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Abstract. In this paper, we discuss some algebraic criterion on the completeness of
holomorphic vector fields on a tube domain TΩ . Our objects of consideration are polynomial
vector fields on TΩ . We give a method of determining the higher degree complete polyno-
mial vector fields from the data on the lower degree complete polynomial vector fields, which
we call prolongation. Furthermore, we give its applications to the holomorphic equivalence
problem for tube domains.

Introduction. A well-known theorem of H. Cartan says that the group Aut(D) of all
holomorphic automorphisms of a bounded domain D in Cn forms a Lie group with respect
to the compact-open topology. This fact is fundamental in the study of complex bounded
domains. Since the Lie algebra of the Lie group Aut(D) can be identified canonically with the
Lie algebra of all complete holomorphic vector fields on D, the completeness of vector fields
occupies an important position in the study. In general, a judgement on the completeness of
vector fields is rather difficult. In fact, given a vector field, the problem of whether its integral
curve x(t) is defined for all t ∈ R has complicated aspects as the problem on the solutions of
autonomous systems in the theory of nonlinear oscillations. But, in some geometric setting,
there is a nice algebraic criterion on the completeness of vector fields. The purpose of this
paper is to give such a criterion in the case of holomorphic vector fields on a tube domain.
Our objects of consideration are polynomial vector fields on a tube domain TΩ . We give a
method of determining higher degree complete polynomial vector fields on TΩ from the data
on lower degree complete polynomial vector fields on TΩ , which we call prolongation.

This paper is organized as follows. In Section 1, we recall basic concepts and results on
tube domains, and moreover, give an explanation of the holomorphic equivalence problem for
tube domains that motivates our study. Our result on prolongation of complete polynomial
vector fields on a tube domain, which we call Prolongation Theorem, is given in Section 2.
In Section 3, we exhibit the concrete process of prolongation through some typical examples.
Finally, in Section 4, related to the holomorphic equivalence problem for tube domains, we
give some remarks, and discuss applications of Prolongation Theorem. In particular, we give
an answer to the holomorphic equivalence problem for tube domains admitting only affine
automorphisms.
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1. Preliminaries and background facts. We first recall some notation and terminol-
ogy. An automorphism of a complex manifoldM means a biholomorphic mapping ofM onto
itself. The group of all automorphisms of M is denoted by Aut(M). The complex manifold
M is called homogeneous if Aut(M) acts transitively on M . We denote by GL(n, R) � Cn

the subgroup of Aut(Cn) consisting of all transformations of the form

Cn � z �→ Az+ β ∈ Cn ,

where A ∈ GL(n, R) and β ∈ Cn. Two complex manifolds are said to be holomorphically
equivalent if there is a biholomorphic mapping between them. For a Lie groupG, we denote
by G◦ the identity component of G and by LieG the Lie algebra of G. If E = {·} is a subset
of a vector space V over a field F , the linear subspace of V spanned by E is denoted by
EF = {·}F . The symbol δij denotes the Kronecker’s delta.

We now recall basic concepts and results on tube domains. A tube domain TΩ in Cn is a
domain in Cn given by TΩ = Rn+√−1Ω , whereΩ is a domain in Rn and is called the base
of TΩ . Clearly, each element ξ ∈ Rn gives rise to an automorphism σξ ∈ Aut(TΩ) defined by

σξ (z) = z+ ξ for z ∈ TΩ .

Write Σ = Rn. The additive groupΣ acts as a group of automorphisms on TΩ by

ξ · z = σξ (z) for ξ ∈ Σ and z ∈ TΩ .

The subgroup of Aut(TΩ) induced byΣ is denoted byΣTΩ . Note that if ϕ ∈ GL(n, R)�Cn,
then ϕ(TΩ) is a tube domain in Cn, and we have ϕΣTΩϕ

−1 = ΣTΞ , where TΞ = ϕ(TΩ).
Consider a biholomorphic mapping ϕ TΩ1 → TΩ2 between two tube domains TΩ1 and

TΩ2 in Cn. Then, by what we have noted above and [6, Section 1, Proposition], ϕ is given by
an element of GL(n, R) � Cn if and only if ϕ is equivariant with respect to the Σ-actions.
Biholomorphic mappings between tube domains equivariant with respect to the Σ-actions
may be considered as natural isomorphisms in the category of tube domains. In view of this
observation, we say that two tube domains TΩ1 and TΩ2 in Cn are affinely equivalent if there
is a biholomorphic mapping between them given by an element of GL(n, R)� Cn.

If the convex hull of the baseΩ of a tube domain TΩ in Cn contains no complete straight
lines, then TΩ is holomorphically equivalent to a bounded domain in Cn and, by a well-known
theorem of H. Cartan, the group Aut(TΩ) of all automorphisms of TΩ forms a Lie group with
respect to the compact-open topology. The Lie algebra g(TΩ) of the Lie group Aut(TΩ) can be
identified canonically with the finite-dimensional real Lie algebra consisting of all complete
holomorphic vector fields on TΩ .

Let zj = xj + √−1yj , j = 1, . . . , n, be the complex coordinate functions of Cn,
where xj , yj ∈ R, j = 1, . . . , n. For z = (z1, . . . , zn), we write Re z = (x1, . . . , xn) and
Im z = (y1, . . . , yn). We write ∂j = ∂/∂zj for j = 1, . . . , n. Let D be a domain in Cn. Then
every holomorphic vector field Z on D can be written in the form

Z =
n∑
j=1

fj (z)∂j ,



PROLONGATION OF HOLOMORPHIC VECTOR FIELDS ON A TUBE DOMAIN 497

where f1(z), . . . , fn(z) are holomorphic functions on D. The vector field Z is called a poly-
nomial vector field if f1(z), . . . , fn(z) are polynomials in z1, . . . , zn. The maximum value
of the degrees of the polynomials f1(z), . . . , fn(z) is called the degree of Z and written as
degZ. The following result is fundamental in our study.

STRUCTURE THEOREM ([6, Section 2, Theorem]). To each tube domain TΩ in Cn

whose base Ω has the convex hull containing no complete straight lines, there is associated
a tube domain TΩ̃ which is affinely equivalent to TΩ such that g(TΩ̃) has the direct sum
decomposition

g(T
Ω̃
) = p + e

for which

p = {X ∈ g(TΩ̃) ; X is a polynomial vector field} ,

e =
r∑
i=1

{
ezi

(
∂i +

n∑
j=r+1

√−1aji ∂j

)
, e−zi

(
∂i −

n∑
j=r+1

√−1aji ∂j

)}
R

,

where r is an integer between 0 and n and aji , i = 1, . . . , r, j = r + 1, . . . , n, are real
constants.

The integer r is called the exponential rank of the tube domain TΩ , and is denoted by
e(TΩ). This is well-defined, because it is readily verified that if two tube domains TΩ1 and
TΩ2 are affinely equivalent, then we have e(TΩ1) = e(TΩ2). When a tube domain TΩ satisfies
e(TΩ) = 0, we call TΩ a tube domain with polynomial infinitesimal automorphisms.

