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LOCAL PROPERTIES OF GOOD MODULI SPACES
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Abstract. We study the local properties of Artin stacks and their good moduli spaces,
if they exist. We show that near closed points with linearly reductive stabilizer, Artin stacks
formally locally admit good moduli spaces. In particular, the geometric invariant theory is de-
veloped for actions of linearly reductive group schemes on formal affine schemes. We also give
conditions for when the existence of good moduli spaces can be deduced from the existence of
étale charts admitting good moduli spaces.

1. Introduction. We address the question of whether good moduli spaces for an Artin
stack can be constructed “locally.” The main results of this paper are: (1) good moduli spaces
exist formally locally around points with linearly reductive stabilizer and (2) sufficient con-
ditions are given for the Zariski-local existence of good moduli spaces given the étale-local
existence of good moduli spaces. We envision that these results may be of use to construct
moduli schemes of Artin stacks without the classical use of geometric invariant theory and
semi-stability computations.

The notion of a good moduli space was introduced in [1] to associate a scheme or alge-
braic space to Artin stacks with nice geometric properties reminiscent of Mumford’s good GIT
quotients. While good moduli spaces cannot be expected to distinguish between all points of
the stack, they do parameterize points up to orbit closure equivalence. See Section 2 for the
precise definition of a good moduli space and for a summary of its properties.

While the paper [1] systematically develops the properties of good moduli spaces, the
existence was only proved in certain cases. For instance, if X = [SpecA/G] is a quotient
stack of an affine by a linearly reductive group, then X → SpecAG is a good moduli space
([1, Theorem 13.2]). Additionally, for any quasi-compact Artin stack X with a line bundle L,
there is a naturally defined semi-stable locus X ss

L and stable locus X s
L such that φ : X ss

L → Y

is a good moduli space where Y is a quasi-projective scheme, and there is an open subscheme
V ⊆ Y such that φ−1(V ) = X s

L and φ|X s
L is a coarse moduli space ([1, Theorem 11.14]).

One might dream that there is some topological criterion guaranteeing existence of a
good moduli space in the same spirit of the finite inertia hypothesis guaranteeing the existence
of a coarse moduli space. One might pursue the following approach:

(1) Show that good moduli spaces exist locally around closed points.
(2) Show that these patches glue to form a global good moduli space.
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We are tempted to conjecture that if x ∈ |X | is a closed point of an Artin stack with
linearly reductive stabilizer, then there exists an open substack U ⊆ X containing x such that
U admits a good moduli space. However, Example 2.6 shows that this is too much to hope
for, and it is unclear what the additional requirement should be to guarantee local existence of
a good moduli space.

While we cannot establish the existence of good moduli spaces Zariski-locally or étale-
locally, we show that formally locally good moduli spaces exist around closed points ξ ∈ |X |
with linearly reductive stabilizer. Denote by Xi the nilpotent thickenings of the induced closed
immersion Gξ ↪→ X . Section 3 is devoted to making precise the following statement: if X̂ is
the “completion of X at ξ”, then X̂ → Spf lim←− Γ (Xi ,OXi ) is a good moduli space.

We prove in Section 3 that if there exists a good moduli space, then this formally local
description is correct. Precisely, we prove the following:

THEOREM 1.1. SupposeX is an Artin stack of finite type over Spec k where k is a field
and φ : X → Y is a good moduli space. Let x : Spec k → X be a closed point with image
y = φ(x). Let Xi be the nilpotent thickenings of the induced closed immersion BGx ↪→ X .
There are isomorphisms Xi ∼= [SpecAi/Gx] which induces an action of Gx on SpfA where
A = lim←−Ai . There are isomorphisms of topological rings

ÔY,y
��

����
���

��
��

�
lim←− (A

Gx
i )

��
AGx .

In particular, the formal local ring ÔY,y at a closed point y ∈ Y of a good moduli space is
simply the invariants of the induced action of Gx on the miniversal deformation space SpfA
of x ∈ |X |.

We also establish that the theorem on formal functions holds for good moduli spaces;
see Theorem 3.8. This provides further evidence that good moduli spaces behave very similar
to proper morphisms: good moduli spaces are universally closed and finite type, preserve
coherence under push forward and satisfy the formal functions theorem but are not necessarily
separated.

In Section 4, we develop the geometric invariant theory for quotients of formal affine
schemes by linearly reductive group schemes.

A sufficiently powerful structure theorem for Artin stacks giving étale charts by quotient
stacks could imply existence of good moduli spaces Zariski-locally. We recall the conjecture
from [2]:

CONJECTURE 1.2. If X is an Artin stack finite type over Spec k and x ∈ X (k) has
linearly reductive stabilizer, then there is an algebraic space X over Spec k with an action
of the stabilizer Gx , a point x̃ ∈ X, and an étale morphism [X/Gx] → X inducing an
isomorphism Gx̃

∼→ Gx .
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If the conjecture is true for x ∈ X (k) with the additional requirement that X is affine,
then there is an induced diagram

W = [X/Gx]
ϕ

��

f �� X

W ,

where ϕ is a good moduli space, f is an étale, representable morphism, and there is a point
w ∈ W(k) with f (w) = x inducing an isomorphism AutW(k)(w) → AutX (k)(x). This is
not enough to prove directly that there exists a good moduli space Zariski-locally (see Remark
5.6). This leads to the natural question of what additional hypotheses need to be placed on a
morphism f :W → X where W admits a good moduli space to imply that X admits a good
moduli space. We prove the following theorem in Section 5 (see Section 2 for definitions):

THEOREM 1.3. Let X be an Artin stack locally of finite type over an excellent base
S. Suppose there exists an étale, surjective, pointwise stabilizer preserving and universally
weakly saturated morphism f : X1 → X such that there exist a good moduli space φ1 :
X1 → Y1. Then there exists a good moduli space φ : X → Y inducing a cartesian diagram

X1
f ��

φ1

��

X
φ

��
Y1 �� Y .

