms on T ∗Λ.
If we denote now the unit cotangent bundle of (Λ, g) by ST ∗Λ, then these forms re-

stricted to ST ∗Σ are called the Liouville-Cartan 1-forms associated to the Riemannian sur-
face (Λ, g).

One can easily see that these forms are in fact the tautological 1-forms on the Riemannian
surface (Λ, g).

We will see later (Section 5) how are Liouville-Cartan structures constructed on the quo-
tient manifolds in Theorem 3.6.

4. The correspondence between generalized Finsler and Cartan structures. Let
us firstly remark that the structure equations of an (I, J,K)-generalized Finsler structure im-
ply (ωi ∧ dωj ) = AΩ for i, j ∈ {1, 2, 3}, where the structure matrix A = (aij ) is given
by

(15) A =
⎛

⎝

1 0 0
I 1 J

0 0 K

⎞

⎠
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and Ω := ω1 ∧ ω2 ∧ ω3 	= 0 is the volume form. From here we obtain immediately the
following proposition.

PROPOSITION 4.1. Let (Σ,ω) be an (I, J,K)-generalized Finsler structure on a
closed 3-manifold Σ , where ω = (ω1, ω2, ω3). Then we have

1. (ω1, ω2) is a taut contact circle if and only if I = 0, i.e., (Σ,ω) is in fact a K := K-
Cartan structure;

2. (ω1, ω3) is a taut contact circle if and only if K = 1, i.e., (Σ,ω) is an (I, J, 1)-
generalized Finsler structure. This taut contact circle is actually a K-Cartan struc-
ture on Σ;

3. (ω2, ω3) is a taut contact circle if and only if K = 1 and J = 0. Moreover, I = 0
and (Σ,ω) is a 1-Cartan structure.

The third conclusion follows from the Bianchi equations (3).

REMARK. It is straightforward from the second statement in Proposition 4.1 that an
(I, J, 1)-generalized Finsler structure on a 3-manifold Σ naturally induces a K-Cartan struc-
ture. Indeed, if Σ admits an (I, J, 1)-generalized Finsler structure (ω1, ω2, ω3), then the pair
of 1-forms α1 := ω1, α2 := ω3 is a Cartan structure, i.e., a taut contact circle on Σ and the
conclusion follows from Theorem 3.6. A simple computation shows that there exists a 1-form

(16) α3 = Iω1 + Jω3 − ω2

such that (α1, α2, α3) is a K-Cartan structure on Σ with the structure function

(17) K = −I 2 − J 2 + J1 − I3 + 1 .

Here all the subscripts are given with respect to the coframe ω.

The converse is not so obvious. We are interested in finding if there exist non-trivial
(I, J, 1)-generalized Finsler structures, i.e., structures having the functions I and J not con-
stant on Σ . We will show in the following sections that the standard K-Cartan structures
induce non-trivial (I, J, 1)-generalized Finsler structures.

PROPOSITION 4.2. If α = (α1, α2, α3) is a K-Cartan structure on Σ , then the in-
duced coframe

(18) ω1 = α1 , ω2 = Iα1 + Jα2 − α3 , ω3 = α2

is an (I, J, 1)-generalized Finsler structure on Σ if and only if the functions I, J : Σ → R

are solutions of the directional PDE system

(19) −Iα2 + Jα1 = K − 1 , Iα3 = −J , Jα3 = I ,

where the subscripts represent directional derivatives with respect to the coframe α, i.e., df =
fα1α

1 + fα2α
2 + fα3α

3 for any function f on Σ .

The proof is a simple computation taking into account the Ricci identities of the coframe
(α1, α2, α3).
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We point out that when regarding the relations (19) as a directional PDE, with the un-
known functions I , J , with respect to the K-Cartan structure α, then the involutivity of this
PDE system can be studied by means of Cartan-Kähler theorem (see for example [9]). Indeed,
Cartan-Kähler theory shows that the PDE system (19) is involutive with solutions depending
on 2 functions of 2 variables, therefore on the 3-manifold Σ there are (I, J, 1)-generalized
Finsler structures depending on 2 functions of 2 variables in the sense of Cartan-Kähler theo-
rem as pointed out in [3]. However, this is a quite rough estimation including local, global, as
well as trivial solutions.

REMARK. Let (M,F) be a classical compact Finsler surface and denote its indicatrix
bundle by Σ . It follows that Σ is a compact 3-manifold that admits a natural (I, J,K)-
generalized Finsler structure induced as follows. Let us denote by ω = (ω1, ω2, ω3) the g-
orthonormal coframe on Σ induced by the Finslerian structure F (see [1] for details), where
g is the Hessian matrix defined in (1). Then ω satisfies structure equations of type (2) for
some functions I , J and K on Σ . These are called the Cartan scalar, the Landsberg curvature
and the flag curvature of the Finsler structure (M,F), respectively, being in the same time
the invariants of the Finsler structure F in the sense of Cartan’s equivalence problem. The
functions I , J and K are uniquely determined by the fundamental function F only.

If (M,F) is a Finsler surface of positive constant flag curvature, then the naturally in-
duced generalized Finsler structure on the indicatrix bundle total space Σ is an (I, J, 1)-
structure that satisfies all the conditions in Theorem 2.2. In this case, the associated K-Cartan
structure (α1, α2, α3) has some supplementary properties, namely, the leaves of the foliation
F = {α2 = 0, α3 + ϕ = 0} satisfy the conditions in Theorem 2.2, where ϕ := Iα1 + Jα2 is
a 1-form on Σ that satisfies the structure equation

(20) dϕ = (K − 1)α1 ∧ α2 .

The integral curves of the exterior system {α2 = 0, α3 +ϕ = 0} are called ϕ-geodesics in [4].
Conversely, the construction above can be used to associate an (I, J, 1)-generalized

Finsler structure to any given K-Cartan structure (α1, α2, α3). Remark that the indicatrix
foliation of this (I, J, 1)-generalized Finsler structure coincides with the foliation F given
above. In the case when the leaves of this foliation satisfy the conditions in Theorem 2.2, we
obtain a classical Finsler structure.

REMARK. We also remark that the left or right invariant (I, J, 1)-generalized Finsler
structures on a Lie group G must have the invariants I and J constant functions on G and
implicitly on G/Γ , i.e., we obtain only trivial cases that do not interest us.

5. Cartan structures induced by (I, J, 1)-generalized Finsler structures. We are
going to give here a general construction of (I, J, 1)-generalized Finsler structures induced
by K-Cartan structures.
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Indeed, let us consider a K-Cartan structure (α1, α2, α3) on a closed 3-manifold Σ , with
K not necessarily constant. Then from Proposition 4.2 it follows that the coframe

(21) ω1 = α1 , ω2 = ϕ − α3 , ω3 = α2

is an (I, J, 1)-generalized Finsler structure if and only if the 1-form ϕ = Iα1 + Jα2 on Σ

satisfies the structure equation (20).
Therefore, in order to assure the existence of a nontrivial (I, J, 1)-generalized Finsler

structure on one of the quotient manifolds Σ = G/Γ given in Theorem 3.6, it suffices to find
a 1-form ϕ on G that satisfies the condition:

C 5.1. 1. ϕ is Γ -invariant, and
2. ϕ satisfies the structure equation (20) with non-constant coefficients.

In this case, we have the following proposition.

PROPOSITION 5.2. Let G ∈ {SU(2), ˜E2, ˜SL2} be a Lie group, Γ ⊂ G a discrete sub-
group of G, α = (α1, α2, α3) a K-Cartan structure on G/Γ and ϕ a 1-form on G that satisfies
the condition C 5.1. Then, the coframe (21) is an (I, J, 1)-generalized Finsler structure on
Σ = G/Γ .

We will compute explicitly ϕ in some special cases in Section 6 showing that finding ϕ

and verifying condition C 5.1 is far from being trivial.
In this section we give a rather simple general theoretical construction of such (I, J, 1)-

generalized Finsler structures that will provide a proof for our main result Theorem 1.1.
Let (α1, α2, α3) be a K-Cartan structure and let us consider the conformal ˜K-Cartan

structure (̃α1, α̃2, α̃3) given by

(22) α̃1 = vα1 , α̃2 = vα2 , α̃3 = α3 − ∗d log v ,

where ∗ denotes the Hodge star operator and ∗d log v = −(vα2/v)α1 + (vα1/v)α2, v > 0.
Notice that in fact only the pairs of 1-forms (α1, α2) and (̃α1, α̃2), which define the

corresponding Cartan structures, are conformal, i.e., (̃α1, α̃2) = v(α1, α2). The expression of
α̃3 follows from Lemma 3.4.