Our main theme in this paper is a study of tube domains with polynomial infinitesimal
automorphisms. This is motivated by the holomorphic equivalence problem for tube domains,
which we will explain below.

In terms of the notion of the affine equivalence of tube domains, the holomorphic equiv-
alence problem for them may be formulated as the problem of studying the relationship be-
tween the holomorphic and affine equivalences of tube domains. It is clear that if two tube
domains in Cn are affinely equivalent, then they are holomorphically equivalent. What we
have to ask is whether the converse assertion holds or not:

Problem. If two tube domains TΩ1 and TΩ2 in Cn are holomorphically equivalent, then
are they affinely equivalent?

When Ω1 and Ω2 are convex cones in Rn, an affirmative answer is given (see Mat-
sushima [4]). On the other hand, whenΩ1 andΩ2 are arbitrary domains in Rn whose convex
hulls contain no complete straight lines, there is a simple counterexample. In fact, consider
the upper half plane

T(0,∞) = {x + √−1y ∈ C ; x ∈ R, y > 0}
and the strip

T(0,π) = {x + √−1y ∈ C ; x ∈ R, 0 < y < π}
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in the complex plane. Then the tube domains T(0,∞) and T(0,π) in C are holomorphically
equivalent, but not affinely equivalent. We can clarify what causes a phenomenon like this by
making use of the Structure Theorem stated above. It should be remarked here that Kruzhilin
and Soldatkin (see [2], [3]) completely determined all tube domains in C2 for which holo-
morphic equivalence does not imply affine equivalence without imposing any assumptions on
the domains.

Let TΩ1 and TΩ2 be tube domains in Cn whose bases Ω1 and Ω2 have the convex hulls
containing no complete straight lines. Since the exponential rank of a tube domain is an affine
invariant, it is natural to reformulate the holomorphic equivalence problem for tube domains
as follows:

Problem (∗). If e(TΩ1) = e(TΩ2) and if TΩ1 and TΩ2 are holomorphically equivalent,
then are TΩ1 and TΩ2 affinely equivalent?

The counterexample shown above corresponds to the case where e(TΩ1) 
= e(TΩ2),
because e(T(0,∞)) = 0 and e(T(0,π)) = 1. On the other hand, when Ω1 and Ω2 are bounded
domains in Rn, it is shown [8] that if TΩ1 and TΩ2 are holomorphically equivalent, then we
have e(TΩ1) = e(TΩ2), and TΩ1 and TΩ2 are affinely equivalent.

Specifying Problem (∗), we consider the following problem which has fundamental im-
portance:

Problem (∗∗). If e(TΩ1) = e(TΩ2) = 0 and if TΩ1 and TΩ2 are holomorphically equiva-
lent, then are TΩ1 and TΩ2 affinely equivalent?

When Ω1 and Ω2 are convex cones in Rn, we have e(TΩ1) = e(TΩ2) = 0 (see [4]),
and an affirmative answer to Problem (∗∗) is given, as stated above. For an attempt to solve
Problem (∗∗) in the case where TΩ1 and TΩ2 are arbitrary tube domains with polynomial
infinitesimal automorphisms, we need a further study of the structure of g(TΩ). Prolongation
Theorem given in the next section enables us to make a more detailed analysis of the structure
of g(TΩ) and, applying this, we can give an affirmative answer to Problem (∗∗) in various
cases [7], [10], [11].

In the rest of this section, we recall some facts on the affine automorphism group of a
tube domain. Let TΩ be a tube domain in Cn whose base Ω has the convex hull containing
no complete straight lines. The group Aff(TΩ) of all complex affine transformations of Cn

leaving TΩ invariant may be viewed as a subgroup of Aut(TΩ), and is called the affine au-
tomorphism group of TΩ . Note that Aff(TΩ) is a closed subgroup of the Lie group Aut(TΩ)
and that ΣTΩ is a subgroup of Aff(TΩ). The subalgebra a(TΩ) of g(TΩ) corresponding to
Aff(TΩ) is given by

a(TΩ) = {X ∈ g(TΩ) ; X is a polynomial vector field with degX ≤ 1}
and the subalgebra s(TΩ) of g(TΩ) corresponding to ΣTΩ is given by

s(TΩ) = {∂1, . . . , ∂n}R .
Now, the group Aff(Ω) of all affine transformations of Rn leaving Ω invariant has the struc-
ture of a Lie group in a natural manner. Let y1, . . . , yn be the coordinate functions of Rn. We
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call a vector field Y onΩ an affine vector field if Y has the form

Y =
n∑
j=1

hj (y)
∂

∂yj
,

where h1(y), . . . , hn(y) are polynomials in y1, . . . , yn of degree at most one. Then the Lie
algebra a(Ω) of Aff(Ω) can be identified canonically with the Lie algebra of all complete
affine vector fields onΩ . By [8, Section 1, Lemma 3], there exists a Lie algebra isomorphism
ι∗ of a(Ω) into a(TΩ) such that a(TΩ) is decomposed as the direct sum

a(TΩ) = s(TΩ)+ ι∗(a(Ω))

of s(TΩ) and ι∗(a(Ω)). In fact, ι∗ : a(Ω) → a(TΩ) is given by

ι∗ : a(Ω) �
n∑
j=1

( n∑
i=1

ajiyi + bj

)
∂

∂yj
�→

n∑
j=1

( n∑
i=1

ajizi + √−1bj

)
∂j ∈ a(TΩ) ,

where aji, bj , j, i = 1, . . . , n, are real constants. As a consequence, s(TΩ) is an abelian
ideal in a(TΩ).

2. Prolongation of complete polynomial vector fields on a tube domain. Let TΩ
be a tube domain in Cn whose base Ω is a convex domain in Rn containing no complete
straight lines. For a polynomial vector field Z on TΩ of degree 2, we write

Z =
2∑
k=0

(
X(k) + √−1Y (k)

)
,

where X(k), Y (k) are polynomial vector fields whose components with respect to ∂1, . . . , ∂n

are homogeneous polynomials in z1, . . . , zn with real coefficients of degree k, and set

Z[b] = X(2) + √−1Y (1) , Z[a] = X(1) + √−1Y (0) , Z[s] = X(0) .

Note that Z = Z[s] +Z[a] +Z[b] +
√−1Y (2). Our criterion on the completeness of Z is given

in the following theorem.

PROLONGATION THEOREM. Let Z be a polynomial vector field on TΩ of degree 2.
Then Z is complete on TΩ if and only if one has Y (2) = 0 and the vector fields [∂i, Z], i =
1, . . . , n, and Z[a] are all complete on TΩ . Consequently, if Z is complete on TΩ , then Z[b]
is complete on TΩ . Also, if Z = Z[b] and if the vector fields [∂i, Z], i = 1, . . . , n, are all
complete on TΩ , then Z is complete on TΩ .

This theorem has the following consequence, which gives a partial generalization of
Murakami [5, Theorem 7.3] (cf. Remark after the corollary below).