We offer an application of this theorem proving that the existence of a good moduli space
only depends on the reduced structure (see Corollary 5.7).

This theorem may be of use in practice to prove existence of good moduli spaces for
certain Artin stacks which can be shown to admit étale presentations as quotient stacks. Con-
versely, if we assume that there exists a good moduli space X → Y , then one might hope to
show the local quotient conjecture is true by showing that étale locally on Y , X is a quotient
stack by the stabilizer.

Acknowledgments. I thank Max Lieblich, Martin Olsson, and Ravi Vakil for useful suggestions.

2. Notation. We will assume schemes and algebraic spaces to be quasi-separated.
We will work over a fixed base scheme S. An Artin stack over S, in this paper, will have a
quasi-compact and separated diagonal.

Good moduli spaces. We recall the following two definitions and their essential prop-
erties from [1].

DEFINITION 2.1 ([1, Definition 3.1]). A morphism f : X → Y of Artin stacks is
cohomologically affine if f is quasi-compact and the push-forward functor on quasi-coherent
sheaves

f∗ : QCoh(X ) −→ QCoh(Y)
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is exact. We say that an Artin stack X is cohomologically affine if the morphism X → Spec Z
is cohomologically affine.

If f : X → Y is a representable morphism of Artin stacks where Y has quasi-affine
diagonal, then f is cohomologically affine if and only if f is affine. Cohomologically affine
morphisms are stable under composition and base change (if the target has quasi-affine di-
agonal) and are local on the target under faithfully flat morphisms. The above and further
properties appear in [1, Section 3].

DEFINITION 2.2 ([1, Definition 4.1]). A morphism φ : X → Y , with X an Artin
stack and Y an algebraic space, is a good moduli space if:

(i) φ is cohomologically affine.
(ii) The natural map OY

∼→ φ∗OX is an isomorphism of sheaves.

REMARK 2.3. If X is a cohomologically affine Artin stack, then the natural morphism
X → SpecΓ (X ,OX ) is a good moduli space.

If φ : X → Y is a good moduli space, then φ is surjective, universally closed, univer-
sally submersive, and has geometrically connected fibers [1, Theorem 4.16]. If X is locally
noetherian, then φ : X → Y is universal for maps to algebraic spaces [1, Theorem 6.6].
They are stable under arbitrary base change on Y and are local in the fpqc topology on Y [1,
Proposition 4.7]. Furthermore, they satisfy the strong geometric property that if Z1,Z2 ⊆ X
are closed substacks, then scheme-theoretically imZ1 ∩ imZ2 = im(Z1 ∩ Z2) [1, Theorem
4.16(iii)]. This implies that for an algebraically closed OS-field k, there is a bijection between
isomorphism classes of objects in X (k) up to closure equivalence and k-valued points of Y
(i.e., for points x1, x2 : Spec k → X , φ(x1) = φ(x2) if and only if {x1} ∩ {x2} �= ∅ in
X ×S k). Furthermore, we have the following generalization of Hilbert’s 14th Problem: if S
is an excellent scheme and X is finite type over S, then Y is finite type over S [1, Theorem
4.16(xi)].

Stabilizer preserving morphisms. If X is an Artin stack over S, recall that the inertia
stack is defined as the fiber product

IX ��

��

X
∆

��
X ∆ �� X ×S X ,

where∆ : X → X×SX is the diagonal. We quickly recall the following definition introduced
in [2]:

DEFINITION 2.4. Let f : X → Y be a morphism of Artin stacks. We define:
(i) f is stabilizer preserving if the induced X -morphism ψ : IX → IY ×Y X is an

isomorphism.
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(ii) For ξ ∈ |X |, f is stabilizer preserving at ξ if for a (equivalently any) geometric
point x : Spec k → X representing ξ , the fiber ψx : AutX (k)(x) → AutY(k)(f (x)) is an
isomorphism of group schemes over k.

(iii) f is pointwise stabilizer preserving if f is stabilizer preserving at ξ for all ξ ∈ |X |.
REMARK 2.5. Any morphism of algebraic spaces is stabilizer preserving and any

pointwise stabilizer preserving morphism is representable. It is easy to see that both prop-
erties are stable under composition and base change. While a stabilizer preserving morphism
is clearly pointwise stabilizer preserving, the converse is not true as the following example
illustrates.

EXAMPLE 2.6. The following example shows that it is too much to hope for that every
Artin stack Zariski-locally admits a good moduli space around a closed point with linearly
reductive stabilizer. Let X be the non-separated plane attained by gluing two planes A2 =
Spec k[x, y] along the open set {x �= 0}. The action of Z2 on Spec k[x, y]x given by (x, y) 
→
(x,−y) extends to an action of Z2 onX by swapping and flipping the axis. Then X = [X/Z2]
is a non-separated Deligne-Mumford stack. Rydh shows in [7, Example 7.15] that there is no
neighborhood of the origin of this stack that admits a morphism to an algebraic space which is
universal for maps to schemes. In particular, there cannot exist a neighborhood of the origin
which admits a good moduli space.

Weakly saturated morphisms. We also recall the notion of a weakly saturated mor-
phism which was introduced in [2]. This notion is an essential ingredient in determining when
good moduli spaces can be glued étale locally (see Theorem 1.3).

DEFINITION 2.7. A morphism f : X → Y of Artin stacks over an algebraic space
S is weakly saturated if for every geometric point x : Spec k → X with x ∈ |X ×S k|
closed, the image fs(x) ∈ |Y ×S k| is closed. A morphism f : X → Y is universally
weakly saturated if for every morphism of Artin stacks Y ′ → Y , X ×Y Y ′ → Y ′ is weakly
saturated.

