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RICCI CURVATURE OF GRAPHS
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Abstract. We modify the definition of Ricci curvature of Ollivier of Markov chains on
graphs to study the properties of the Ricci curvature of general graphs, Cartesian product of
graphs, random graphs, and some special class of graphs.

1. Introduction. The Ricci curvature plays a very important role on geometric anal-
ysis on Riemannian manifolds. Many results are established on manifolds with non-negative
Ricci curvature or on manifolds with Ricci curvature bounded below.

The definition of the Ricci curvature on metric spaces was first from the well-known
Bakry and Emery notation. Bakry and Emery [1] found a way to define the “lower Ricci
curvature bound” through the heat semigroup (Pt )t≥0 on a metric measure space M . There
are some recent works on giving a good notion for a metric measure space to have a “lower
Ricci curvature bound”, see [21], [18] and [19]. Those notations of Ricci curvature work on so
called length spaces. In 2009, Ollivier [20] gave a notion of coarse Ricci curvature of Markov
chains valid on arbitrary metric spaces, such as graphs.

Graphs and manifolds are quite different in their nature. But they do share some similar
properties through Laplace operators, heat kernels, and random walks, etc. Many pioneering
works were done by Chung, Yau, and their coauthors [3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16].

A graph G = (V ,E) is a pair of the vertex-set V and the edge-set E. Each edge is
an unordered pair of two vertices. Unless otherwise specified, we always assume a graph
G is simple (no loops and no multi-edges) and connected. It may have infinite but countable
number of vertices. For each vertex v, the degree dv is always bounded. Starting from a vertex
v1 we select a vertex v2 in the neighborhood of v1 at random and move to v2 then we select
a vertex v3 in the neighborhood of v2 at random and move to v3, etc. The random sequence
of vertices selected this way is a random walk on the graph. Ollivier [20]’s definition of the
coarse Ricci curvature of Markov chains on metric space can be naturally defined over such
graphs.

The first definition of Ricci curvature on graphs was introduced by Fan Chung and Yau in
1996 [8]. In the course of obtaining a good log-Sobolev inequality, they found the following
definition of Ricci curvature to be useful:
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We say that a regular graph G has a local k-frame at a vertex x if there exist injective
mappings η1, . . . , ηk from a neighborhood of x into V so that

(1) x is adjacent to ηix for 1 ≤ i ≤ k ;
(2) ηi x �= ηj x if i �= j .
The graph G is said to be Ricci-flat at x if there is a local k-frame in a neighborhood of

x so that for all i , ⋃
j

(
ηiηj

)
x =

⋃
j

(
ηjηi

)
x .

For a more general definition of Ricci curvature, in [17], Lin and Yau give a generaliza-
tion of lower Ricci curvature bound in the framework of graphs. We first define the Laplace
operator on graphs without loops and multiple edges. The description in the following can be
used for weighted graphs. But for simplicity, we set all weights here equal to 1.

Let V R = {f ; f : V → R}. The Laplace operator � of a graph G is

�f (x) = 1

dx

∑
y∼x

[f (y) − f (x)]

for all f ∈ V R . For graphs, we have

|∇f (x)|2 = 1

dx

∑
y∼x

[f (y) − f (x)]2 .

We first introduce a bilinear operator Γ : V R × V R → V R by

Γ (f, g)(x) = 1

2
{�(f (x) · g(x)) − f (x)�g(x) − g(x)�f (x)} .

The Ricci curvature operator Γ2 is defined by iterating the Γ :

Γ2(f, g)(x) = 1

2
{�Γ (f, g)(x) − Γ (f,�g)(x) − Γ (g,�f )(x)} .

The Laplace operator � on graphs satisfies the curvature-dimension type inequality
CD(m,K) (m ∈ (1,+∞])(the notation is from Bakry and Emery [1]) if

Γ2(f, f )(x) ≥ 1

m
(�(f (x)))2 + k(x) · Γ (f, f )(x) .

We call m the dimension of the operator � and k(x) the lower bound of the Ricci curvature
of the operator �.