COROLLARY. Let TΩ be a tube domain in Cn whose base Ω is a convex domain in
Rn containing no complete straight lines. Under the assumption that every element Z of
g(TΩ) is a polynomial vector field with degZ ≤ 2, if TΩ is homogeneous, then TΩ is affinely
homogeneous, that is, Aff(TΩ) acts transitively on TΩ .
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PROOF OF COROLLARY. We may assume without loss of generality that TΩ contains
the origin o of Cn, because, under a change of coordinates by a translation of Cn, our assump-
tion on g(TΩ) is preserved. We denote by To the holomorphic tangent space to TΩ at o. Also,
for a holomorphic vector field Z on TΩ , we denote by Z(o) the value of Z at o.

We note that if G is a closed subgroup of Aut(TΩ), then G acts transitively on TΩ if
and only if To = {Z(o) ∈ To ; Z ∈ g}, where g is the subalgebra of g(TΩ) corresponding
to G. This is a consequence of the well-known fact that if a group H acts by isometries on
a metric space, then every open H -orbit is also closed. Indeed, since G acts on TΩ as an
isometry group with respect to the Bergman metric and since TΩ is connected, it follows from
this fact applied to H = G that G acts transitively on TΩ if and only if the orbit G · o of G
through o is an open submanifold of TΩ . Since the tangent space to G · o at o is given by
{Z(o) ∈ To ; Z ∈ g}, the latter condition can be stated as To = {Z(o) ∈ To ; Z ∈ g}.

Let T ′
o be the subspace of To consisting of all tangent vectors Z(o) for which Z is a

complete polynomial vector field on TΩ with degZ ≤ 2. By what we noted above, under our
assumption on g(TΩ), if TΩ is homogeneous, then we have To = T ′

o.
Now, Let T ′′

o be the subspace of To consisting of all tangent vectors Z(o) for which
Z is a complete polynomial vector field on TΩ with degZ ≤ 1. Then T ′′

o is the tangent
space at o to the orbit Aff(TΩ) · o of the closed subgroup Aff(TΩ) of Aut(TΩ). Therefore,
again by what we noted above, to prove our corollary, it is sufficient to see that To = T ′′

o .
Let v be any element of To. Then, by To = T ′

o, there exists a complete polynomial vector
field Z on TΩ with degZ ≤ 2 such that Z(o) = v. When degZ ≤ 1, it is immediate that
v ∈ T ′

o. Consider the case when degZ = 2. In this case, as a consequence of Prolongation
Theorem, we see that Z has the form Z = Z[s] + Z[a] + Z[b] and Z[a] is complete on TΩ .
Since Z[s] ∈ {∂1, . . . , ∂n}R ⊂ g(TΩ) and since Z[s] + Z[a] is of degree less than or equal
to 1, it follows that Z[s] + Z[a] is a complete polynomial vector field on TΩ of degree less
than or equal to 1. On the other hand, since Z[b](o) = 0 by the definition of Z[b], we have
v = Z(o) = (Z[s] +Z[a])(o). Therefore we obtain v ∈ T ′′

o . This concludes that To = T ′′
o , and

the proof of the corollary is completed. �

REMARK. When TΩ is a Siegel domain of the first kind, that is, Ω is a convex cone in
Rn, it is known (see Matsushima [4, Theorem 1]) that every element of g(TΩ) is a polynomial
vector field of degree less than or equal to 2. Consequently, the above corollary applies to a
Siegel domain of the first kind.

Now we begin the proof of Prolongation Theorem by recalling a general result on the
completeness of vector fields. LetD be a bounded domain in Cn. Then it is known that there
exists a volume element vD on D, called the Bergman volume of D, which is invariant under
the action of Aut(D). We write

vD = (
√−1)n

2
KDdz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n ,



PROLONGATION OF HOLOMORPHIC VECTOR FIELDS ON A TUBE DOMAIN 501

where KD is a positive smooth function on D. It is also known that

ds2
D =

n∑
i,j=1

∂2 logKD
∂zi∂z̄j

dzidz̄j

defines a Kähler metric on D, called the Bergman metric of D, which is invariant under the
action of Aut(D). The proof of Murakami [5, Lemma 8.1] yields the following useful result
on the completeness of holomorphic vector fields on D.

LEMMA 2.1. Assume that the Kähler metric ds2
D on D is complete. Then a holomor-

phic vector field Z onD is complete if and only if LZ+Z̄vD = 0, where LZ+Z̄ denotes the Lie
derivation with respect to Z + Z̄.

Note that, in the above lemma, if we write Z = ∑n
j=1 fj∂j , where f1, . . . , fn are holo-

morphic functions onD, then LZ+Z̄vD is given by

LZ+Z̄vD = (
√−1)n

2
KD

{
(Z + Z̄) logKD + 2Re

( n∑
j=1

∂jfj

)}

×dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n .
Therefore, putting

(2.1) Z · vD = (Z + Z̄) logKD + 2Re

( n∑
j=1

∂jfj

)
,

we see that LZ+Z̄vD = 0 if and only if the function Z · vD on D vanishes identically on D.
Note also that, for holomorphic vector fields Z and Z′ onD, we have

(2.2) (Z + Z′) · vD = Z · vD + Z′ · vD .
We apply Lemma 2.1 to the proof of Prolongation Theorem. For that purpose, we need

some preparations. Let TΩ be as in Prolongation Theorem. For z = (z1, . . . , zn) ∈ TΩ , write

z = x + √−1y, x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Ω ,

where zi = xi + √−1yi, i = 1, . . . , n. Then the function KTΩ on TΩ depends only on the
variable y. Indeed, this is a consequence of the fact that the Bergman volume vTΩ of TΩ is
invariant under the action of Aut(TΩ), because Aut(TΩ) contains the group ΣTΩ of all real
translations. Let Z be a polynomial vector field on TΩ . Then we have the following basic
result.

LEMMA 2.2. According to the form of Z, the function Z · vTΩ is given as follows:
(i) If Z = pzizj ∂k , where i, j, k = 1, . . . , n, and p ∈ R, then

(2.3) Z · vTΩ = p(xiyj + xjyi)
∂

∂yk
logKTΩ + 2p(δikxj + δjkxi) .

(ii) If Z = pzi∂j , where i, j = 1, . . . , n, and p ∈ R, then

(2.4) Z · vTΩ = pyi
∂

∂yj
logKTΩ + 2pδij .
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(iii) If Z = √−1qzi∂j , where i, j = 1, . . . , n, and q ∈ R, then

(2.5) Z · vTΩ = qxi
∂

∂yj
logKTΩ .

(iv) If Z = p∂i , where i = 1, . . . , n, and p ∈ R, then

(2.6) Z · vTΩ = 0 .

(v) If Z = √−1q∂i , where i = 1, . . . , n, and q ∈ R, then

(2.7) Z · vTΩ = q
∂

∂yi
logKTΩ .

PROOF. A straightforward computation yields the following results:
When Z = ∑n

l=1 fl∂l = pzizj ∂k , where i, j, k = 1, . . . , n, and p ∈ R, we have

Z + Z̄ = p(xixj − yiyj )
∂

∂xk
+ p(xiyj + xjyi)

∂

∂yk
,

n∑
l=1

∂lfl = p(δikzj + δjkzi) .