REMARK 2.8. Although the above definition seems to depend on the base S, it is in
fact independent: if S → S′ is any morphism of algebraic spaces then f is weakly saturated
over S if and only if f is weakly saturated over S′. Any morphism of algebraic spaces is
universally weakly saturated. If f : X → Y is a morphism of Artin stacks of finite type over
S, then f is weakly saturated if and only if for every geometric point s : Spec k → S, fs
maps closed points to closed points. If f : X → Y is a morphism of Artin stacks of finite
type over Spec k, then f is weakly saturated if and only if f maps closed points to closed
points.

REMARK 2.9. The notion of weakly saturated is not stable under base change. Con-
sider the two different open substacks U1,U2 ⊆ [P1/Gm] isomorphic to [A1/Gm] over Spec k.
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Then

U1 � U2 � Spec k � Spec k ��

��

U1 � U2

��
U1 � U2 �� [P1/Gm]

is 2-cartesian and the induced morphisms Spec k → Ui are open immersions which are not
weakly saturated. This example shows that even étale, stabilizer preserving, surjective, weakly
saturated morphisms may not be stable under base change by themselves which indicates that
the universally weakly saturated hypothesis in Theorem 1.3 is necessary.

3. Good moduli spaces for formal schemes. In this section, we show that the theory
of good moduli spaces carries over to the formal setting. We will avoid using formal Artin
stacks and make all statements and arguments using smooth, adic pre-equivalence relations.
We will also only consider the case where the good formal moduli spaces are formal schemes
which suffices for our applications. The theory of formal algebraic spaces has only been
developed in the separated and locally noetherian case. In Theorem 3.1, the noetherianness
of the quotient should follow from the noetherian property of U and the properties of good
moduli spaces rather than being implicitly assumed. Our main interest is in the case where the
groupoid is induced from the inclusion of a residual gerbe of a closed point Gξ ↪→ X so that,
in particular, the Yi’s (to be defined below) are Artinian (dimension 0 noetherian schemes)
and the formal good moduli space Y = lim−→ Yi is a formal affine scheme whose underlying

topological space is a point.
Setup. We begin by setting up the notation and making elementary remarks.
A smooth, adic formal S-groupoid consists of source and target morphisms s, t : R ⇒

U of locally noetherian, separated formal algebraic spaces which are smooth and adic, an
identity morphism e : U → R, an inverse i : R → R, and a composition c : R×s,U,t R →
R satisfying the usual relations. If J is an ideal of definition of U, then I := s∗J is an ideal of
definition of R (since s is adic), we setUn andRn to be the closed sub-algebraic spaces defined
by Jn+1 and In+1, respectively. There are induced smooth S-groupoids sn, tn : Rn ⇒ Un with
identity en : Un → Rn, an inverse in : Rn → Rn, and a composition cn : Rn×sn,Un,tn Rn →
Rn. Set Xn = [Un/Rn]. Note that by [1, Prop 3.9(iv)] Xn is cohomologically affine if and
only if X0 is.

Let Xn = [Un/Rn] and suppose φn : Xn → Yn is a good moduli space where Yn is a
scheme for each n. Let qn : Un → Yn be the composite of Un → Xn with φn : Xn → Yn.
Since each (φn)∗ is exact, the induced map Γ (Yn+1,OYn+1) → Γ (Yn,OYn) is surjective so
there are closed immersions Yn → Yn+1. The closed immersion X0 ↪→ Xn is defined by
a coherent sheaf of ideals I on Xn such that In+1 = 0. The closed immersion Y0 ↪→ Yn

is defined by φ∗I, which is nilpotent since (φ∗I)n+1 ⊆ φ∗(In+1) = 0. It follows from [3,
I.10.6.3] that there exists a formal scheme Y = lim−→ Yi and that there is an induced morphism
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q : U → Y. We have the diagram:

(3.1) R0 ��

�� ��

R1 ��

�� ��

· · · �� R

�� ��
U0 ��

��

U1 ��

��

· · · �� U

q

��

X0 ��

��

X1 ��

��

· · ·

Y0 �� Y1 �� · · · �� Y ,

where all appropriate squares are 2-commutative and the appropriate squares in the top and
middle rows are 2-cartesian. Note that the squares in the bottom row are not necessary carte-
sian. There should exist a geometric object X̂ (i.e., a formal Artin stack) filling in the above
diagram for which q factors through.

We note that the formal scheme Y and the morphism q : U → Y do not depend on the
choice of the ideal of definition.

We do not know a priori that Y is locally noetherian. In particular, if each Yi = SpecAi
is an affine scheme, it is not immediate that the topological ring lim←−Ai is either adic or noe-

therian.
Recall that q denotes the morphism q : U → Y. There is a natural map OY →

(q∗OU)
R, where (q∗OU)

R denotes the sheaf of topological rings on Y which assigns to
an open V ⊆ Y, the equalizer

OU(q
−1(V )) ⇒ OR((q ◦ t)−1(V ));

clearly OY(V ) → OU(q
−1(V )) factors through this equalizer as q ◦ s = q ◦ t.

More generally, if F is a coherent OU-module, an R-action on F is an isomorphism
α : s∗F → t∗F satisfying the usual cocycle condition on R ×t,U,s R. If Fn denotes the
pullback of F to Un, then Fn inherits an Rn-action and therefore descends to a coherent sheaf
Fn of OXn -modules. We will denote by (q∗F)R the sheaf of OY-modules defined by the
equalizer

q∗F
t∗ ��
α◦s∗

�� (q ◦ t)∗t∗F .

If there were a formal stack X̂ , then (q∗F)R should simply be the push forward under X̂ →
Y of the descended sheaf of OX̂ -modules F̂. We also write Γ (U,F)R = Γ (U, (q∗F)R).

It is not obvious that (q∗F)R is coherent but we will show in Theorem 3.1 that this is true
if Y0 is Artinian. The morphisms (q∗F)F → ((qi)∗Fi)Ri = (φi)∗Fi induces a morphism of
OY-modules

(3.2) (q∗F)R −→ lim←− (φi)∗Fi .