If we take into account that relation (20) is equivalent to

(23) dϕ = dα3 − α1 ∧ α2 ,

then by putting

(24) ϕ̃ := ∗d log v − ϕ

it follows

(25) dϕ̃ = d ∗ d log v − dϕ = d(α3 − α̃3) − dϕ = −dϕ + dα3 − ˜Kα̃1 ∧ α̃2 ,

and taking into account of (23) we get

(26) dϕ̃ = α1 ∧ α2 − ˜Kα̃1 ∧ α̃2 ,
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or equivalently,

(27) dϕ̃ + ˜Kα̃1 ∧ α̃2 = 1

v2
(̃α1 ∧ α̃2) .

This relation still looks like a differential equation, but we would like to regard it as an
algebraic equation in v. In order to do this, we need a 1-form ϕ̃ whose differential dϕ̃ is
spanned only by α̃1 ∧ α̃2 and which satisfies

C 5.3. 1. ϕ̃ is Γ -invariant, and
2. dϕ̃ + ˜Kα̃1 ∧ α̃2 > 0.

From Proposition 5.2 we obtain the following proposition.

PROPOSITION 5.4. Let G ∈ {SU(2), ˜E2, ˜SL2} be a Lie group, Γ ⊂ G a discrete
subgroup of G, α̃ a ˜K-Cartan structure on G/Γ and ϕ̃ a 1-form on G that satisfies the
condition C 5.3. Then, the coframe

(28) ω1 = 1

v
α̃1 , ω2 = −ϕ̃ − α̃3 , ω3 = 1

v
α̃2

is an (I, J, 1)-generalized Finsler structure on Σ = G/Γ , where v is the scalar function
obtained by solving the algebraic equation (27).

The simplest way to do this is to consider (I, J, 1)-generalized Finsler structures induced
by Liouville-Cartan structures. Let us briefly recall the construction of Liouville-Cartan struc-
tures on the quotient manifolds listed in Theorem 3.6 (see [5] for details).

Assume that (Λ0, g) is a closed, oriented Riemannian surface (the non-oriented case
can be also treated in a slightly different manner) and denote by Isomo(Λ0, g) its full group
of orientation-preserving isometries. If F ⊂ Isomo(Λ0, g) is a finite group of orientation-
preserving isometries of Λ0, then dF is a finite group of isometries of ST Λ0, which acts
freely. Here, dF is the set of differentials of the elements of F , and ST Λ0 the unit sphere
bundle of (Λ0, g). Hence, the quotient manifold ST Λ0/dF is a canonical Seifert fibration
ST Λ0/dF → Λ over the 2-dimensional orbifold Λ := Λ0/F .

A compact 3-manifold Σ can be obtained from this Seifert fibration by simply taking the
cover map

(29) Σ → ST Λ0/dF ,

where Λ0 is a surface of genus 0, 1 or greater than 1, if and only if Σ is a left quotient of
S3, ˜E2 or ˜SL2, respectively. Indeed, if ˜Λ is one of the 2-dimensional Riemannian space form
models S2, R2 or H2, respectively, and if Σ = G/Γ for some discrete, cocompact subgroup
Γ of G, then there is a canonical projection G → Isomo( ˜Λ) that maps Γ onto its image Γ ′.

If the image Γ ′ is discrete, then G/Γ has a canonical Seifert fibration G/Γ → Λ over
the 2-dimensional orbifold Λ := ˜Λ/Γ .

REMARK. It is known that for S3 and ˜SL2, the image of any discrete subgroup Γ under
the canonical projection described above is a discrete isometry subgroup Γ ′ on S2 and H 2,
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respectively, but this is not true anymore for ˜E2. However, we can work only with cocompact
discrete subgroups Γ of G whose image Γ ′ is always discrete. Such discrete subgroups Γ

will be called admissible.

It is remarkable that there always is another description of Λ, namely Λ = Λ0/F ,
where (Λ0, g0) is a closed, orientable 2-manifold with some constant curvature metric g0, and
F ⊂ Isomo(Λ0, g0).

We also point out that for any admissible subgroup Γ of G there exists at least one pair
(Λ0,F) such that Σ = G/Γ → ST Λ0/dF is a covering map. Then, the tautological forms
α1, α2 of (Λ0, g) determine a Liouville-Cartan structure on G/Γ that depends on Γ only. In
other words, different pairs (Λ0,F) can yield the same Cartan structure, as the orbifold Λ

can have different descriptions of the type Λ0/F .
Therefore, let us consider a closed (oriented) Riemannian surface (Λ0, g) (not necessar-

ily of constant sectional curvature K) and denote (η1, η2) the g-orthonormal coframe on Λ0.
The structure equations on Λ0 are

(30) dη1 = aη1 ∧ η2 , dη2 = bη1 ∧ η2 ,

where a, b are the structure functions on Λ0. It follows that the Levi-Civita connection form
is η3 = −aη1 −bη2 and the sectional curvature K = aη2 −a2 −bη1 −b2, where the subscripts
are directional derivatives with respect to the coframe (η1, η2).

We are led by these arguments to the following construction method.
We consider any 1-form φ := f η1+gη2 on the Riemannian surface (Λ0, g) that satisfies

the condition

C 5.5. 1. φ is F -invariant, and
2. −fη2 + af + bg + gη1 + K > 0,
where F is a discrete subgroup of Isomo(Λ0, g).

The relation

(31) dφ + Kη1 ∧ η2 = 1

v2 η1 ∧ η2

corresponds to (27) downstairs on Λ0.
Remarking that dφ = (−fη2 + af + bg + gη1)η

1 ∧ η2, we obtain the formula 2 in the
condition C 5.5 above and therefore

(32) v = 1
√−fη2 + af + bg + gη1 + K

.

All geometrical objects like functions a, b, f , g , etc., K, v and 1-forms η1, η2, φ defined
on Λ0 naturally lift by ν∗ to ST Λ0, where ν : ST Λ0 → Λ0 is the unit sphere bundle of
(Λ0, g) (we denote ϕ, ϕ̃ forms “upstairs” on Σ and by φ forms “downstairs” on Λ0).
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Then, the coframe

(33) ω1 = 1

v
α1 , ω2 = −ν∗φ − α3 , ω3 = 1

v
α2

is an (I, J, 1)-generalized Finsler structure on ST Λ0/dF that can be pulled back to Σ by
the covering map Σ → ST Λ0/dF , where v is given by (32), ν : F(Λ0) → Λ0 is the
orthonormal frame bundle of (Λ0, g), which is locally diffeomorphic with Σ (we denote here
the projection ν by the same letter with the projection of the unit sphere bundle ST Λ0 →
Λ0 from obvious reasons), and (α1, α2, α3) is the Liouville-Cartan structure induced from
(Λ0, g) and F on ST Λ0/dF . Taking now into account that v(∗d log v − φ) = Iη1 + Jη2

and (31), the invariants defined on Λ0 are

(34) I = −f v − vη2 , J = −gv + vη1 ,

where v is again given by (32). In order to keep notations simple, we denote ν∗I and ν∗J
with the same letters I and J , respectively.

Therefore we obtain the following Proposition.

PROPOSITION 5.6. Let (Λ0, g) be a Riemannian surface of genus 0, 1 or greater
than 1, F ⊂ Isomo(Λ0) be a finitely generated orientation preserving isometry subgroup
of (Λ0, g), and let Σ be the covering space of ST Λ0/dF which is diffeomorphic to G/Γ ,
where G is S3, ˜E2 or ˜SL2, respectively.

Then, the Liouville-Cartan structure of ST Λ0 induces an (I, J, 1)-generalized Finsler
structure on Σ defined by (33), where φ is a 1-form on Λ0 that satisfies condition C 5.5. The
structure functions I , J are given in (34), where v is the function in (32).