When Z = ∑n
l=1 fl∂l = (p + √−1q)zi∂j , where i, j = 1, . . . , n, and p, q ∈ R, we have

Z + Z̄ = (pxi − qyi)
∂

∂xj
+ (pyi + qxi)

∂

∂yj
,

n∑
l=1

∂lfl = (p + √−1q)δij .

When Z = ∑n
l=1 fl∂l = (p + √−1q)∂i , where i = 1, . . . , n, and p, q ∈ R, we have

Z + Z̄ = p
∂

∂xi
+ q

∂

∂yi
,

n∑
l=1

∂lfl = 0 .

Our assertion follows from these computation results by noting that, in (2.1) applied to
D = TΩ , the function logKTΩ depends on only the variable y. �

Let Z be a polynomial vector field on TΩ of degree 2. The following lemma on the func-
tion Z · vTΩ is proved by using Lemma 2.2, and plays a key role in our proof of Prolongation
Theorem. In what follows, for a function F on TΩ , we write

F(z) = F(x, y) for z = x + √−1y ∈ TΩ , x ∈ Rn , y ∈ Ω .

LEMMA 2.3. The functions Z[b] · vTΩ , Z[a] · vTΩ , Z[s] · vTΩ , and Z · vTΩ have the
following properties:

(a) (Z[b] · vTΩ )(0, y) = 0 for all y ∈ Ω .
(b) (Z[a] · vTΩ )(x, y) = u(y) for all x ∈ Rn, y ∈ Ω , where u is a function on Ω .
(c) (Z[s] · vTΩ )(x, y) = 0 for all x ∈ Rn, y ∈ Ω .
(d) If Y (2) = 0, i.e., Z = Z[s] +Z[a] +Z[b], then (Z · vTΩ )(0, y) = u(y) for all y ∈ Ω .

PROOF. Note first that Z[b] is given as the sum of those polynomial vector fields which
has the forms stated in (i) and (iii) of Lemma 2.2, that Z[a] is given as the sum of those
polynomial vector fields which has the forms stated in (ii) and (v) of Lemma 2.2, and that
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Z[s] is given as the sum of those polynomial vector fields which has the form stated in (iv) of
Lemma 2.2.

We show (a). When W is a polynomial vector field which has the form stated in (i) or
(iii) of Lemma 2.2, it is immediate from (2.3) and (2.5) that (W ·vTΩ )(0, y) = 0 for all y ∈ Ω .
Therefore, our assertion is a consequence of the formula (2.2) and what we have noted first.

We show (b). When W is a polynomial vector field which has the form stated in (ii)
or (v) of Lemma 2.2, it is immediate from (2.4) and (2.7) that the function (W · vTΩ )(x, y) on
TΩ depends only on the variable y. Therefore, our assertion is a consequence of the formula
(2.2) and what we have noted first.

We show (c). WhenW is a polynomial vector field which has the form stated in (iv) of
Lemma 2.2, we see by (2.6) that (W · vTΩ )(x, y) = 0 for all x ∈ Rn, y ∈ Ω . Therefore, our
assertion is a consequence of the formula (2.2) and what we have noted first.

It remains to show (d). Since Z = Z[s] + Z[a] + Z[b] by assumption, it follows from
(a), (b), and (c) shown above that, for all y ∈ Ω ,

(Z · vTΩ )(0, y) = (Z[s] · vTΩ )(0, y)+ (Z[a] · vTΩ )(0, y)+ (Z[b] · vTΩ )(0, y) = u(y) .

This shows (d), and the proof of the lemma is completed. �

We now prove Prolongation Theorem by applying Lemma 2.1. First of all, we note that
the Bergman metric ds2

TΩ
of TΩ is complete on TΩ . Indeed, since, by assumption, the baseΩ

of TΩ is a convex domain in Rn containing no complete straight lines, an argument similar to
that in Kobayashi [1, (4.1.14)] shows that TΩ is Carathéodory-hyperbolic and strongly com-
plete with respect to its Carathéodory distance. Therefore the completeness of ds2

TΩ
follows

from [1, (4.10.19)].
To prove the “only if” part of the first assertion, suppose that Z is complete on TΩ .

It is immediate that the vector fields [∂i, Z], i = 1, . . . , n, are all complete on TΩ , since
∂1, . . . , ∂n, Z ∈ g(TΩ) and since g(TΩ) forms a Lie algebra.

We show that Y (2) = 0. Write Z = ∑2
k=0 Z

(k), where Z(k) is a polynomial vector field
whose components with respect to ∂1, . . . , ∂n are homogeneous polynomials in z1, . . . , zn of
degree k. Then Z(2) has the form

Z(2) =
n∑
k=1

( ∑
1≤i≤j≤n

aijkzizj

)
∂k ,

where aijk, i, j, k = 1, . . . , n, i ≤ j , are complex constants. For every i, j = 1, . . . , n with
i ≤ j , we have

[∂i, [∂j , Z]] =
n∑
k=1

(
1 + δij

)
aijk∂k .

On the other hand, since ∂i, ∂j , Z ∈ g(TΩ) and since g(TΩ) forms a Lie algebra, it follows
that [∂i, [∂j , Z]] is in g(TΩ). Therefore, we see that aijk ∈ R for all k = 1, . . . , n in
view of the fact that if

∑n
k=1 αk∂k ∈ g(TΩ), where α1, . . . , αn are complex constants, then
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αk ∈ R for all k = 1, . . . , n (see [6, Section 3, Lemma 5]). As a result, the coefficients
aijk, i, j, k = 1, . . . , n, i ≤ j , are all real, which implies that Y (2) = 0.

We show that Z[a] is complete on TΩ . Since Z is complete, it follows from Lemma 2.1
and the remarks after it that (Z · vTΩ )(x, y) = 0 for all x ∈ Rn, y ∈ Ω . By the fact that
Y (2) = 0 shown above and the properties (d), (b) stated in Lemma 2.3, this yields that

0 = (Z · vTΩ )(0, y) = u(y) = (Z[a] · vTΩ )(x, y) for all x ∈ Rn , y ∈ Ω .

Therefore, again from Lemma 2.1 and the remarks after it, we see that Z[a] is complete on
TΩ , and the “only if” part of the first assertion is proved.

To prove the “if” part of the first assertion, suppose that Y (2) = 0 and that the vector
fields [∂i, Z], i = 1, . . . , n, and Z[a] are all complete on TΩ . It follows from Lemma 2.1
that L[∂i , Z]+[∂i , Z]vTΩ = 0 for every i = 1, . . . , n, because [∂i, Z] is complete. Note here

that [∂i, Z] + [∂i, Z] = [∂i + ∂̄i , Z + Z̄], that L[X, Y ] = LXLY − LYLX for vector fields
X,Y on TΩ , and that, since vTΩ is invariant under the action ofΣTΩ , we have L∂i+∂̄i vTΩ = 0.
Therefore, we see that

0 =L[∂i , Z]+[∂i, Z]vTΩ
=L[∂i+∂̄i , Z+Z̄]vTΩ
=L∂i+∂̄i (LZ+Z̄vTΩ )− LZ+Z̄(L∂i+∂̄i vTΩ )
=L∂i+∂̄i (LZ+Z̄vTΩ )

= (
√−1)n

2
(∂i + ∂̄i ){KTΩ (Z · vTΩ )}dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n .