112 J. ALPER

If I is a coherent sheaf of ideals in OU, we say that I is R-invariant if s∗J = t∗J. The
sheaf I therefore inherits an R-action. We say that a closed sub-algebraic space Z ⊆ U is
R-invariant if it is defined by an invariant sheaf of ideals.

For any adic morphism of formal schemes Y′ → Y, by taking fiber products, there
is an induced diagram as in diagram (3.1). There are source and target morphisms s′, t′ :
R′ ⇒ U′, an identity morphism e′ : U′ → R′, an inverse i′ : R′ → R′ and a composition
c′ : R′ ×s′,U′,t′R′ → R′ satisfying the usual relations. Suppose further that Y′, Y, and U′ =
Y′ ×Y U are locally noetherian. Then (s′, t′ : R′ ⇒ U′, e′, i′) indeed defines a smooth, adic
formal S-groupoid. Because good moduli spaces are stable under arbitrary base change, there
are good moduli spaces φ′i : X ′i → Y ′i . Furthermore, the induced morphisms lim−→U

′
i → U′,

lim−→R
′
i → R′, and lim−→ Y

′
i → Y′ are isomorphisms.

Formal good moduli spaces.

THEOREM 3.1. Assume the notation above.
(i) The natural map OY → (q∗OU)

R is an isomorphism of sheaves of topological
rings.

(ii) The functor from coherent sheaves on U with R-actions to sheaves on Y given by
F 
→ (q∗F)R is exact. Furthermore, the morphism (q∗F)R → lim←− (φi)∗Fi is an isomor-

phism of topological OY-modules.
(iii) q is surjective.
(iv) If Z ⊆ U is a closed, R-invariant formal subscheme, then q(Z) is closed,
(v) If Z1,Z2 ⊆ U are closed, R-invariant formal subschemes, then set-theoretically

q(Z1) ∩ q(Z2) = q(Z1 ∩ Z2) .

(vi) q is universal for R-invariant maps to formal schemes. That is, given a morphism
ψ : U → W where W is a formal scheme such that s ◦ψ = t ◦ψ , then there exists a unique
morphism χ : Y → W such that χ ◦ q = ψ .

(vii) If Y = SpfA is an affine formal scheme, then A is noetherian.
Suppose furthermore that dimY0 = 0 (i.e., Y0 is an Artinian scheme).

(viii) Y is a locally noetherian formal scheme. In particular, if Y = SpfA and m =
ker(A → A0), then A is an m-adic noetherian ring.

(ix) If F is a coherent sheaf of U with R-action, then (q∗F)R is a coherent Y-module.
(x) If I and J are two R-invariant coherent ideals in OU, then the natural map

(q∗I)R + (q∗J)R −→ (q∗(I+ J))R

is an isomorphism. If Z1 and Z2 are R-invariant formal closed subschemes, then scheme-
theoretically

im Z1 ∩ im Z2 = im(Z1 ∩ Z2) ,

where im Z denotes the scheme-theoretic image of Z under q : U → Y and is defined by the
coherent sheaf of ideals ker(OY → q∗OZ).
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PROOF. For (i), for each n we have an exact sequence

OYn −→ (qn)∗OUn ⇒ (qn ◦ tn)∗ORn .

By taking inverse limits, we get that OY = lim←−OYn is naturally identified with the equalizer

of q∗OU ⇒ (q ◦ t)∗OR, which is the definition of (q∗OU)
R.

For (ii), we first note that the above argument generalizes to show that the morphism
(3.2) is an isomorphism of topological OY-modules. Indeed, for each n we have an exact
sequence

(φn)∗Fn −→ (qn)∗Fn ⇒ (qn ◦ tn)∗t∗nFn ,
and by taking inverse limits, we get that lim←− (φn)∗Fn is identified with the equalizer q∗F ⇒
(q ◦ t)∗t∗F. The functor F 
→ (q∗F)R is clearly left exact. Consider a surjection F � G

of coherent OU-modules with R-action, which induces surjections Fn � Gn of coherent
OUn -modules with Rn-action and Fn � Gn of coherent OXn -modules. Since (φn)∗ is exact,
we have that (φn)∗Fn � (φn)∗Gn is surjective. Furthermore, the inverse system ((φn)∗Gn) is
Mittag-Leffler (i.e., (φn+1)∗Gn+1 � (φn)∗Gn is surjective) since φn+1 is exact. Therefore,

lim←− (φn)∗Fn � lim←− (φn)∗Gn
is surjective and is identified with (q∗F)R � (q∗G)R.

Since properties (iii), (iv), and (v) are topological, they follow directly from the corre-
sponding property for good moduli spaces ([1, Theorem 4.16(i), (ii) and (iii)]).

For (vi), the argument of [5, Proposition 0.1 and Remark (5) on p. 8] adapts to this setting
as in [1, Theorem 4.15(vi)].

For (vii), let I ⊆ A be an ideal. Let In = πn(I) ⊆ An where Yn = SpecAn and
πn : A � An. The closed sub-algebraic space

U ′n = Un ×SpecAn SpecAn/In ↪→ Un

is defined by the sheaf of ideals Jn = q∗nĨn · OUn . Then U′ = lim−→U
′
n is the closed formal

sub-algebraic space of U defined by the coherent sheaf of ideals J = lim←− Jn. The sheaf Jn
is Rn-invariant descending to a coherent sheaf of ideals Jn in OXn . By [1, Lemma 4.12],
In → Γ (Xn,Jn) is an isomorphism and therefore by part (ii), in the diagram

I

��

�� lim←− In

��
Γ (U,J)R �� lim←− Γ (Xn,Jn) ,

the bottom row is an isomorphism. It follows that the left vertical arrow is an isomorphism.
Since U is noetherian, it follows that any ascending chain I (1) ⊆ I (2) ⊆ · · · of ideals in A
terminates.