REMARK. 1. If needed, one can choose a standard Cartan structure for (α1, α2, α3)

obtained as the Liouville-Cartan structure from the space form Λ0 and construct the
corresponding (I, J, 1)-generalized Finsler structure as in Proposition 5.6.

2. As explained already, due to the F -invariance condition, the 1-form φ, functions v,
f , g , etc. used in the formulas above live in fact on the set Λ = Λ0/F which is an
orbifold in general. However, in order to avoid complications, we construct examples
in Subsections 6.2, 6.3 only in the cases when Λ is in fact a manifold.

PROOF OF THEOREM 1.1. Assume that Σ admits an (I, J, 1)-generalized Finsler
structure (ω1, ω2, ω3). Then α1 := ω1, α2 := ω3 is a Cartan structure, hence it is a taut
contact circle on Σ and therefore from Theorem 3.6 the conclusion follows.

Conversely, if Σ is one of the quotient manifolds given in the hypothesis, then from
Theorem 3.6 results that Σ must carry a Cartan structure (for instance the one induced from
Liouville-Cartan structures on a Riemannian surface (Λ, g)) which we denote by (α1, α2, α3)

with the structure function K. If we take any 1-form ϕ := ν∗(φ), for any φ on Λ0 that satisfies
condition 5.5, we obtain that the coframe (33) is a non-trivial (I, J, 1)-generalized Finsler
structure on Σ with the structure functions (34). �
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5.1. A classical Finsler structure. Using a similar argument as in [3], we use this
construction to obtain an (I, J, 1)-generalized Finsler structure on Σ that induces a classical
Finsler structure on a surface M by the double fibration

Σ � S3

�
�

�
���

M � S2

‖
Σ/{ω1 = 0, ω2 = 0}

�
�

�
���

Λ0 � S2

‖
Σ/{ω1 = 0, ω3 = 0}

λ π

PROPOSITION 5.7. Let us consider (Λ0 = S2, g), where g is a Zoll metric with sec-
tional curvature K > 0, and let (α1, α2, α3) be the Liouville-Cartan structure induced by it.
Then the coframing

(35) ω1 = √
Kα1 , ω2 = −α3 , ω3 = √

Kα2

is an (I, J, 1)-generalized Finsler structure on Σ . Moreover, this structure projects to a clas-
sical Finsler structure on M := S2.

PROOF. Recall that a Zoll metric on S2 is a Riemannian metric all of whose geodesics
are closed and have same length (see for example [2] for details). Equivalently, in this case
the manifold of geodesics M := S3/{α1 = 0, α3 = 0} = S2 is a smooth manifold. If we
denote as before the induced Liouville-Cartan structure by (α1, α2, α3), then applying the
construction in Proposition 5.6 with ϕ = 0, it follows

(36) Kα1 ∧ α2 = 1

v2
α1 ∧ α2 ,

i.e., v = 1/
√
K, and this makes sense since K > 0 for a Zoll metric. It follows that the

coframing (35) is indeed an (I, J, 1)-generalized Finsler structure on S3 and therefore on
S3/Γ , where Γ is the admissible subgroup of S3 corresponding to the cyclic isometry group
Γ ′ = C2 of S2, which acts freely on S2.

The invariants I and J are obtained immediately from

Iη1 + Jη2 = 1√
K

∗ d

(

1√
K

)

,

namely,

I = 1

2K
√
K
Kη2 , J = − 1

2K
√
K
Kη1 .

Moreover, remark that the geodesic foliation {α1 = 0, α3 = 0} of (Λ0 = S2, g) co-
incides with the indicatrix foliation {ω1 = 0, ω2 = 0} of the (I, J, 1)-generalized Finsler
structure and therefore the conditions of Theorem 2.2 are satisfied. �
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6. Concrete constructions. In this section we will construct explicit nontrivial
(I, J, 1)-generalized Finsler structure on each quotient manifold in Theorem 1.1.

6.1. The case of SU(2). Following [7], we identify SU(2) with the unit quaternions
S3 ⊂ H by the group isomorphism

g =
(

a0 + ia1 b0 + ib1

−b0 + ib1 a0 − ia1

)

�→ a0 + ia1 + jb0 + kb1 ,

where i2 = j2 = k2 = ijk = −1, and det g = a2
0 + a2

1 + b2
0 + b2

1 = 1. We consider a1, b0,
b1 as local coordinates and always substitute

(37) a0 =
√

1 − a2
1 − b2

0 − b2
1 .

This coordinate chart covers only the domain in the hemisphere with a0 > 0, but this is typical
for any non-trivial manifold, i.e., a manifold that is not diffeomorphic to Rn. A complete atlas
of local charts can be constructed if needed.

We recall that the group operation is given by the Hamiltonian product

g · ḡ = (a0 + ia1 + jb0 + kb1) · (ā0 + iā1 + j b̄0 + kb̄1)

= (a0ā0 − a1ā1 − b0b̄0 − b1b̄1) + i(a0ā1 + a1ā0 + b0b̄1 − b1b̄0)

+ j (a0b̄0 − a1b̄1 + b0ā0 + b1ā1) + k(a0b̄1 + a1b̄0 − b0ā1 + b1ā0) ,

(38)

the neutral element is

(39) e =
(

1 0
0 1

)

�→ 1 + i0 + j0 + k0 = 1

and inverse element of g is given by

(40) g−1 = a0 − ia1 − jb0 − kb1 .

We are going to compute the Maurer-Cartan forms of SU(2) by the usual formula αR =
dg · g−1 ∈ su(2). We have

dg · g−1 = (da0 + ida1 + jdb0 + kdb1) · (a0 − ia1 − jb0 − kb1)

= (a0da0 + a1da1 + b0db0 + b1db1)

+ i(−a1da0 + a0da1 − b1db0 + b0db1)

+ j (−b0da0 + b1da1 + a0db0 − a1db1)

+ k(−b1da0 − b0da1 + a1db0 + a0db1) .

(41)

Taking into account the equation det g = 1, we have obtained three right invariant 1-
forms α1, α2, α3 on SU(2) considered as subspace of H , where

α1 = − b0da0 + b1da1 + a0db0 − a1db1 ,

α2 = − b1da0 − b0da1 + a1db0 + a0db1 ,

α3 = − a1da0 + a0da1 − b1db0 + b0db1 .

(42)
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A straightforward computation shows that α1, α2, α3 satisfy the structure equations (13) with
ε = 1, where we always consider a0 as in (37).

To be precise, if we denote ι : S3 → H the canonical inclusion given by (37), the
standard Cartan structure is (ι∗α1, ι∗α2, ι∗α3), but we will make the difference between αi

and ι∗αi , i = 1, 2, 3, only when necessarily.

REMARK. We recall that quaternions are in fact pairs of complex numbers obtained by
applying the Cayley-Dickson construction to the complex numbers. Indeed, one can represent
a vector in C2 as

(43) (a0 + ia1)1 + (b0 + ib1)j = (a0 + ia1, b0 + ib1) = (z1, z2) ,

where z1 = a0 + ia1, z2 = b0 + ib1.
Keeping this identification in mind, we point out that the standard Cartan structure of

SU(2) defined in [5] is

α1 + iα2 = 2ι∗(z1dz2 − z2dz1)

= 2ι∗(−b0da0 + b1da1 + a0db0 − a1db1)

+ 2iι∗(−b1da0 − b0da1 + a1db0 + a0db1) ,

(44)

which shows that our Maurer-Cartan forms defined in formulas (42) coincide with the standard
Cartan forms used in [5]. This is the reason we prefer to work with right invariant 1-forms.

From the construction of (I, J, 1)-generalized Finsler structures induced by Cartan struc-
tures, we consider the generalized Finsler structure induced by the standard Cartan structure
(α1, α2, α3) of SU(2) given in (18).

We have seen that for ϕ = Iα1 + Jα2 it follows from (20) that this is a closed 1-form
on SU(2) and hence an exact one since H1(S

3) = 0. In other words, there exists a function
f : S3 → R such that ϕ = df . If we denote as usual df = fα1α

1 + fα2α
2 + fα3α

3, then we
obtain

(45) I = fα1 , J = fα2 , fα3 = 0 .