In view of the fact that the function KTΩ depends only on the variable y, this implies that
(∂i + ∂̄i )(Z · vTΩ ) = 0 for every i = 1, . . . , n, or the function Z · vTΩ depends only on the
variable y. As a result, we have

(2.8) (Z · vTΩ )(x, y) = (Z · vTΩ )(0, y) for all x ∈ Rn , y ∈ Ω .

On the other hand, by the assumption that Y (2) = 0 and the properties (d), (b) stated in Lemma
2.3, we see that

(2.9) (Z · vTΩ )(0, y) = u(y) = (Z[a] · vTΩ )(x, y) for all x ∈ Rn , y ∈ Ω .

Moreover, since Z[a] is complete on TΩ by assumption, it follows from Lemma 2.1 and the
remarks after it that

(2.10) (Z[a] · vTΩ )(x, y) = 0 for all x ∈ Rn , y ∈ Ω .

Thus, combining (2.8), (2.9), and (2.10), we obtain

0 = (Z[a] · vTΩ )(x, y) = (Z · vTΩ )(0, y) = (Z · vTΩ )(x, y) for all x ∈ Rn, y ∈ Ω .

This concludes that Z is complete on TΩ by Lemma 2.1 and the remarks after it, and the “if”
part of the first assertion is proved.

The second assertion of Prolongation Theorem is an immediate consequence of the “only
if” part of the first assertion. Indeed, if Z is complete, then, by the “only if” part of the
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first assertion, Z[a] is complete, and we have Y (2) = 0, or Z = Z[s] + Z[a] + Z[b]. Since
Z[s] ∈ {∂1, . . . , ∂n}R ⊂ g(TΩ), the completeness of Z[b] follows.

Finally, to see the third assertion of Prolongation Theorem, note that if Z = Z[b], then
Z[a] = 0, and that the vector field Z[a] = 0 is complete on TΩ . Therefore, under the as-
sumption that Z = Z[b], the “if” part of the first assertion implies that if the vector fields
[∂i, Z], i = 1, . . . , n, are all complete on TΩ , then Z is complete on TΩ . This completes the
proof of Prolongation Theorem.

3. Examples. Prolongation Theorem shows that complete polynomial vector fields
Z on TΩ of degree 2 are fully determined by the data on Aff(TΩ). Although the method of
determination is purely algebraic, the completeness of vector fields is originally an analytic
matter. In this section, we exhibit the concrete process of determiningZ through some typical
examples (cf. [9, Section 2]).

EXAMPLE 1. Consider the tube domain TΩ1 in C2 whose base Ω1 is given by

Ω1 = {(y1, y2) ∈ R2 ; y1 > y2
2} .

It follows that

ι∗(a(Ω1)) = {(2λz1 + 2μz2)∂1 + (λz2 + √−1μ)∂2 ; λ,μ ∈ R} .
We put g1(z; λ,μ) = 2λz1 + 2μz2, g2(z; λ,μ) = λz2 + √−1μ. By Prolongation Theorem,
to determine complete polynomial vector fields on TΩ1 of degree 2, it suffices to investigate
the completeness for a polynomial vector field Z on TΩ1 which has the form Z = X(2) +√−1Y (1) with the notation of Section 2. Write Z = f1(z)∂1 + f2(z)∂2, where f1(z), f2(z)

are polynomials in z1, z2. Prolongation Theorem asserts that Z is complete on TΩ1 if and
only if both [∂1, Z] = ∂1f1(z)∂1 + ∂1f2(z)∂2 and [∂2, Z] = ∂2f1(z)∂1 + ∂2f2(z)∂2 belong
to ι∗(a(Ω1)). Suppose that this condition holds. Then we have

∂1f1(z)= g1(z; λ,μ) ,(3.1)

∂1f2(z)= g2(z; λ,μ) ,(3.2)

∂2f1(z)= g1(z; λ′, μ′) ,(3.3)

∂2f2(z)= g2(z; λ′, μ′) ,(3.4)

for some real constants λ,μ, λ′, μ′. Write f2(z) = az2
1 + bz1z2 + cz2

2 + √−1 (pz1 + qz2),
where a, b, c, p, q are real constants. Since g2(z; λ,μ), g2(z; λ′, μ′) do not contain the term
of a constant multiple of z1, it follows from (3.2) and (3.4) that a = b = 0, or

(3.5) f2(z) = cz2
2 + √−1(pz1 + qz2) .

Therefore ∂1f2(z), ∂2f2(z) are given by

(3.6) ∂1f2(z) = √−1p ,

(3.7) ∂2f2(z) = 2cz2 + √−1q .
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The equation (3.6) implies that ∂1f2(z) = g2(z; 0, p), and hence, by (3.1), we have ∂1f1(z) =
g1(z; 0, p) = 2pz2. We see from this equation that f1(z) has the form

(3.8) f1(z) = 2pz1z2 + c′z2
2 + √−1q ′z2 ,

where c′, q ′ are real constants. As a consequence, ∂2f1(z) is given by

(3.9) ∂2f1(z) = 2pz1 + 2c′z2 + √−1q ′ .

On the other hand, the equation (3.7) implies that ∂2f2(z) = g2(z; 2c, q), and hence, by (3.3),

(3.10) ∂2f1(z) = g1(z; 2c, q) = 4cz1 + 2qz2 .

Hence, comparing (3.9) with (3.10), we obtain p = 2c, c′ = q, q ′ = 0. In view of (3.8) and
(3.5), this shows that f1(z), f2(z) have the form

(3.11) f1(z) = 4cz1z2 + c′z2
2 ,

(3.12) f2(z) = cz2
2 + √−1(2cz1 + c′z2) .

Conversely, for any real constants c, c′, if f1(z), f2(z) are given by (3.11), (3.12), then Z =
f1(z)∂1 + f2(z)∂2 satisfies the condition that [∂i, Z] ∈ ι∗(a(Ω1)), i = 1, 2. In particular,
putting c = 0, c′ = 1, we have Z = z2

2∂1 + √−1z2∂2, which we denote by Z1, while,
putting c = 1, c′ = 0, we have Z = 4z1z2∂1 + (

z2
2 + 2

√−1z1
)
∂2, which we denote by

Z2. The real vector space of all complete polynomial vector fields Z on TΩ1 of the form
Z = X(2) + √−1Y (1) is spanned by Z1, Z2.