For (viii) and (ix), we may assume Y = SpfA where A is a noetherian ring by (vii).
We must show that A is an adic ring. Let In = ker(A → An). Clearly, In ⊇ In0 . Since



114 J. ALPER

A/In0 is Artinian, the descending chain I0 ⊇ I1 ⊇ · · · of ideals in A/In0 terminates so that
there exists k such that In0 ⊇ Ik . This implies that In0 is open so that A is I0-adic. Similarly,
M = Γ (U,F)R = lim←− Γ (Xi ,Fi ) is Hausdorff and complete with respect to the I0-adic

topology. It follows from [3, 0.7.2.9] that M is a finitely generated A-module.
For (x), we have the identifications (q∗I)R = lim←− (φn)∗In, (q∗J)R = lim←− (φn)∗Jn and

q∗(I+ J)R = lim←− (φn)∗(In + Jn) where In and Jn are the corresponding sheaf of ideals on

Xn. For each n, by [1, Lemma 4.9], the inclusion (φn)∗In + (φn)∗Jn → (φn)∗(In + Jn) is
an isomorphism. By taking inverse limits,

lim←− ((φn)∗In + (φn)∗Jn) −→ lim←− (φn)∗(In + Jn)

is an isomorphism. Since

lim←− (φn)∗In + lim←− (φn)∗Jn −→ lim←− ((φn)∗In + (φn)∗Jn)

is also an isomorphism, we have that (q∗I)R+ (q∗J)R → (q∗(I+ J))R is an isomorphism.
The final statement follows from the identification of the coherent sheaf of ideals (q∗I)R with
ker(OY → q∗OZ). �

REMARK 3.2. As in [1], we contend that properties (i) and (ii) should in fact define
the notion of a formal good moduli space and these two properties alone should imply the
others. However, this theory would best be developed in the language of formal stacks which
we are avoiding in this paper.

Groupoids induced from closed substacks. Let X be a noetherian Artin stack and Z
be a closed substack which is cohomologically affine (i.e., that this means that Z → Spec Z
is cohomologically affine). Then Z together with a presentation U → X induces a smooth,
adic formal S-groupoid and a diagram as in (3.1). Let X0 = Z and Xn is the closed substack
corresponding to the n-th nilpotent thickening. Set Ui = U ×X Xi and Ri = R ×X Xi .
Then the smooth S-groupoids Ri ⇒ Ui induces the smooth, adic formal S-groupoid R ⇒ U

where U = lim−→Ui and R = lim−→Ri (with the source, target, identity, inverse and composition

morphisms defined in the obvious way).
Since X0 is cohomologically affine, its nilpotent thickenings Xn are also cohomologi-

cally affine. Therefore, there are good moduli spaces φn : Xn → Yn. If Y = lim−→ Yi =
Spec lim←− Γ (Xn,OXn ), there is an induced R-invariant morphism q : U → Y and we can

apply the above theorem to conclude the following:

COROLLARY 3.3. Suppose Z is a closed, cohomologically affine substack of a noe-
therian Artin stack X such that Γ (Z,OZ) is Artinian. Then with the notation above, there is
an induced morphism q : U → Y satisfying the properties (i) through (x) in Theorem 3.1.

The corollary above implies that there is an isomorphism of topological rings

lim←− Γ (Xn,OXn ) −→ (lim←− Γ (Un,OUn))
R .
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If there exists a good moduli space X → Y , it is natural to compare these topological rings
with the complete local ring induced by the image of Z .

PROPOSITION 3.4. Suppose X is a locally noetherian Artin stack admitting a good
moduli space φ : X → Y and Z ⊆ X is a closed substack defined by a sheaf of ideals I.
Let Xn be the nilpotent thickenings of Z defined by In+1. If Z ⊆ X is cohomologically affine
and Γ (Z,OX ) is Artinian, then the image y ∈ |Y | of Z is a closed point and the induced
morphism

ÔY,y −→ lim←− Γ (Xn,OXn )

is an isomorphism, where ÔY,y = lim←− Γ (Y,OY /J n) and J defines the closed immersion

Spec k(y) ↪→ Y .

PROOF. We have that φ∗I ⊆ J and lim←− Γ (Y,OY /(φ∗I)n) → ÔY,y is an isomor-

phism. We also have the identification lim←− Γ (Xn,OXn ) = lim←− Γ (Y, φ∗I
n). There is an in-

clusion (φ∗I)n ⊆ φ∗(In). Since Yn is Artinian, the descending chain of sheaves of ideals
φ∗(In) ⊇ φ∗(In+1) ⊇ · · · in Yn terminates so that for all n, there exists an N such that
φ∗(IN) ⊆ (φ∗I)n. �

Local structure around closed points with linearly reductive stabilizer. We apply
the results above to the case in which we are most interested in: X is a noetherian Artin stack
and ξ ∈ |X | is a closed point with linearly reductive stabilizer. Let Gξ be the residual gerbe
of ξ (see [4, Section 11]). There is a closed immersion Gξ ↪→ X which, as in (3), induces a
smooth, adic formal S-groupoid R ⇒ U.

Since ξ ∈ |X | has linearly reductive stabilizer (see [1, Definition 12.12]), Gξ is cohomo-
logically affine and φ0 : Gξ → Spec k(ξ) is a good moduli space. The nilpotent thickenings
also admit good moduli spaces φn : Xn → Yn and there is an induced morphism q : U → Y.

COROLLARY 3.5. Suppose ξ ∈ |X | is a closed point with linearly reductive stabilizer.
Then with the above notation, there is an induced morphism q : U → Y satisfying the
properties (i) through (x) in Theorem 3.1.

In particular, Corollary 3.5 implies that there is an isomorphism of topological rings
lim←− Γ (Xn,OXn ) → (lim←− Γ (Un,OUn))

R. There may not exist a good moduli space for X
but Theorem 1.1 establishes that we do in fact know the local structure of the good moduli
space if it exists.