This means that if we find a function f (a1, b0, b1) on S3 that is a solution of the directional
differential equation fα3 = 0, then directional derivatives of f with respect to α1 and α2

will give I and J , respectively. Indeed, one can easily see that, taking into account the Ricci
identities for f with respect to the (+1) standard Cartan structure (α1, α2, α3), namely

fα21 − fα12 = −fα3 ,

fα32 − fα23 = −fα1 ,

fα31 − fα13 = fα2 ,

(46)

and simply using fα3 = 0, the conditions (19) are satisfied by I and J in (45).
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From (42) we have

fα1 =1

2
(fa1b1 − fb1a1 + fb0a0) ,

fα2 =1

2
(fb0a1 − fa1b0 + fb1a0) ,

fα3 =1

2
(fa1a0 − fb0b1 + fb1b0) ,

(47)

where the subscripts a1 etc. of f mean partial derivatives of f with respect to the respective
coordinate, and, as usual, we use (37).

The equation fα3 = 0 is equivalent to the PDE

(48)
∂f

∂a1

√

1 − a2
1 − b2

0 − b2
1 − ∂f

∂b0
b1 + ∂f

∂b1
b0 = 0 .

The general solution of this equation is

(49) f (a1, b0, b1) = Φ

(

b2
0 + b2

1, arctan
a0b0 + a1b1

a0b1 − a1b0

)

,

where Φ : R+ × R → R is an arbitrary function of two variables and again we use (37).
We are next interested in constructing an (I, J, 1)-generalized Finsler structure on the

quotient SU(2)/Γ , where Γ is a discrete, therefore finite, subgroup of SU(2). We have the
following lemma.

LEMMA 6.1. Let u, v : SU(2) → R be any smooth functions, and let Γ be a finite
subgroup of SU(2). If u and v are Γ -invariant, then

1. f (g) := Φ(u(g), v(g)) is Γ -invariant, for any g ∈ SU(2);
2. I := fα1, J := fα2 are also Γ -invariant,

where the subscripts are the directional derivatives with respect to the coframe (42).

PROOF. If u and v are Γ -invariant, i.e., u(g) = u(g · x) and v(g) = v(g · x) for any
g ∈ SU(2) and x ∈ Γ , then obviously

f (g · x) = Φ(u(g · x), v(g · x)) = Φ(u(g), v(g)) = f (g)

and (1) is proved.
Under the hypothesis conditions, since f is Γ -invariant from (1), it follows that ϕ = df

is also Γ -invariant, i.e., Iα1 + Jα2 is Γ -invariant and taking into account that (α1, α2) are
Maurer-Cartan forms on SU(2), the conclusion (2) follows. �

In other words, in order to get a Γ -invariant (I, J, 1)-generalized Finsler structure, it is
enough to verify if u and v are Γ -invariant.

In our case u(g) = b2
0 + b2

1 for any g = a0 + ia1 + jb0 + kb1, and from (38) it follows

u(g · x) = (a2
0 + a2

1)(y2
0 + y2

1) + (b2
0 + b2

1)(x
2
0 + x2

1 )

+ 2(a0b0 + a1b1)(x0y0 − x1y1) + 2(a0b1 − a1b0)(x0y1 + x1y0) ,
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where x = x0 + ix1 + jy0 + ky1 ∈ Γ . Putting now the condition u(g · x) = u(g), one can
easily see that the only admissible element x ∈ Γ must have the form x = x0 + ix1 with
x2

0 + x2
1 = 1.

Similarly, since v(g) = arctan[(a0b0 + a1b1)/(a0b1 − a1b0)], we are going to verify the
Γ -invariance of

(50) w(g) := a0b0 + a1b1

a0b1 − a1b0
= A(g)

B(g)
.

A straightforward computation gives w(g · x) = A(g · x)/B(g · x), where

A(g · x) = (a0b0 + a1b1)(x
2
0 − x2

1 − y2
0 + y2

1 ) + (a2
0 + a2

1 − b2
0 − b2

1)(x0y0 + x1y1)

+ 2(a0b1 − a1b0)(x0x1 − y0y1) ,

B(g · x) = (a0b1 − a1b0)(x
2
0 − x2

1 + y2
0 − y2

1 ) + (a2
0 + a2

1 − b2
0 − b2

1)(−x1y0 + x0y1)

− 2(a0b0 + a1b1)(x0x1 + y0y1) .

(51)

Putting the condition A(g · x)/B(g · x) = A(g)/B(g), we have

x0y0 + x1y1 = 0 ,(52)

x0x1 − y0y1 = 0 ,(53)

x1y0 − x0y1 = 0 ,(54)

x0x1 + y0y1 = 0 .(55)

From (53) and (55) we get x0x1 = 0 and y0y1 = 0. If we assume, for example, x0 = 0,
then from (52) and (54) we get x1y1 = 0 and x1y0 = 0. If moreover we take x1 = 0, then
we get y0y1 = 0, and from here y1 = 0, and thus x1y0 = 0 or y0 = 0, and thus x1y1 = 0.
In conclusion, in the case x0 = 0, two coordinates among x1, y1, y0 must vanish. A similar
analysis can be done taking in turn x1 = 0, y0 = 0 and y1 = 0, respectively. We conclude
that in order to assure the Γ -invariance of w it is necessary that three coordinates among
x0, x1, y1, y0 must vanish.

Putting all these together we can formulate as follows.

LEMMA 6.2. With the notation above we have

1. u(g · x) = u(x) for x = x0 + ix1 ∈ SU(2) and any g ∈ SU(2),
2. v(g · x) = v(x) for x ∈ {x0, ix1, jy0, ky1} ⊂ SU(2) and any g ∈ SU(2).

We are going to see if there are some particular finite subgroups Γ of SU(2) such that
f is Γ -invariant. We recall that if Γ is a finite subgroup of SU(2), then it must be one of
the following: the cyclic group Cm of order m, the binary dihedral group D∗

4n of order 4n,
the binary tetrahedral group T ∗ of order 24, the binary octahedral group O∗ of order 24, the
binary icosahedral group I∗ of order 120 (see for eg. [13, p. 87–88]).
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PROPOSITION 6.3. Let (α1, α2, α3) be the Maurer-Cartan forms of SU(2). Then, the
coframing

(56) ω1 = α1 , ω2 = df − α3 , ω3 = α2

is an (I, J, 1)-generalized Finsler structure, with invariants I = fα1, J = fα2, that descends
on SU(2)/Cm, where f : SU(2) → R is a smooth function such that

• f (a1, b0, b1) := Φ(b2
0 + b2

1, arctan[(a0b0 + a1b1)/(a0b1 − a1b0)] for m = 2, and
• f (a1, b0, b1) := Φ(b2

0 + b2
1) for m > 2,

where Φ is an arbitrary function of two or one variables, respectively.

PROOF. Since Cm is the cyclic group of order m, it is generated by x = cos(2π/m) +
i sin(2π/m). From Lemma 6.2, one can see that both u and v are C2-invariant, while only u

is Cm-invariant for m > 2. In the second case, the assumption that the arbitrary function Φ

depends only on u suffices to obtain a Cm-invariant function f . The rest follows from Lemma
6.1 and the discussion above. �

PROPOSITION 6.4. Let (α1, α2, α3) be the Maurer-Cartan forms of SU(2). Then, the
coframing (56) is an (I, J, 1)-generalized Finsler structure which descends on SU(2)/D∗

8,
with the invariants I = fα1, J = fα2, where f : SU(2) → R is a smooth function such
that f (a1, b0, b1) := Φ(arctan[(a0b0 + a1b1)/(a0b1 − a1b0)]), where Φ is an arbitrary even
function of one variable.

PROOF. The binary dihedral group D∗
4n = {x, y ; x2 = (xy)2 = yn} of order 4n has the

generators x = i and y = cos(π/n) + j sin(π/n). A straightforward computation followed
an application of Lemma 6.2 shows that v is D∗

8-invariant, while u is not D∗
4n-invariant for

any n, nor v for n > 2. Here D∗
8 = {±1,±i,±j,±k} is the quaternion group denoted also

by Q8. The rest follows remarking that v(g · x) = ±v(g) for x ∈ D∗
8 and any g ∈ SU(2) and

following the proof above. �

REMARK. One can see that since the binary tetrahedral group T ∗ = Qx,y

8 � Cz
3 is

generated by x = i, y = j and z = −(1 + i + j + k), nor u either v can be invariant.
The same is true for O∗ and I∗. Therefore we cannot construct by this method (I, J, 1)-
generalized Finsler structures on SU(2)/Γ for Γ ∈ {T ∗,O∗,I∗}. Nevertheless, the existence
of other (I, J, 1)-generalized Finsler structures is not eliminated.