In the paper [17], Lin and Yau proved that the Ricci curvature for a locally finite graph
in the sense of Bakry and Emery is bounded below. The Ricci flat graph in the sense of Fan
Chung and Yau was proved to be a graph with Ricci curvature bounded below by zero. In
the same paper, Lin and Yau also showed that the Ricci curvature in the sence of Ollivier for
simple random walk on graphs is bounded below. For non-negative Ricci curvature graphs,
Fan Chung, Lin and Yau can prove some Harnack inequalities and Log-Harnack inequalities
(see [7]).
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In this paper, we will modify Ollivier’s definition of Ricci curvature for Markov chains
on graphs.

The definition of Ricci curvatures of graphs is given in Section 2. We proved a theorem
on the Ricci curvatures of the Cartesian product graphs. For graphs with positive curvatures,
we established the upper bounds for diameters and the number of vertices. We also proved
a lower bound on the first nonzero Laplacian eigenvalue. Ricci curvatures of random graphs
G(n, p) are considered in the last section. Here G(n, p) denotes Erdős-Renyi’s random graph
on n vertices and with probability p ∈ [0, 1]. (For each unordered pair of vertices {x, y}, xy

is an edge (or non-edge) of G(n, p) with probability p (or with probability 1−p respectively)
independently to other pairs.) We proved that the Ricci curvature of G(n, p) is (1 + o(1))p

if p 
 3
√

(ln n)/n. It is almost about 0, −1, and −2, when 3
√

(ln n)/n > p ≥ 2
√

(ln n)/n,
n−1/2 
 p 
 3

√
(ln n)/n2, or n−2/3 
 p 
 (ln n)/n, respectively.

2. Notations. We will use similar notations as in [20]. A probability distribution
(over the vertex-set V (G)) is a mapping m : V → [0, 1] satisfying

∑
x∈V m(x) = 1. Suppose

two probability distributions m1 and m2 have finite support. A coupling between m1 and m2

is a mapping A : V × V → [0, 1] with finite support so that∑
y∈V

A(x, y) = m1(x) and
∑
x∈V

A(x, y) = m2(y) .

Let d(x, y) be the graph distance between two vertices x and y. The transportation
distance between two probability distributions m1 and m2 is defined as follows.

W(m1,m2) = inf
A

∑
x,y∈V

A(x, y)d(x, y) ,(1)

where the infimum is taken over all coupling A between m1 and m2. A function f over G is
c-Lipschitz if

|f (x) − f (y)| ≤ cd(x, y)

for all x, y ∈ V . By the duality theorem of a linear optimization problem, the transportation
distance can also be written as follows.

W(m1,m2) = sup
f

∑
x∈V

f (x)[m1(x) − m2(x)] ,(2)

where the supremum is taken over all 1-Lipschitz function f .

REMARK. Any c-Lipschitz function f over a metric subspace can be extended to a
c-Lipschitz function over the whole metric space. The W(m1,m2) only depends on distances
among vertices in supp(m1) ∪ supp(m2).

For any vertex x, let Γ (x) denote the set of neighborhood of x, i.e.,

Γ (x) = {v ; vx ∈ E(G)} .

Let N(x) = Γ (x) ∪ {x}.
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For any α ∈ [0, 1] and any vertex x, the probability measure mα
x is defined as

mα
x (v) =




α if v = x ,

(1 − α)/dx if v ∈ Γ (x) ,

0 otherwise .
(3)

For any x, y ∈ V , we define α-Ricci-curvature κα to be

κα(x, y) = 1 − W(mα
x ,mα

y )

d(x, y)
.(4)

Note that W(m1
x,m1

y) = d(x, y), so κ1(x, y) = 0 holds for any x, y ∈ V (G).

LEMMA 2.1. For two vertices x, y, κα is concave in α ∈ [0, 1].
PROOF. For 0 ≤ α < β < γ ≤ 1, let λ = (γ − β)/(γ − α). Then β = λα + (1 − λ)γ .

The concavity of κα means

κβ ≥ λκα + (1 − λ)κγ .

Let A be the coupling between mα
x and mα

y achieving the infimum in the definition of
W(mα

x ,mα
y ). Let B be the coupling between m

γ
x and m

γ
y achieving the infimum in the defini-

tion of W(m
γ
x ,m

γ
y ). We have

W(mα
x ,mα

y ) =
∑

u,v∈V

A(u, v)d(u, v) ,

W(m
γ
x ,m

γ
y ) =

∑
u,v∈V

B(u, v)d(u, v) .