PROOF OF THEOREM 1.1. Note that the stabilizer Gx is linearly reductive since x ∈
|X | is a closed point. The existence of quotient stack presentations Xi ∼= [SpecAi/Gx]
follows from [2, Theorem 1]. The theorem then follows from Proposition 3.4 and Corollary
3.5. �

REMARK 3.6. With the notation of Theorem 1.1, if x ∈ X (k) is not a closed point,
then not much can be said about the local structure of Y around φ(x); even the dimensions
of the good moduli spaces may vary as one varies open substacks containing x. For instance,
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consider Gm×Gm acting on A4 via (t, s) ·(w, x, y, z) = (tw, tx, sy, sz). Let X = [A4/Gm×
Gm] and x = (1, 1, 1, 1) ∈ X . Let U be the open locus where (w, x) �= (0, 0) and V ⊆ U be
the sub-locus where (y, z) �= (0, 0). Then we have a commutative diagram of good moduli
spaces of open substacks containing x

V

��

�� U

��

�� X

��
P1 × P1 �� P1 �� Spec k .

The theorem on formal functions. Let X be a noetherian Artin stack and let φ : X →
Y be a good moduli space. Let Y0 ⊆ Y be a closed subscheme defined by a sheaf of ideals
J and set X0 := φ−1(Y ′) ⊆ |X | which is defined by I := φ∗J · OX . Let Yk be the k-th
nilpotent thickening of Y0 defined by J k+1 and Xk = X ×Y Yk the k-th nilpotent thickening
of X0.

If F is a coherent sheaf of OX -modules, set Fk = F/Ik+1F . For a coherent sheaf G of
OY -modules, let Ĝ := lim←− G/J

k+1G
REMARK 3.7. If we let U → X be a presentation, then as above there is an induced

smooth, adic formal S-groupoid R ⇒ U. Let Y = lim−→ Yn and let q : U → Y be the induced

morphism. A coherent OX -module F induces a coherent OU-module F with an R-action. As
we saw in Theorem 3.1, there is an isomorphism of topological OY-modules

(q∗F)R −→ lim←− φ∗Fk .

Since the functor F 
→ F is exact and by Theorem 3.1 the functor F 
→ (q∗F)R is exact, it
follows that the functor F 
→ lim←− φ∗Fk is exact.

THEOREM 3.8. Let X be a noetherian Artin stack, φ : X → Y a good moduli space
and Y0 ⊆ Y a closed sub-algebraic space. If F is a coherent OX -module, for each n ≥ 0, the
natural morphism

̂Rnφ∗(F) −→ lim←−R
nφ∗(Fk)

is an isomorphism.

PROOF. We may assume Y is a scheme. Because φ∗ is exact, the case of positive n is
obvious and we must only show that

φ̂∗F −→ lim←− φ∗Fk

is an isomorphism. Define K and L by the exact sequence

0 −→ K −→ φ∗φ∗F −→ F −→ L −→ 0 .
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Since φ∗ and completion are exact functors and, by the above remark, F 
→ lim←− φ∗Fk is

exact, we have a commutative diagram

0 �� φ̂∗K ��

��

̂φ∗φ∗φ∗F ��

��

φ̂∗F ��

��

φ̂∗L ��

��

0

0 �� lim←− φ∗Kk �� lim←− φ∗(φ
∗φ∗F)k �� lim←− φ∗Fk �� lim←− φ∗Lk �� 0

with both rows exact. We note that φ∗K = φ∗L = 0 and since φ∗K � φ∗Kk and φ∗L �
φ∗Lk are surjective, it follows that lim←− φ∗Kk = lim←− φ∗Lk = 0. Therefore, it suffices to prove

the theorem in the case that F = φ∗G is the pullback of a coherent sheaf G on Y . In this case,
φ̂∗F = Ĝ and φ∗Fk = G/Ik+1G, and the statement is clear. �

By applying the above theorem when Y0 is a point and Y is affine, we obtain the following
corollary.

COROLLARY 3.9. Let X be a noetherian Artin stack, φ : X → Y a good moduli
space with Y affine and y ∈ Y a point. If F is a coherent OX -module, for each n ≥ 0, the
natural morphism

̂Hn(X ,F) −→ lim←−H
n(Xk,Fk)

is an isomorphism.

4. Geometric invariant theory for formal schemes. In this section, we show that
the constructions of geometric invariant theory carry over for actions of linearly reductive
group schemes on formal affine schemes.

Setup. Let G be a linear reductive affine group scheme over a locally noetherian
scheme S. Recall from [1, Section 12] that this means that G → S is flat, finite type, and
affine and the morphism BG → S is cohomologically affine. If X is a locally noetherian
formal scheme over S, an action of G on X consists of a morphism σ : G ×S X → X such
that the usual diagrams commute. Let I be the largest ideal of definition (see [3, 0.7.1.6]).
Note that both the projection and multiplication p2, σ : G ×S X → X are adic morphisms,
and that I is G-invariant.

If we denote Xn = (X,OX/I
n+1) as the closed subscheme defined by In+1, there are

induced compatible actions of G on Xn. Conversely, given compatible actions of G on the
Xn, there is a unique action of G on X restricting to the actions on Xn.

Suppose further that X = SpfB, S = SpecC with B is an I -adic C-algebra and G is
an affine fppf linearly reductive group scheme over S. The action of G on X translates into
a dual action σ # : B → Γ (G)⊗̂CB with σ #(I) ⊆ Γ (G)⊗̂I . The action corresponds to a
compatible family of dual actions σ #

n : B/In → Γ (G)⊗C B/In. Define

BG = Eq(B
σ #

��

p#
2

�� Γ (G)⊗̂CB).
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Then σ, p2 : G ×S X ⇒ X is a smooth, adic formal S-groupoid where the identity,
inverse and composition morphisms and the commutativity of the appropriate diagrams are
induced formally from the group action.