6.2. The case of ˜E2. Let us recall that the group of Euclidean motions of the plane
ASO(2) is made of transformations of the form

(57)

(

X

Y

)

�→
(

x

y

)

+ R

(

X

Y

)

,

where R ∈ SO(2) is a rotation matrix. It is customary to write it as a matrix Lie group
containing matrices of the form

(58)

(

1 0
Z R

)

, Z = (x, y)t ∈ E2 , R =
(

cos θ − sin θ

sin θ cos θ

)

∈ SO(2) ,
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or simply

(59) ASO(2) = {(x, y, θ); (x, y)t ∈ E2, θ ∈ [0, 2π)}
(see for example [9] for details on ASO(2)).

The universal covering ˜E2 of ASO(2) is obtained by allowing any real value for θ , i.e.,
˜E2 is the subgroup of R3 with the multiplication

(60) (x1, y1, θ1) · (x2, y2, θ2) =
((

cos θ1 − sin θ1

sin θ1 cos θ1

) (

x2

y2

)

+
(

x1

y1

)

, θ1 + θ2

)

.

It can be seen therefore that the standard metric in R3 leads to left-invariant metrics on
˜E2 under this identification (see [5] for details).

We can now realize as ˜E2 = {(x, y, θ); z = x + iy,w = λ + iθ ∈ C2} ⊂ C2, where
(z = x + iy,w = λ + iθ) are the standard coordinates of C2, and we denote the inclusion
ι : ˜E2 → C2.

It can be now easily checked that the real and imaginary parts of the 1-form

(61) α1 + iα2 = ι∗(e−wdz)

give the standard Cartan structure on ˜E2. The remaining 1-form α3 is

(62) α3 = ι∗(idw) .

In the local coordinates of ˜E2, we get

(63) α1 = cos θdx + sin θdy , α2 = − sin θdx + cos θdy , α3 = −dθ .

Indeed, it can be easily seen that these 1-forms satisfy (61).

REMARK. Using these coordinates, we can see that the PDE system (19) reads

(64) Iθ = J, Jθ = −I, sin θ(Ix + Jy) + cos θ(Jx − Iy) = 1 ,

and that it has the solution

(65)

(

I

J

)

=
(

cos θ sin θ

− sin θ cos θ

) (

η(x, y)

f (x, y)

)

,

where we put η(x, y) = ∫

fxdy + y − g(x) for any arbitrary functions f = f (x, y) and
g = g(x) defined in the plane (x, y).

In order to complete the construction, we need to obtain explicit functions I and J in-
variant by some admissible subgroup Γ of ˜E2. Although this is possible, the computations
involved are cumbersome.

Instead of working directly on the 3-manifold Σ , we prefer to do the construction us-
ing Liouville-Cartan structures taking into account that all K-Cartan structures come from
Liouville-Cartan structures on Riemannian surfaces and that all are conformal to the standard
one.

Following the same strategy as in Proposition 5.6 we consider the Riemannian space
form (Λ0, g) = (E2, can), where can is the canonical metric on E2, and recall that its full
group of isometries is R × O(2).
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An orientation preserving subgroup F of isometries of the plane, acting freely and dis-
cretely on E2, is generated only by translations (see [12, p. 407]). This is a discrete subgroup
of R2, the group of all translations of (E2, can). It follows that F is isomorphic to Z or Z⊕Z

being generated by one or two translations, respectively.
In this case, Λ := Λ0/F is a smooth surface, namely an open cylinder or a torus, if

F is generated by a translation or two translations, respectively. We will restrict here to the
compact quotient case, i.e., the 2-dimensional torus Λ = T 2 case.

What we need now is any 1-form φ = f (x, y)dx + g(x, y)dy on Λ0 which is F -
invariant, where can = dx2 + dy2. Since the coframe (η1, η2) = (dx, dy) is F -invariant
by definition, we need two F -invariant functions of two variables defined in plane. If we
denote F = 〈τ1, τ2〉, where τ1 : (x, y) �→ (x + 1, y) and τ2 : (x, y) �→ (x, y + 1), then
we are looking for functions f , g periodic of period 1 in plane satisfying the supplementary
condition −fy + gx > 0.

One way to find such functions is to take any two functions f and g of two variables, or
equivalently any 1-form φ, directly on the torus T 2 such that −fy + gx > 0. Indeed, let us
remark that the torus T 2 is an orientable surface, therefore there exists a nowhere zero 2-form
Θ on T 2 that gives the orientation, i.e., we can choose Θ > 0 or Θ < 0 everywhere.

On the other hand, since H 2(T 2) = 0 it follows that there always exists a 1-form φ =
f (x, y)dx + g(x, y)dy on T 2 such that dφ = Θ , where (x, y) are some local coordinates on
T 2. Therefore, for the convenient orientation on T 2, we always have a 1-form φ on T 2 such
that dφ > 0 everywhere. In this case, the condition 2 in 5.5 reads dφ = (1/v2)dx ∧ dy and
hence v = 1/

√−fy + gx , where fy and gx represent usual partial derivatives of the functions
f and g with respect to the variables y and x, respectively.

Having all these done, (33) implies that the coframe

(66) ω1 = √−fy + gx · α1 , ω2 = −ν∗(φ) − α3 , ω3 = √−fy + gx · α2

is an (I, J, 1)-generalized Finsler structure on Σ = ˜E2/Γ , one of the five T 2-bundles over
S1 with periodic monodromy, where (α1, α2, α3) is the standard Cartan structure on ˜E2,
ν : ST (T 2) → T 2 is the usual canonical bundle projection, and φ is the 1-form on T 2

defined above. The subgroup Γ is the inverse image of F through the projection map ˜E2 �→
Isomo(E

2, can). The invariants of this (I, J, 1)-generalized Finsler structure are

I = − f
√−fy + gx

− fyy − gxy

2(−fy + gx)
√−fy + gx

,

J = − g
√−fy + gx

+ fxy − gxx

2(−fy + gx)
√−fy + gx

.

(67)

In the case of F isomorphic to Z ⊕ Z, i.e., generated by two translations, the corre-
sponding discrete group Γ of ˜E2 is the discrete group with monodromy matrix A1 = ( 1 0

0 1 )

and the 3-manifold Σ is diffeomorphic with the 3-torus T 3. We point out that starting with
Liouville-Cartan structures, we obtain only homothety classes of Cartan structures with all
leaves of the codimension one foliation {α1 = 0, α2 = 0} closed (see [5, Theorem 7.4]).
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Using complex coordinates, the 2-dimensional real torus Λ0 = T 2 can be identified with
the 1-dimensional complex torus Λ0 = C/Γ ′, where Γ ′ = 〈1, z0, z1〉. Here z0 ∈ H2 and
z1 ∈ C are arbitrary. Remark that Γ ′ is discrete provided qz1 ∈ 〈1, z0〉 for some positive
integer q (one can take q minimal, namely the order of z1 modulo 〈1, z0〉).

Then the corresponding discrete subgroup Γ of ˜E2 ⊂ C2 is the lattice

(68) Γ = 〈(1, 0), (z0, 0), (z1, 2πir1)〉 ,

where z0, z1 are as above and r1 is a positive integer. It follows that the 3-manifold Σ = ˜E2/

Γ is the 3-torus T 3 = Λ0 × S1 which covers ST Λ0 (see [5, p. 206] for details).
Therefore the coframe (66) is an (I, J, 1)-generalized Finsler structure on the compact

3-manifold Σ = ˜E2/Γ = T 3, where Γ is given in (68).
Similarly, one can obtain Γ ′-invariant Liouville-Cartan structures on E2, where Γ ′ is an-

other discrete subgroup of Isomo(E
2, can) and compute its corresponding discrete subgroup

Γ of ˜E2, but the construction we gave above is enough for proving the following result.