Let C = λA + (1 − λ)B. Here we verify that C is a coupling between m
β
x and m

β
y . We have∑

u∈V

C(u, v) =
∑
u∈V

λA(u, v) + (1 − λ)B(u, v)

= λmα
y (v) + (1 − λ)m

γ
y (v)

= mβ
y (v) .

The last equality is verified case by case. If v = y, we have

λmα
y (v) + (1 − λ)m

γ
y (v) = λα + (1 − λ)γ

= β

= mβ
y (v) .

If v ∈ Γ (y), then

λmα
y (v) + (1 − λ)m

γ
y (v) = λ

1 − α

dy

+ (1 − λ)
1 − γ

dy

= 1 − β

dy

= mβ
y (v) .
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If v �= y and v is not in the neighborhood of y, then the inequality holds trivially since
mα

y (v) = m
β
y (v) = m

γ
y (v) = 0.

Similarly, we can show ∑
v∈V

C(u, v) = mβ
x (u) .

Thus C is a coupling between m
β
x and m

β
y . We have

W(mβ
x ,mβ

y ) ≤
∑

u,v∈V

C(u, v)d(u, v)

= λ
∑

u,v∈V

A(u, v)d(u, v) + (1 − λ)
∑

u,v∈V

B(u, v)d(u, v)

= λW(mα
x ,mα

y ) + (1 − λ)W(m
γ
x ,m

γ
y ) .

Therefore, we have

κβ(x, y) = 1 − W(m
β
x ,m

β
y )

d(x, y)

≥ λ

[
1 − W(mα

x ,mα
y )

d(x, y)

]
+ (1 − λ)

[
1 − W(m

γ
x ,m

γ
y )

d(x, y)

]
= λκα(x, y) + (1 − λ)κγ (x, y) . �

LEMMA 2.2. For any α ∈ [0, 1] and any two vertices x and y, we have

κα(x, y) ≤ (1 − α)
2

d(x, y)
.

PROOF. Define δx(v) = 1 if v = x and 0 otherwise. We have

W(mα
x ,mα

y ) ≥ W(δx, δy) − W(δx,mα
x ) − W(δy,mα

y )

= d(x, y) − 2(1 − α) .

Thus

κα(x, y) = 1 − W(mα
x ,mα

y )

d(x, y)

≤ (1 − α)
2

d(x, y)
. �

Lemma 2.1 implies the function h(α) = κα(x, y)/(1 − α) is an increasing function on α

over [0, 1). Lemma 2.2 says h(α) is bounded. Thus, the limit limα→1 κα(x, y)/(1−α) exists.
This limit, denoted by κ(x, y), is called the Ricci curvature at (x, y) in the graph G.

REMARK. This definition of Ricci curvature κ is slightly different from those in [20],
where Ollivier considered κ0 and κ1/2 instead.

Although the Ricci curvature κ(x, y) is defined for all pairs (x, y), it makes more sense
to consider only κ(x, y) for xy ∈ E(G). The following lemma is similar to [20, Proposition
19].
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LEMMA 2.3. If κ(x, y) ≥ κ0 for any edge xy ∈ E(G), then κ(x, y) ≥ κ0 for any pair
of vertices (x, y).

PROOF. Suppose d(x, y) = s and x and y are connected by a path P of length s.
Denote the vertices of P by x = x0, x1, . . . , xs−1, xs = y so that xi−1 and xi are adjacent for
1 ≤ i ≤ s.

For α ∈ [0, 1), we have

κα(x, y)

1 − α
= 1

1 − α

[
1 − W(mα

x ,mα
y )

d(x, y)

]

≥ 1

1 − α

[
1 −

∑s
i=1 W(mα

xi−1
,mα

xi
)

s

]

=
∑s

i=1 κα(xi−1, xi)

s(1 − α)
.

Take the limit of both hand sides as α → 1. We get

κ(x, y) ≥
∑s

i=1 κ(xi−1, xi)

s
≥ κ0 . �

We say G has a constant Ricci curvature r if for any edge xy of G, we have κ(x, y) = r .
We write κ(G) = r , for short.

EXAMPLE 1. The complete graph Kn has a constant Ricci curvature n/(n − 1). This
is the only graph with a constant Ricci curvature greater than 1.