EXAMPLE 2. Consider the tube domain TΩ4 in C2 whose base Ω4 is given by

Ω4 = {
(y1, y2) ∈ R2 ; y1 > | y2 |ρ} ,

where ρ is a real constant with ρ > 1, ρ 
= 2. It follows that

ι∗
(
a(Ω4)

) = {λρz1∂1 + λz2∂2 ; λ ∈ R} .
As in Example 1, let Z be a polynomial vector field on TΩ4 of the formZ = X(2)+√−1Y (1),
and suppose that both [∂1, Z] and [∂2, Z] belong to ι∗(a(Ω4)). Write Z = f1(z)∂1 +f2(z)∂2,
where f1(z), f2(z) are polynomials in z1, z2. Then we have

∂1f1(z)= λρz1 ,(3.13)

∂1f2(z)= λz2 ,(3.14)

∂2f1(z)= λ′ρz1 ,(3.15)

∂2f2(z)= λ′z2 ,(3.16)

for some real constants λ, λ′. It follows from (3.13) that f1(z) has the form f1(z) =
(1/2)λρz2

1 + cz2
2 + √−1qz2, where c, q are real constants. As a consequence, ∂2f1(z) is

given by ∂2f1(z) = 2cz2 + √−1q . Comparing this with (3.15), we obtain c = q = λ′ = 0,
which shows

(3.17) f1(z) = 1

2
λρz2

1 .
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Similarly, using (3.14) and (3.16), we see that λ = 0 and

(3.18) f2(z) = 1

2
λ′z2

2 .

Combining (3.17), (3.18) with the fact that λ = λ′ = 0, we conclude that f1(z) = f2(z) = 0.
Therefore, there exists no nonzero complete polynomial vector field Z on TΩ4 of the form
Z = X(2) + √−1Y (1).

EXAMPLE 3. Consider the tube domain TΩ ′
3

in C2 whose base Ω ′
3 is given by

Ω ′
3 = {

(y1, y2) ∈ R2 ; y2 > ey1
}
.

It follows that
ι∗

(
a(Ω ′

3)
) = {√−1λ∂1 + λz2∂2 ; λ ∈ R

}
.

As in Example 1, let Z be a polynomial vector field on TΩ ′
3

of the formZ = X(2)+√−1Y (1),
and suppose that both [∂1, Z] and [∂2, Z] belong to ι∗(a(Ω ′

3)). Write Z = f1(z)∂1 +f2(z)∂2,
where f1(z), f2(z) are polynomials in z1, z2. Then we have

∂1f1(z)=
√−1λ ,(3.19)

∂1f2(z)= λz2 ,(3.20)

∂2f1(z)=
√−1λ′ ,(3.21)

∂2f2(z)= λ′z2 ,(3.22)

for some real constants λ, λ′. It follows from (3.19), (3.21) that f1(z) has the form

(3.23) f1(z) = √−1 (pz1 + qz2) ,

where p, q are real constants. As a consequence, ∂1f1(z), ∂2f1(z) are given by

∂1f1(z)=
√−1p ,(3.24)

∂2f1(z)=
√−1q .(3.25)

On the other hand, it follows from (3.20), (3.22) that f2(z) has the form

(3.26) f2(z) = cz2
2 ,

where c is a real constant. As a consequence, ∂1f2(z), ∂2f2(z) are given by

∂1f2(z)= 0 ,(3.27)

∂2f2(z)= 2cz2 .(3.28)

Comparing, respectively, (3.24), (3.25), (3.27), (3.28) with (3.19), (3.21), (3.20), (3.22), we
obtain p = λ = 0, q = λ′ = 2c. In view of (3.23) and (3.26), this shows that f1(z), f2(z)

have the form

f1(z)= 2
√−1cz2 ,(3.29)

f2(z)= cz2
2 .(3.30)

Conversely, for any real constant c, if f1(z), f2(z) are given by (3.29), (3.30), then Z =
f1(z)∂1 + f2(z)∂2 satisfies the condition that [∂i, Z] ∈ ι∗(a(Ω ′

3)), i = 1, 2. In particular,
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putting c = 1, we have Z = 2
√−1z2∂1 + z2

2∂2, which we denote by Z0. The real vector
space of all complete polynomial vector fields Z on TΩ ′

3
of the form Z = X(2) + √−1Y (1) is

spanned by Z0.

4. Some applications of Prolongation Theorem. In [8], to investigate the holomor-
phic equivalence problem for tube domains with bounded base, we needed the following
criterion for a biholomorphic mapping between tube domains in Cn to be given by an element
of GL(n, R)� Cn.

PROPOSITION 4.1 ([8, Section 1, Proposition 2]). Let ϕ : TΩ1 → TΩ2 be a biholo-
morphic mapping between two tube domains TΩ1 and TΩ2 in Cn whose bases Ω1 and Ω2

have the convex hulls containing no complete straight lines, respectively. If ϕAff(TΩ1)
◦ϕ−1 =

Aff(TΩ2)
◦ and if Aff(Ωi)◦ ⊂ GL(n, R), i = 1, 2, then ϕ is given by an element of

GL(n, R)� Cn.

The proof of Proposition 4.1 given in [8] yields in effect a little stronger version of the
proposition.

PROPOSITION 4.2. Let ϕ : TΩ1 → TΩ2 be a biholomorphic mapping between two
tube domains TΩ1 and TΩ2 in Cn whose basesΩ1 andΩ2 have the convex hulls containing no
complete straight lines, respectively. If the Lie algebra isomorphismΦ∗ : g(TΩ1) → g(TΩ2),
given as the differential of the Lie group isomorphism

Φ : Aut(TΩ1) � ψ �→ ϕ ◦ ψ ◦ ϕ−1 ∈ Aut(TΩ2) ,

maps a subalgebra t1 of a(TΩ1) containing s(TΩ1) onto a subalgebra t2 of a(TΩ2) containing
s(TΩ2) and if Aff(Ωi)◦ ⊂ GL(n, R), i = 1, 2, then ϕ is given by an element ofGL(n, R)�

Cn.

This proposition enables us to give another proof for the main step in the answer by
Matsushima [4, Theorem 6] to the holomorphic equivalence problem for Siegel domains of
the first kind. In fact, keeping the notation of Proposition 4.2, let TΩ1 and TΩ2 be Siegel
domains of the first kind in Cn. The proof of [4, Theorem 6] shows that if TΩ1 and TΩ2 are
holomorphically equivalent, then there exists a biholomorphic mapping ϕ : TΩ1 → TΩ2

between TΩ1 and TΩ2 such thatΦ∗(t1) = t2, where each ti is a maximal triangular subalgebra
of g(TΩi ) satisfying the condition s(TΩi ) ⊂ ti ⊂ a(TΩi ). Since Aff(Ωi)◦ ⊂ GL(n, R), i =
1, 2 as a consequence of the assumption that TΩ1 and TΩ2 are Siegel domains of the first kind,
we can apply Proposition 4.2 to the biholomorphic mapping ϕ : TΩ1 → TΩ2 , and conclude
that ϕ is given by an element of GL(n, R) � Cn. This gives another approach to the step
stated in [4, pp. 266–267].

The proofs of Propositions 4.1 and 4.2 are based on the following characterization of
s(TΩ) as an n-dimensional abelian ideal in a(TΩ).