PROPOSITION 6.5. The standard 0-Cartan structure on Σ = ˜E2/Γ = T 3 induces a
non-trivial (I, J, 1)-generalized Finsler structure on the 3-manifold Σ , where Γ is the lattice
(68).

6.3. The case of ˜SL2. Let us denote by H2 the upper half plane in C, the coordinates
of H2 × C with (z, w̃) and the corresponding point in H2 × C∗ with (z, ew̃) = (z,w).

We identify ˜SL2, the universal covering of the unit tangent bundle STH2, with H2 × iR

with coordinates (z, θ), where we denote by z = x+ iy ∈ C the standard complex coordinate,
and w̃ = λ + iθ . We consider the inclusion ι : H2 × (iR) → H2 × C, i.e., the 3-manifold
˜SL2 ≡ H2 × (iR) is transversal to the vector ∂/∂λ.

It can be easily verified that the real and imaginary parts of the 1-form

(69) α1 + iα2 = ι∗(ewdz)

give the standard Cartan structure on ˜SL2.
Since the natural inclusion ι : ˜SL2 → C2 is given by ι(z, iθ) = (z, 0 + iθ), we have

ι∗dw = −ι∗dw̄ = idθ .

On the other hand, by adding and then subtracting formula (69) with its complex conju-
gate α1 − iα2, we obtain concrete formulas for α1 and α2. Using now Lemma 3.4, it follows
that the remaining 1-form α3 is

(70) α3 = −iι∗(dw) .

If we consider the 3-manifold ˜SL2 to be defined by the equations (x = x, y = y, λ =
log y, θ = θ), as a submanifold of H2 × C, then in local coordinates (x, y, θ) of ˜SL2 we
obtain

(71) α1 = 1

y
(cos θdx + sin θdy) , α2 = 1

y
(− sin θdx + cos θdy) , α3 = −dθ − 1

y
dx .
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REMARK. Using these coordinates, we can see that the PDE system (19) reads

(72) Iθ = −J , Jθ = I , sin θ(yIx + Iθ + xJy) − cos θ(yJx + Jθ − xIy) = 2 ,

and it has the solution

(73) I (x, y, θ) = 2x − C

y
sin θ , J (x, y, θ) = 2x − C

y
cos θ

for any arbitrary constant C.
Similarly with the case of ˜E2, although it is possible to check the invariance of these

functions under the action of the discrete subgroups of ˜SL2, since all Cartan structures are
conformal to the standard one and this corresponds to the Liouville-Cartan structure induced
from the space form (H2, can), we prefer to follow the construction in Section 5.

Let us recall that the orientation preserving isometries group Isomo(H2, can) can be
identified with the group PSL2, which is the quotient of SL2 by its central subgroup of order
two (see [12]), namely PSL2 = SL2/{±I2}, where I2 is the 2 × 2 identity matrix.

Indeed, the action of SL2 on H2 is defined by the usual Möbius transformation

(74) A · z = az + b

cz + d
,

where z = u+ iv, v > 0, A = ( a b
c d ) ∈ M2×2(R), and det(A) = 1, and a simple computation

shows that A · z = (−1)A · z. It follows that the equivalence relation A ∼ B if and only if
A = ±B, defined on SL2, is natural and we obtain the quotient space PSL2 := SL2/ ∼, that
motivates the definition above.

REMARK. It is also known that PSL2 can be identified with the unit tangent bundle
STH2 by choosing any vector ξ ∈ STH2 at some fixed point (x, y) ∈ H2 and defining the
map

PSL2 → STH2 , A �→ A∗(ξ) ,

where A∗ is the differential of A (see [5, Subsection 5.3] for details).
It can be seen that under this map, the natural metric on STH2 induced from (H2, can)

is pulled back to a left invariant metric on PSL2, which is independent of the choice of ξ .
This metric can now be pulled back to ˜SL2 by the universal covering mapping ˜SL2 → PSL2,
if necessary.

The universal covering ˜SL2 of SL2 is an example of finite dimensional Lie group that is
not a matrix group, i.e., ˜SL2 admits no faithful, finite-dimensional representation.

This means that the mapping G = ˜SL2 → IsomoΛ0 = PSL2 that maps the discrete
subgroup Γ into its image Γ ′ is just the universal covering map.

We also recall that the elements A ∈ PSL2 can be classified by their traces as follows.
If the trace of the matrix A is less than, equal to or greater than 2, the element A of PSL2 is
called elliptic, parabolic or hyperbolic, respectively.

It is also known that a subgroup F of PSL2 is discrete if and only if it acts properly
discontinuously on H2, namely the following three conditions hold
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1. the F -orbit of any point is locally finite;
2. the F -orbit of any point is discrete and the stabilizer of that point is finite;
3. for any point, there is a neighborhood of that point, say V , for which only finitely

many A ∈ F satisfy A(V ) ∩ V 	= ∅.
Such a discrete subgroup F is called a Fuchsian group.

REMARK. 1. It is known that a Fuchsian group is abelian if and only if it is cyclic.
2. Any hyperbolic or parabolic cyclic subgroup of PSL2 is Fuchsian, while an elliptic

cyclic subgroup is Fuchsian if and only if it is finite.

It can be seen that PSL2 is generated by the matrices

(75) A1 :=
(

1 s

0 1

)

, A2 :=
(

λ 0
0 1/λ

)

, A3 :=
(

0 1
−1 0

)

,

which are parabolic, hyperbolic and elliptic elements of PSL2, respectively, where s ∈ R and
λ > 0.

These matrices correspond to three types of isometries: translations, dilatations and
rotations, respectively, which form the full group of orientation preserving isometries of
(H2, can).

Let us point out here that another kind of isometry of (H2, can) is the reflection R, but
one can see that this is not an orientation preserving matrix, therefore unlikely Ai , i = 1, 2, 3,
it results R /∈ PSL2. This can be seen by direct computation taking into account the actions

(76)

A1 : (x, y) �→ (x + s, y), A2 : (x, y) �→ λ2(x, y) ,

A3 : (x, y) �→
(

− x

x2 + y2
,

y

x2 + y2

)

.

In order to obtain the corresponding discrete orientation preserving subgroups F of
(H2, can), let us remark that, since A1 and A2 are parabolic and hyperbolic, respectively,
for some fixed s and λ > 0, the cyclic groups F1(s) := 〈A1(s)〉, F2(λ) := 〈A2(λ)〉 are Fuch-
sian groups due to Fuchs groups properties. Here we denote by A1(s) and A2(λ) the matrices
A1 and A2 in (75) defined for some fixed s and λ > 0, respectively.

Similarly, in the case of A3, let us observe that (A3)
2 = −I2 and therefore the cor-

responding discrete subgroup 〈A3〉 is a finite group of order 2, hence F3 := 〈A3〉 is also
Fuchsian.

It is known that the hyperbolic 2-orbifold Λ = Λ0/F is a manifold when F contains no
elements of finite order, in other words, when F contains no elliptic elements.

Therefore, for some fixed s and λ > 0, the quotient sets Λ1 = H2/F1(s) and Λ2 = H2/

F2(λ) are hyperbolic 2-manifolds. By the discussion above, it follows Λ1 can be identified
with the open upper half cylinder, and Λ2 with an open transversally sectioned torus (a cylin-
der cut by 2 transversal plans without both lids).

What we need now is to find two functions of two variables f (x, y), g(x, y) defined
onH2, which are invariant under the action of a finite order discrete subgroupF ⊂ Isomo(H2,
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can) and such that

(77) −fη2 + f + gη1 − 1 > 0 ,

where subscripts here are directional derivatives with respect to the orthonormal coframe
(η1, η2) of (H2, can), namely df = fη1η

1 + fη2η
2, and similar for g . Indeed, the struc-

ture equations (30) of this coframe are

dη1 = η1 ∧ η2 , dη2 = 0 ,

and therefore the structure functions a and b take the values 1 and 0, respectively.
In (x, y)-coordinates the canonical metric can on H2 is given by [(dx)2 + (dy)2]/y2 and

therefore we have

(78) η1 = 1

y
dx , η2 = 1

y
dy .