The quotient stacks Xn = [Xn/G] are cohomologically affine and therefore admit good
moduli spaces φn : Xn → Yn where Yn = Spec(B/In)G. Let Y = lim−→ Yi and q : X → Y

be the induced morphism. The observations in 3.1.2 through 3.1.5 have obvious analogues to
the case of group actions.

Theorems 3.1 translates into the following theorem.

THEOREM 4.1. Assume the above notation.
(i) The natural map OY → (q∗OX)

G is an isomorphism of sheaves of topological
rings.

(ii) The functor from coherent sheaves on X with G-actions to sheaves on Y given by
F 
→ (q∗F)G is exact. Furthermore, the morphism (q∗F)G → lim←− (φi)∗Fi is an isomorphism

of topological OY-modules.
(iii) q is surjective.
(iv) If Z ⊆ X is a closed, G-invariant formal subscheme, then q(Z) is closed.
(v) If Z1,Z2 ⊆ X are closed,G-invariant formal subschemes, then set-theoretically

q(Z1) ∩ q(Z2) = q(Z1 ∩ Z2) .

(vi) q is universal for G-invariant maps to formal schemes.
(vii) If Y = SpfA is an affine formal scheme, then A is noetherian.

Suppose furthermore that dimY0 = 0 (i.e., Y0 is an Artinian scheme).
(viii) Y is a locally noetherian formal scheme. In particular, if Y = SpfA and m =

ker(A → A0), then A is an m-adic noetherian ring.
(ix) If F is a coherent sheaf of X with R-action, then (q∗F)G is a coherent Y-module.
(x) If I and J are two G-invariant coherent ideals in OX, then the natural map

(q∗I)G + (q∗J)G −→ (q∗(I+ J))G

is an isomorphism.

REMARK 4.2. The formal analogue of Nagata’s fundamental lemma for linear reduc-
tive group actions ([6]) hold: if G is a linearly reductive group acting a noetherian affine
formal scheme SpfA, then

(i) for an invariant ideal J ⊆ A,

AG/(J ∩ AG) ∼→ (A/J )G ,

(ii) for invariant ideal J1, J2 ⊆ A,

J1 ∩ AG + J2 ∩ AG ∼→ (J1 + J2) ∩ AG .
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5. Étale local construction of good moduli spaces.
Recalling properties of good moduli spaces. We recall the necessary results from [2]

which generalize analogous results from [1].

PROPOSITION 5.1 ([2, Corollary 6.6]). Consider a commutative diagram

X f ��

φ

��

X ′
φ′

��
Y

g �� Y ′

with X ,X ′ locally noetherian Artin stacks of finite type over S, g locally of finite type, and
φ, φ′ good moduli spaces. If f is étale, pointwise stabilizer preserving and weakly saturated,
then g is étale.

PROPOSITION 5.2 ([Proposition 6.7]). Suppose X ,X ′ are locally noetherian Artin
stacks and

X f ��

φ

��

X ′
φ′

��
Y

g �� Y ′
is commutative with φ, φ′ good moduli spaces. Suppose

(a) f is representable, quasi-finite and separated,
(b) g is finite,
(c) f is weakly saturated.

Then f is finite.

PROPOSITION 5.3 ([2, Proposition 6.8]). Suppose X ,X ′ are locally noetherian Artin
stacks and

X f ��

φ

��

X ′
φ′

��
Y

g �� Y ′
is a commutative diagram with φ, φ′ good moduli spaces. If f is representable, separated,
étale, and weakly saturated and g is étale, then the diagram is cartesian.

We prove a simple proposition which concludes that good moduli spaces exist locally
near a preimage of a closed point after a quasi-finite, separated base change.

PROPOSITION 5.4. Suppose there is a diagram

X f �� X ′
φ′

��
Y ′
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with f a representable, quasi-finite, separated morphism of locally noetherian Artin stacks
and φ′ a good moduli space. Suppose ξ ∈ |X | has closed image ξ ′ ∈ |X ′|. Then there exists
an open substack U ⊆ X containing ξ and a commutative diagram

U f |U ��

φ

��

X ′
φ′

��
Y

g �� Y ′

with φ a good moduli space.

PROOF. By applying Zariski’s Main Theorem [4, Theorem 16.5], there is a factorization

f : X i→ X̃ f̃→ X ′ with i an open immersion and f̃ finite. Therefore, there is a commutative
diagram

X � � i �� X̃
φ̃

��

f̃ �� X ′
φ′

��
Ỹ

g̃ �� Y ′

with φ̃ : X̃ → Ỹ := Specφ′∗f̃∗OX̃ and g̃ is finite. Since f̃ is finite, ξ ∈ X̃ is closed.
Therefore, {ξ} and Z := X̃ � X are disjoint, closed substacks so φ̃(ξ) and φ̃(Z) are closed
and disjoint. If Y = Ỹ � φ̃(Z), then U = φ̃−1(Y ) is an open substack containing ξ and
contained in X admitting a good moduli space U → Y . �

We can also prove that good moduli spaces satisfy effective descent for separated, étale,
pointwise stabilizer preserving, and weakly saturated morphisms. A version of the following
proposition allows one to conclude that good moduli spaces for locally noetherian Artin stacks
are universal for maps to algebraic spaces (see [1, Theorem 6.6]).

PROPOSITION 5.5. Suppose φ′ : X ′ → Y ′ is a good moduli space and f : X →
X ′ is a surjective, separated, étale, pointwise stabilizer preserving, and weakly saturated
morphism of locally noetherian Artin stacks. Then there exists a good moduli space φ : X →
Y inducing g : Y → Y ′ such that the diagram

X f ��

φ

��

X ′
φ′

��
Y

g �� Y ′

is cartesian.