LEMMA 4.1 ([8, Section 1, Lemma 4]). Let TΩ be a tube domain in Cn whose base
Ω is a convex domain in Rn containing no complete straight lines. Suppose that Aff(Ω)◦ ⊂
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GL(n, R). If s0 is an abelian ideal in a(TΩ), then s0 ⊂ s(TΩ). In particular, if moreover,
dim s0 = n, then s0 = s(TΩ).

Prolongation Theorem in this paper yields another type of characterization of s(TΩ).

LEMMA 4.2. Let TΩ be a tube domain in Cn whose base Ω is a convex domain in
Rn containing no complete straight lines. Suppose that there exists an n-dimensional abelian
ideal s0 in a(TΩ) such that s0 
= s(TΩ). Then there exists a nonzero complete polynomial
vector field on TΩ of degree 2. In other words, under the assumption that there exists no
nonzero complete polynomial vector field on TΩ of degree 2, any n-dimensional abelian ideal
in a(TΩ) must coincide with s(TΩ).

PROOF. We first observe that every element Z of a(TΩ) can be written in the form

(4.1) Z =
n∑
k=1

fk(z)∂k ,

where f1(z), . . . , fn(z) are polynomials of degree at most one, and that

(4.2) [∂i, Z] =
n∑
k=1

∂ifk(z)∂k , i = 1, . . . , n .

We now prove in steps that there exists a nonzero complete polynomial vector field on
TΩ of degree 2.

We show that s(TΩ) ∩ s0 
= {0}. Note first that, since s(TΩ) and s0 are ideals in a(TΩ),
we have

(4.3) [s(TΩ), s0] ⊂ s(TΩ) ∩ s0 .

Now suppose contrarily that s(TΩ) ∩ s0 = {0}. Then we see by (4.3) that [s(TΩ), s0] = {0},
or

(4.4) [∂i, s0] = {0} , i = 1, . . . , n .

Take any element Z of s0 and write Z in the form (4.1). Since, by (4.4), we have [∂i, Z] =
0, i = 1, . . . , n, it follows from (4.2) that every polynomial fk(z), k = 1, . . . , n, satisfies
∂ifk(z) = 0, i = 1, . . . , n, and therefore fk(z) is a complex constant. By [6, Section 3,
Lemma 5], we have Z ∈ s(TΩ). This implies that s0 ⊂ s(TΩ), which is a contradiction.

By what we have shown above and the assumption that s0 
= s(TΩ), we have 0 <

dim s(TΩ) ∩ s0 < n. We put m = n − dim s(TΩ) ∩ s0. Applying, if necessary, a change
of coordinates by a suitable element of GL(n, R) � Cn, we may assume that s(TΩ) ∩ s0 =
{∂m+1, . . . , ∂n}R.

We show that every element Z of s0 has the form

(4.5) Z =
m∑
l=1

αl∂l +
n∑

k=m+1

fk(z1, . . . , zm)∂k ,

where α1, . . . , αm are complex constants and fm+1(z1, . . . , zm), . . . , fn(z1, . . . , zm) are
polynomials in z1, . . . , zm of degree at most one. By (4.3), we have [s(TΩ), s0] ⊂ {∂m+1, . . . ,
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∂n}R , or equivalently

(4.6) [∂i, s0] ⊂ {∂m+1, . . . , ∂n}R, i = 1, . . . , n .

Also, since s0 is abelian, we have

(4.7) [∂i , s0] = {0} , i = m+ 1, . . . , n .

Let Z be any element of s0 and write Z in the form (4.1). Since, by (4.6), we have [∂i, Z] ∈
{∂m+1, . . . , ∂n}R, i = 1, . . . , n, it follows from (4.2) that every polynomial fk(z), k =
1, . . . ,m, satisfies ∂ifk(z) = 0, i = 1, . . . , n, and therefore fk(z) is a complex constant.
Also, since, by (4.7), we have [∂i, Z] = 0, i = m+ 1, . . . , n, it follows from (4.2) that every
polynomial fk(z), k = m+ 1, . . . , n, satisfies ∂ifk(z) = 0, i = m+ 1, . . . , n, and therefore
fk(z) is a polynomial in z1, . . . , zm. We thus conclude that Z has the form (4.5).

In (4.5), for l = 1, . . . ,m, write αl = αl(Z). Also, for k = m + 1, . . . , n, denote by
βk(Z) the constant term of the polynomial fk(z1, . . . , zm). We define a real linear mapping
τ : s0 → Rm by τ (Z) = (Imα1(Z), . . . , Im αm(Z)).

We show that τ (s0) = Rm. Let Z be any element of s0 such that τ (Z) = 0. Then, in
(4.5), we have

(4.8) αl ∈ R for all l = 1, . . . ,m .

Since
∑m
l=1 αl∂l ∈ g(TΩ) by (4.8), it follows from (4.5) that

n∑
k=m+1

fk(z1, . . . , zm)∂k = Z −
m∑
l=1

αl∂l ∈ g(TΩ) .

Therefore, fk(z1, . . . , zm), k = m+ 1, . . . , n, are all real constants in view of the fact that if∑n
k=m+1 gk(z1, . . . , zm)∂k ∈ g(TΩ), where gk(z1, . . . , zm), k = m + 1, . . . , n, are holomor-

phic functions on TΩ , then gk(z1, . . . , zm), k = m + 1, . . . , n, are all real constants (see [6,
Section 3, Lemma 6]). Combined with (4.8), this shows that the kernel ker τ of τ is given by

ker τ = s0 ∩ {∂1, . . . , ∂n}R = s0 ∩ s(TΩ) = {∂m+1, . . . , ∂n}R .
As a consequence, we have dim ker τ = n−m. We thus obtain

dim τ (s0) = dim s0 − dim ker τ = n− (n−m) = m ,

i.e., τ (s0) = Rm, as required.
The result of the preceding paragraph implies that, for each l = 1, . . . ,m, there exists

an element Z′
l of s0 such that τ (Z′

l) = el , where el denotes the element of Rm whose l-th
component is equal to 1 and whose components except the l-th are all equal to 0. We set

Zl = Z′
l −

{(
Reα1(Z

′
l)
)
∂1 + · · · + (

Reαm(Z′
l)
)
∂m

}
− {(

Re βm+1(Z
′
l)
)
∂m+1 + · · · + (

Re βn(Z′
l)
)
∂n

}
.

Then we have Zl ∈ g(TΩ). By definition, Zl has the form

Zl = √−1∂l +
n∑

k=m+1

f
(l)
k (z1, . . . , zm)∂k ,
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where each f (l)k (z1, . . . , zm), k = m + 1, . . . , n, is a polynomial in z1, . . . , zm of degree at

most one and the constant term of f (l)k (z1, . . . , zm) is a pure imaginary number or zero. For
l = 1, . . . ,m and k = m+ 1, . . . , n, write

f
(l)
k (z1, . . . , zm) =

m∑
i=1

ak;ilzi + √−1λk;l ,

where ak;il, i, l = 1, . . . ,m, k = m+ 1, . . . , n, and λk;l , l = 1, . . . ,m, k = m+ 1, . . . , n,
are real constants.