Moreover, the Levi-Civita connection form is η3 = −(1/y)dx, the Gauss curvature is K =
−1, and hence, from (77), we obtain the condition

(79) −yfy + f + ygx − 1 > 0 ,

where the subscripts represent usual partial derivatives, namely df = fxdx + fydy. One can
easily see that (fη1, fη2) = y(fx, fy).

In the case of the translations group F1, we can consider f = f (y) and g = g(y), func-
tions invariant by the translation subgroup defined above. In this case, (79) reads −yf ′(y) +
f − 1 > 0, and g(y) arbitrary, but this kind of f always exists (for instance, f (y) = my + n

for any m > 0 and n > 1 will do). Therefore, for any φ = (1/y)(f (y)dx + g(y)dy), the
coframe

ω1 = √−yf ′(y) + f − 1 α1 ,

ω2 = −ν∗φ − α3 ,

ω3 = √−yf ′(y) + f − 1 α2

(80)

is an (I, J, 1)-generalized Finsler structure on Σ = ˜SL2/Γ , where Γ is the lift of the trans-
lations group F1 on (H2, can) to ˜SL2. The structure functions are given by

(81)

I = − 1
√−yf ′(y) + f − 1

[

f + y2f ′′(y)

2(−yf ′(y) + f − 1)

]

,

J = − 1
√−yf ′(y) + f − 1

g(y) .

Indeed, since v2 = 1/(−yf ′(y) + f − 1), by direct computation we get vx = 0, vy =
(yf ′′(y))v3/2, and therefore vη1 = 0, vη2 = yvy = (y2f ′′(y))v3/2, and from (34) the
formulas above follow.

In the case of f linear function, we get I = −f/
√−yf ′(y) + f − 1,

J = −g/
√−yf ′(y) + f − 1, with g arbitrary function of one variable. Obviously this is

non-trivial (I, J, 1)-generalized Finsler structure.
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In the case of dilatations group F2, if we consider f (x, y) = f̄ (τ )|τ=x/y and g(x, y) =
ḡ(τ )|τ=x/y , these functions are invariant to dilatations. A stronger restriction would be f = 0,
hence we have φ = ḡ(τ )|τ=x/yη

2, and dφ = ḡ ′(τ )τη1η
1∧η2. In this case, we get (τη1, τη2) =

(1,−τ ), and imposing the condition ḡ ′(τ )τη1−1 = ḡ ′(τ )−1 > 0, we get v2 = 1/(ḡ ′(τ ) − 1).
A straightforward computation shows

(82) vx = − v3

2y
ḡ ′′(τ ) , vy = xv3

2y2 ḡ ′′(τ ) ,

and from here

(83) vη1 = −v3

2
ḡ ′′(τ ) , vη2 = xv3

2y
ḡ ′′(τ ) .

Therefore, the coframe

(84) ω1 = √

ḡ ′(τ ) − 1 α1 , ω2 = −ν∗φ − α3 , ω3 = √

ḡ ′(τ ) − 1 α2

for any φ = (ḡ(x/y)/y)dy, ḡ(τ ) > τ is an (I, J, 1)-generalized Finsler structure on Σ =
˜SL2/Γ , where Γ is the lift of the finite order dilatations groupF2 of (H2, can) to the universal
covering space ˜SL2.

The structure functions are given by

(85) I = − x

2y

ḡ ′′(τ )

(ḡ ′(τ ) − 1)3/2 , J = − ḡ ′′(τ )

2(ḡ ′(τ ) − 1)3/2 − ḡ(τ )√
ḡ ′(τ ) − 1

, τ = x

y
.

A similar study can be done for other examples of Fuchsian groups, but these two cases
are enough for our purposes.

We have the following proposition.

PROPOSITION 6.6. The standard (−1)-Cartan structure on Σ = ˜SL2/Γ induces a
non-trivial (I, J, 1)-generalized Finsler structures on the 3-manifold Σ , where Γ is one of
the lifts of the groups F1 or F2 to ˜SL2.

7. Relation with the conformal classes of Cartan structures. Recall that the ho-
mothety class of a contact circle (α1, α2) is the collection of all pairs (α̃1, α̃2) obtained from
(α1, α2) by multiplications by positive functions v and a rotation by a constant angle θ .

The conformal class of a contact circle (α1, α2) is the collection of all pairs (α̃1 :=
vα1, α̃2 := vα2), where v is a positive function.

If a contact circle is K-Cartan, then all contact circles homothetic to it are also K-Cartan
provided dv ∈ 〈α1, α2〉.

THEOREM 7.1 ([7]). 1. Let Σ = SU(2)/Γ be a (compact) left quotient of SU(2).
Then on Σ , up to homothety and diffeomorphism, the set of Cartan structures is
given by descending the family of Cartan structures living on S3

(86) α1 + iα2 = 4ι∗ (az1dz2 − (1 − a)z2dz1) , 0 < a < 1 ,

to Σ , where ι is the standard inclusion of S3 in C2. For a = 1/2 one obtains the
standard Cartan structure.
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2. Let Σ = ˜SL2/Γ be a (compact) left quotient of ˜SL2. Then in each conformal class
of Cartan structures on Σ , there is one and only one (−1)-Cartan structure.

3. Let Σ = ˜E2/Γ be a (compact) left quotient of ˜E2. Then each conformal class of
Cartan structures on Σ contains a (0)-Cartan structure. This (0)-Cartan structure is
unique up to multiplications by positive constants.

Let us recall that our construction of (I, J, 1)-generalized Finsler structures given in
Proposition 5.6 works for arbitrary Cartan structures, regardless they are standard or not.

In other words, for each K-Cartan structure (α1, α2, α3) on Σ = G/Γ , in any of the
conformal classes described in Theorem 7.1, for a 1-form ϕ on Σ that satisfies C 5.1 or C 5.3,
there is a naturally associated (I, J, 1)-generalized Finsler structure on Σ . Indeed, if G is ˜E2

or ˜SL2, then roughly speaking all K-Cartan structures are conformal to the standard Cartan
structure on Σ , and therefore all are in the same time Liouville-Cartan structures arising as in
the construction in Section 5, where Γ is any admissible subgroup of G. The same conclusion
holds for G = S3 and Γ non-abelian.

We recall that if G = S3 and Γ abelian, then there are K-Cartan structures on G/Γ

which are not conformal to the standard Cartan structure. This is the case of any {α1, α2} in
the family (86) obtained for any a ∈ (0, 1), a 	= 1/2. These Cartan structures do not arise
from Liouville-Cartan structures on Riemannian surfaces. However, one can easily construct
(I, J, 1)-generalized Finsler structures in this case as follows.

If Γ is abelian, then Σ = SU/Γ must be a lens space L(m,m − 1), m ∈ N , and its
K-Cartan structures are the family (86) for any a ∈ (0, 1).

Let us briefly recall the definition of a lens space.

On the unit sphere S3 = {

(z1, z2) ∈ C2; ∣

∣z1
∣

∣

2 + ∣

∣z2
∣

∣

2 = 1
}

, the map

(z1, z2) �→ (

eiφ1
z1, eiφ2

z2) , 0 ≤ φ1, φ2 < 2π ,

defines an isometric action of the torus S1 × S1.
Now, let p, q ∈ N be relatively prime and 1 ≤ p < q and denote by Zq the cyclic group

of order q . Composing the homomorphism

Zq → S1 × S1 , r �→ (

e2πir/q, e2πirp/q
)

with the above action, it follows that Zq acts isometrically on S3. This action has no fixed
points because p and q are relatively prime and, moreover, the quotient S3/Zq is a manifold,
denoted L(p, q), and called lens space. Intuitively speaking, a lens space is a 3–dimensional
manifold obtained by gluing two solid tori together along their boundaries. On L(m,m − 1)

all K-Cartan structures, up to homothety and diffeomorphism, are obtained by descending to
L(m,m − 1) the family (86) living on S3.
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With these notations it can be seen that (α1, α2, α3) is a K–Cartan structure with

α3 = ι∗
[

1

ai
z1dz1 + 1

(1 − a)i
z2dz2

]

,

K = 1

8a(1 − a)ι∗ [az1z1 + (1 − a)z2z2]
> 0 .