PROOF. By applying Zariski’s Main Theorem, there is a factorization f : X i→ X̃ f̃→
X ′ with i an open immersion and f̃ finite.
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Since f is weakly saturated, it follows that X ⊆ X̃ is a saturated open substack. There-
fore, there exists a good moduli space φ : X → Y inducing a commutative diagram

X f ��

φ

��

X ′
φ′

��
Y

g �� Y ′

with g locally of finite type. Since f is étale, pointwise stabilizer preserving and weakly
saturated, it follows from Proposition 5.1 that g is étale. Proposition 5.3 implies that the
diagram is cartesian. �

Étale local existence. Theorem 1.3 allows us to deduce the existence of a good moduli
space for X étale locally on X :

PROOF OF THEOREM 1.3. Let X2 = X1×X X1 with projections p1 and p2. By Propo-
sition 5.5 applied to one of the projections, there exists a good moduli space X2 → Y2. The
two projectionsp1, p2 induce two morphisms q1, q2 : Y2 → Y1 such that qi ◦φ2 = φ1◦pi for
i = 1, 2. By [1, Theorem 4.15(xi)], both Y2 and Y1 are finite type over S and by Proposition
5.1, q1 and q2 are étale. The induced morphisms X2 → Y2 ×qi ,Y1,φ1 X1 are isomorphisms
by Proposition 5.3. Similarly, by setting X3 = X1 ×X X1 ×X X1, there is a good moduli
space φ3 : X3 → Y3. The étale projectionsp12, p13, p23 : X3 → X2 induce étale morphism
q12, q13, q23 : Y3 → Y2. In summary, there is a diagram

X3
��
����

��

X2

p1 ��
p2

��

��

X1
f ��

��

X

Y3
��
���� Y2

q1 ��
q2

�� Y1 ,

where all horizontal arrows are étale and the squares φ2 ◦pij = qij ◦φ3 and φ1 ◦pi = qi ◦φ2

are cartesian.
There is an identity map e : X1 → X2, an inverse map i : X2 → X2 and a multipli-

cation m : X2 ×p1,X1,p2 X2 ∼= X3
p13→ X2 inducing 2-diagrams: p2 ◦ e ∼→ id

∼→ p1 ◦ e,
i ◦ i ∼→ id, t ◦ i = s, m ◦ (i, id)

∼→ e ◦ p1, m ◦ (id, i) ∼→ e ◦ p2, (e ◦ p1, id) ◦m ∼→ id
∼→

(e ◦ p2, id) ◦m and (m, id) ◦m ∼→ (id,m) ◦m.
By universality of good moduli spaces, there is an induced identity map Y1 → Y2, an

inverse Y2 → Y2 and multiplication Y2 ×q1,Y1,q2 Y2 → Y2 inducing commutative diagrams
(as above) giving Y2 ⇒ Y1 an étale S-groupoid structure.

We claim that ∆ : Y2 → Y1 × Y1 is a monomorphism. Since it is clearly unramified,
it suffices to check that ∆ is geometrically injective. We may assume S = Spec k with k
algebraically closed. Let y1 : Spec k → Y1, x1 : Spec k → X1 be the unique point in
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φ−1
1 (y1) closed in |X1|, and x : Spec k → X be the image of x1. Since the square

BGx ��

��

BGx ×k BGx

��
X2 ��

��

X1 × X1

��
X �� X ×k X

is 2-cartesian, it follows that there can be only one preimage of (y1, y1) under ∆ and is geo-
metrically injective.

Therefore, there exist an algebraic space quotient Y and induced maps φ : X → Y and
Y1 → Y . Consider the diagram

X2 ��

��

X1

��
X1 ��

��

X

��
Y1 �� Y .

Since X2 ∼= X1 ×Y1 Y2 and Y2 ∼= Y1 ×Y Y1, the top and outer squares above are 2-cartesian.
Since X1 → X is étale and surjective, it follows that the bottom square is cartesian. By
descent, φ : X → Y is a good moduli space. �

REMARK 5.6. The above hypotheses of Theorem 1.3 can not be weakened to only re-
quire that f is stabilizer preserving at ξ1. Indeed, in Example 2.6, the natural étale presentation
f : X → X is stabilizer preserving at the origin and both projections Z2×X ∼= X×XX ⇒ X

are weakly saturated. Clearly X admits a good moduli space since it is a scheme but X does
not admit a good moduli space.

As an application of Theorem 1.3, we get the following:

COROLLARY 5.7. Suppose X is an Artin stack locally of finite type over an excellent
base scheme S. Then X admits a good moduli space if and only if Xred does.

PROOF. If φ : X → Y is a good moduli space, then [1, Lemma 4.14] implies that
Xred → Yred is a good moduli space.

Conversely, suppose Xred → Y1 is a good moduli space with Y1 an algebraic space.
The question is Zariski-local on S and Y1 since determining whether good moduli spaces of
a Zariski-open cover glue depends only on the Zariski topology of |X | (see [1, Proposition
7.9]). Therefore, we may assume that S is affine and Y1 is quasi-compact. If Y1 is affine, then
by [1, Proposition 3.9 (iii)] X is cohomologically affine. (The statement is also clear if Y1 is
a scheme.)
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Let U1 = SpecA → Y1 be an étale presentation, U1 := Xred ×Y U1 → U1 the induced
good moduli space and g1 : U1 → Xred be the projection. There exists an Artin stack U and a
surjective étale morphism g : U → X such that gred = g1. There exists a good moduli space
U → Y yielding a 2-commutative diagram

Xred
� � ��

��

X

U1

g1

����������
� � ��

��

U

g
����������

��

Y1

U1

����������
� � �� Y .

Since g1 is the pullback of a morphism of algebraic spaces, it is pointwise stabilizer preserving
and universally weakly saturated. Since both of these properties don’t depend on the non-
reduced structure, it follows that g1 is pointwise stabilizer preserving and universally weakly
saturated. By applying Theorem 1.3, we conclude that X admits a good moduli space. �
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