We show that ak;j l = ak;lj for all j, l = 1, . . . ,m with j 
= l and all k = m+ 1, . . . , n.
For j, l = 1, . . . ,m with j 
= l, consider the elements Zj and Zl of g(TΩ). Noting that

[ n∑
k=m+1

f
(j)

k (z1, . . . , zm)∂k,

n∑
k′=m+1

f
(l)

k′ (z1, . . . , zm)∂k′
]

=
n∑

k,k′=m+1

[
f
(j)
k (z1, . . . , zm)∂k, f

(l)

k′ (z1, . . . , zm)∂k′
]

=
n∑

k,k′=m+1

{
f
(j)

k (z1, . . . , zm)
(
∂kf

(l)

k′ (z1, . . . , zm)
)
∂k′

− f
(l)

k′ (z1, . . . , zm)
(
∂k′f (j)k (z1, . . . , zm)

)
∂k

}

= 0 ,

we have

[Zj , Zl]

=
[√−1∂j +

n∑
k=m+1

f
(j)
k (z1, . . . , zm)∂k,

√−1∂l +
n∑

k=m+1

f
(l)
k (z1, . . . , zm)∂k

]

= √−1

[
∂j ,

n∑
k=m+1

f
(l)
k (z1, . . . , zm)∂k

]

− √−1

[
∂l,

n∑
k=m+1

f
(j)
k (z1, . . . , zm)∂k

]

= √−1
n∑

k=m+1

ak;j l∂k − √−1
n∑

k=m+1

ak;lj∂k

= √−1
n∑

k=m+1

(ak;j l − ak;lj )∂k .
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Since [Zj, Zl] ∈ g(TΩ), it follows that

√−1
n∑

k=m+1

(ak;j l − ak;lj )∂k ∈ g(TΩ) .

By [6, Section 3, Lemma 5], we see that ak;j l − ak;lj = 0 for all k = m + 1, . . . , n, which
implies our assertion.

For k = m+ 1, . . . , n, we define a polynomial Fk(z1, . . . , zm) by

Fk(z1, . . . , zm) =
∑

1≤i≤j≤m

(
1 − 1

2
δij

)
ak;ij zizj + √−1

m∑
j=1

λk;j zj .

The polynomialsFk(z1, . . . , zm), k = m+1, . . . , n, are of degree at most two. Note that some
polynomial Fk(z1, . . . , zm) must be of degree two. Indeed, otherwise, in view of the fact that
ak;ij = ak;ji , all the constants ak;ij are equal to zero. This contradicts the assumption that
s0 
= s(TΩ).

We show that ∂lFk(z1, . . . , zm) = f
(l)
k (z1, . . . , zm) for every l = 1, . . . ,m and every

k = m+ 1, . . . , n. It follows that

∂lFk(z1, . . . , zm) =
l−1∑
i=1

ak;ilzi + ak;llzl +
m∑

j=l+1

ak;ljzj + √−1λk;l .

Since, by what we have shown above, ak;lj = ak;j l for all j = l + 1, . . . ,m, we see that the
right-hand side of this equation equals

l−1∑
i=1

ak;ilzi + ak;llzl +
m∑

j=l+1

ak;j lzj + √−1λk;l = f
(l)
k (z1, . . . , zm) .

We thus conclude that ∂lFk(z1, . . . , zm) = f
(l)
k (z1, . . . , zm).

We are now in a position to complete the proof of the lemma. We define a polynomial
vector field Z0 on TΩ by

Z0 = √−1
m∑
l=1

zl∂l +
n∑

k=m+1

Fk(z1, . . . , zm)∂k .

To prove that there exists a nonzero complete polynomial vector field on TΩ of degree 2, it is
sufficient to prove that Z0 is complete. It follows from the result of the preceding paragraph
that, for every i = 1, . . . ,m,

[∂i, Z0] = √−1
m∑
l=1

∂izl∂l +
n∑

k=m+1

∂iFk(z1, . . . , zm)∂k

= √−1∂i +
n∑

k=m+1

f
(i)
k (z1, . . . , zm)∂k

=Zi .
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As a consequence, the vector fields [∂i, Z0], i = 1, . . . ,m, are complete on TΩ . On the other
hand, since [∂i, Z0] = 0 for every i = m + 1, . . . , n, it is immediate that the vector fields
[∂i, Z0], i = m + 1, . . . , n, are complete on TΩ . Therefore, Prolongation Theorem shows
that Z0 is complete on TΩ , and the proof of the lemma is completed. �

We can use Lemma 4.2 to obtain a criterion for a biholomorphic mapping between tube
domains in Cn to be given by an element of GL(n, R)� Cn.

PROPOSITION 4.3. Let ϕ : TΩ1 → TΩ2 be a biholomorphic mapping between two
tube domains TΩ1 and TΩ2 in Cn whose bases Ω1 and Ω2 have the convex hulls containing
no complete straight lines, respectively. If Aut(TΩi )

◦ = Aff(TΩi )
◦, i = 1, 2, then ϕ is given

by an element of GL(n, R)� Cn.

PROOF. We first observe that, for i = 1, 2, the groupΣTΩi is a connected Lie subgroup
of Aff(TΩi )

◦, and the subalgebra s(TΩi ) of a(TΩi ) = Lie Aff(TΩi )
◦ corresponding to ΣTΩi is

an n-dimensional abelian ideal in a(TΩi ).
Now, by assumption, we have

ϕAff(TΩ1)
◦ϕ−1 = ϕAut(TΩ1)

◦ϕ−1 = Aut(TΩ2)
◦ = Aff(TΩ2)

◦ .
Consequently, we can define a Lie group isomorphismΦ : Aff(TΩ1)

◦ → Aff(TΩ2)
◦ by

Φ : Aff(TΩ1)
◦ � ψ �−→ ϕ ◦ ψ ◦ ϕ−1 ∈ Aff(TΩ2)

◦ .
Since the differentialΦ∗ : a(TΩ1) → a(TΩ2) of Φ is a Lie algebra isomorphism, we see that
Φ∗(s(TΩ1)) is an n-dimensional abelian ideal in a(TΩ2). Since the assumption Aut(TΩ2)

◦ =
Aff(TΩ2)

◦ implies that there exists no nonzero complete polynomial vector field on TΩ2 of
degree 2, it follows from Lemma 4.2 thatΦ∗(s(TΩ1)) = s(TΩ2). This shows thatΦ(ΣTΩ1

) =
ΣTΩ2

, or ϕΣTΩ1
ϕ−1 = ΣTΩ2

. By [6, Section 1, Proposition], we conclude that ϕ is given by
an element of GL(n, R)� Cn. �

As an immediate consequence of the above proposition, we have the following corollary,
which gives an answer to the holomorphic equivalence problem for tube domains admitting
only affine automorphisms.

COROLLARY. Let TΩ1 and TΩ2 be two tube domains in Cn whose bases Ω1 and Ω2

have the convex hulls containing no complete straight lines, respectively, and suppose that
Aut(TΩi )

◦ = Aff(TΩi )
◦, i = 1, 2. If TΩ1 and TΩ2 are holomorphically equivalent, then they

are affinely equivalent.
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