(87)

We remark that K and α3 are real 0- and 1-forms on S3 written in complex coordinates,
respectively. One can easily see that K = 1 only if a = 1/2.

Therefore, starting with any K-Cartan structure in the family (86), we can construct
(I, J, 1)-generalized Finsler structures on the lens space L(m,m − 1), m ∈ N , making use of
the technique developed in Subsection 5.1. Indeed, the simplest way to do this is to take the
coframe

(88) ω1 = √
K α1 , ω2 = −α3 , ω3 = √

K α2 ,

where {α1, α2} is given by (86) and α3, K by (87).
It can be easily seen that {ω1, ω2, ω3} is a non-trivial (I, J, 1)-generalized Finsler struc-

tures with the structure functions

I = 1

2K
√
K
Kα2 , J = − 1

2K
√
K
Kα1

provided K 	= 1, i.e., a 	= 1/2.
More sophisticated constructions are also possible by taking a Γ -invariant 1-form φ on

Σ , but the details of such constructions are too complicated for the purpose of this paper.
There is another interesting fact about the (I, J, 1)-generalized Finsler structures (88)

constructed above.
If one denotes by Diff(Σ) the diffeomorphism group of Σ , and by C(Σ) the space of

homothety classes of Cartan structures on Σ , then the moduli space of Cartan structures is
given by M(Σ) = C(Σ)/Diff(Σ) (see [7]). One can easily see that there is a one to one
correspondence between K-Cartan structures and the (I, J, 1)-generalized Finsler structures
(88) up to diffeomorphism and conformal equivalence.

Indeed, let us give a definition. An (I, J, 1)-generalized Finsler structure ω =
(ω1, ω2, ω3) on a closed 3-manifold Σ = SU(2)/Γ is called K-induced if there exists a
K-Cartan structure α = (α1, α2, α3), K > 0, such that (88) holds good. The structure func-
tions I , J are obtained from the relation

(89) Iα1 + Jα2 = 1√
K

∗ d

(

1√
K

)

.

We will introduce an equivalence relation of K-induced (I, J, 1)-generalized Finsler
structures as follows. If ω and ω̃ are two such structures, then ω ∼ ω̃ if and only if the corre-
sponding K-Cartan structures α and α̃, with K > 0, are conformal equivalent, i.e., there exists
a function v > 0 on Σ = SU(2)/Γ such that (α̃1, α̃2) = v(α1, α2). We denote by CGFS(Σ)

the space of equivalence classes of K-induced (I, J, 1)-generalized Finsler structures on Σ

and consider the moduli space of such structures MGFS(Σ) = CGFS(Σ)/Diff(Σ).
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Then the mapping

(90) Φ : MGFS(Σ) → M(Σ) , [ω] �→ [α]conf ,

associates to each ω̄ ∈ [ω] the corresponding conformal K-Cartan structure α from the con-
formal class [α]conf as described above. One can see that this is a one to one correspondence
that does not depend on the choice of representatives of the equivalence classes. It follows
that we can identify the moduli spaces MGFS(Σ) and M(Σ), and from [5, Theorem 7.4], we
obtain the following theorem.

THEOREM 7.2. 1. If G = SU(2) and Γ is a non-abelian discrete subgroup, then
MGFS(Σ,ω) consists of a single point.

2. If G = SU(2) and Γ is abelian, then Σ must be a lens space L(m,m − 1), m ∈ N ,
and the moduli space is

MGFS(L(m,m − 1), ω) = {a ∈ C; 0 < Re(a) < 1}/(a ∼ 1 − a).

REMARK. We remark that our construction of the induced (I, J, 1)-generalized Finsler
structures from taut contact circles in Proposition 4.1 is quite naive, but this is enough for
proving Theorem 1.1. More sophisticated constructions, for example linear combinations of
the 1-forms α can be imagined. These can lead to other special generalized Finsler structures.
A simple example related to some previous works [10], [11] is presented in the Appendix.

8. Appendix. Let us recall that a generalized Landsberg structure on a 3-manifold
Σ is an (I, 0,K)-generalized Finsler structure that satisfies the structure equations (2.1) for
J = 0.

If (Σ,ω1, ω2, ω3) is such a structure, we consider the set of 1-forms (α1, α2) given by

(91) α1 := ω2 , α2 := mω3 ,

where m is a smooth function on the 3-manifold Σ .

PROPOSITION 8.1. If (Σ,ω) is an (I, 0,K)-generalized Finsler structure, then the
pair (α1, α2) is a Cartan structure on Σ if and only if the function m satisfies the conditions:

1. m is nowhere vanishing on Σ ,
2. m1 = 0,
3. m2 = 1/K ,

where we write dm = m1ω
1 + m2ω

2 + m3ω
3.

PROOF. The proof is purely computational. �

Let us remark that the conditions in Proposition 8.1 impose some restrictions on the
generalized Landsberg structure (Σ,ω1, ω2, ω3) as well. Indeed, we must have

K > 0 , K1 = 0

everywhere on Σ .
It can now be easily seen that an (I, 0,K)-generalized Finsler structure satisfying the

conditions above naturally induces a K-Cartan structure. We have the following proposition.
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PROPOSITION 8.2. Let Σ be a closed 3-manifold and let (Σ,ω) be an (I, 0,K)-
generalized Finsler structure such that K > 0, K1 = 0. Then the coframe

(92)

⎛

⎝

α1

α2

α3

⎞

⎠ =
⎛

⎝

0 1 0
0 0 1/

√
K√

K 0 −K2/(2K
√

K)

⎞

⎠

⎛

⎝

ω1

ω2

ω3

⎞

⎠

is a K-Cartan structure with structure constant

(93) K = K − 3

4

1

K

(

1

K
(K2)

2 − 2

3
K22

)

,

where the subscripts are directional derivatives with respect to the coframe ω = (ω1, ω2, ω3).

PROOF. Since (α1, α2) given by (91) is a Cartan structure, Lemma 3.4 implies that there
exists a unique 1-form α3 such that

(94) dα1 = α2 ∧ α3 , dα2 = α3 ∧ α1 .

A straightforward computation shows that

(95) α3 = 1

m
ω1 − m2ω

3 .

One can see that α1 ∧ α2 ∧ α3 = ω1 ∧ ω2 ∧ ω3 	= 0, therefore (α1, α2, α3) is also a
coframe on Σ . By exterior derivation it follows

(96) dα3 = 1

m

(

1

m
− m22

)

α1 ∧ α2,

and therefore we can conclude that (α1, α2, α3) is a K-Cartan structure with

(97) K = 1

m

(

1

m
− m22

)

.

Using now the conditions on m found in Proposition 8.1, the conclusion follows. �

REMARK. Do not confound the structure function K of the Cartan structure α with the
structure function K of the generalized Finsler structure ω.

Conversely, by similar computations as above, we obtain the following proposition.

PROPOSITION 8.3. Let (Σ, α) be a K-Cartan structure on the closed 3-manifold Σ

and let m : Σ → R \ {0} a smooth function that satisfies the relations

(98) mα3 = 0 , mα11 = 1

m
− mK , mα12 = 0 ,

where the subscripts represent directional derivatives with respect to the coframe α =
(α1, α2, α3). Then the coframe

(99)

⎛

⎝

ω1

ω2

ω3

⎞

⎠ =
⎛

⎝

0 mα1 m

1 0 0
0 1/m 0

⎞

⎠

⎛

⎝

α1

α2

α3

⎞

⎠
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is an (I, 0,K)-generalized Finsler structure on Σ with the structure functions

(100) I = 2mα2 , K = 1

m2 .

REMARK. The involutivity of the directional PDE (98) can be studied by means of
Cartan-Kähler theory. We have done such a study for a similar directional PDE in [10] and
construct explicit solutions in [11].

Since any Cartan structure is a taut contact circle, from Theorem 3.6 we obtain the fol-
lowing theorem.

THEOREM 8.4. If (Σ,ω) is an (I, 0,K)-generalized Finsler structure on a closed 3-
manifold Σ satisfying the conditions K > 0, K1 = 0, then Σ is diffeomorphic to G/Γ , where
G and Γ are as in Theorem 3.6.

Finally, let us point out that this construction does not lead to a classical Landsberg
structure by the reasons presented in [10] and [11].
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