EXAMPLE 2. The cycle Cn for n ≥ 6 has a constant Ricci curvature 0. For small
cycles C3, C4 and C5, we have

κ(C3) = 3

2
,

κ(C4) = 1,

κ(C5) = 1

2
.

EXAMPLE 3. The hypercube Qn has a constant Ricci curvature 2/n. Moreover, we
can show for any edge xy,

κα(x, y) =
{

2α if 0 ≤ α ≤ 1/(n + 1) ,

2(1 − α)/n if 1/(n + 1) ≤ α ≤ 1 .

3. Ricci curvatures of Cartesian product graphs. Given two graphs G and H , the
Cartesian product (denoted by G�H ) is a graph over the vertex set V (G)×V (H), where two
pairs (u1, v1) and (u2, v2) are connected if “u1 = u2 and v1v2 ∈ E(H)” or “u1u2 ∈ E(G)

and v1 = v2”. If both G and H are regular graphs, then the Ricci Curvature of G�H can be
computed by the following theorem.
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THEOREM 3.1. Suppose G is dG-regular and H is dH -regular. Then the Ricci curva-
ture of G�H is given by

κG�H((u1, v), (u2, v)) = dG

dG + dH

κG(u1, u2)(5)

κG�H((u, v1), (u, v2)) = dH

dG + dH

κH (v1, v2) .(6)

Here u ∈ V (G), v ∈ V (H), u1u2 ∈ E(G), and v1v2 ∈ E(H).

REMARK. Similar relation does not hold if we replace κ by κα . Only one directional
inequality can hold for κα (see inequality (7)). This is one of reasons why we define the Ricci
curvature κ as limα→1 κ(x, y)/(1 − α).

Cartesian product is an effective way to construct graphs with positive constant Ricci
curvature. The following corollary can be derived from Theorem 3.1 using induction on n.
We omit its proof here.

COROLLARY 3.2. Suppose G is regular and has constant curvature κ . Let Gn denote
the n-th power of the Cartesian product of G. Then G has constant curvature κ/n.

Note Q1 = K2 and κ(K2) = 2. By the corollary, we have

κ(Qn) = κ((K2)
n) = 2

n
.

PROOF OF THEOREM 3.1. By symmetry, it is sufficient to prove equality (5). We claim
the following two inequalities on κG�H

α .

CLAIM 1. We claim

κG�H
α ((u1, v), (u2, v)) ≥ dG

dG + dH

κG
α (u1, u2)(7)

for 0 ≤ α ≤ 1 and u1u2 ∈ E(G).

CLAIM 2. We claim

κG�H
α ((u1, v), (u2, v)) ≤ dG + αdH

dG + dH

κG
α′(u1, u2)(8)

for any u1u2 ∈ E(G). Here α′ = α(dG + dH )/(dG + αdH ).

Claim 1 is corresponding to Ollivier’s result for the case α = 0 or 1/2 (Proposition 27
of [20]), where he uses the word “L1-tensorization” instead of “Cartesian product”. Claim 2
is new.

From Claim 1, divide both hand sides of inequality (7) by 1 − α and then take the limit
as α → 1. We get

κG�H((u1, v), (u2, v)) ≥ dG

dG + dH

κG(u1, u2) .
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From the definition of α′, we have

1 − α′

1 − α
= dG

dG + αdH

.

Thus

κG�H ((u1, v), (u2, v)) = lim
α→1

κG�H
α ((u1, v), (u2, v))

1 − α

≤ lim
α′→1

dG

dG + dH

κG
α′(u1, u2)

1 − α′

= dG

dG + dH

κG(u1, u2) .

It suffices to prove two claims. It is not pleasant to read with all superscript G,H,G�H

on every parameters. We use the following conventions. We use letters x, x1, x2, u, u1, u2 to
denote a vertex of G and use letters y, y2, y2, v, v1, v2 to denote a vertex of H . We use the
pairs such as (x, y), (u1, v) to denote a vertex of G�H . For example, both mα

u1
and mα

u1,v

describe the probability distribution of α-lazy random walks, but the first one is on the graph
G while the second one is on the graph G�H .

PROOF OF CLAIM 1. Let A be a coupling between mα
u1

and mα
u2

which reaches the
infimum in the definition of WG(mα

u1
,mα

u2
).

We have

WG(mα
u1

,mα
u2

) =
∑

x1,x2∈V (G)

A(x1, x2)d(x1, x2) .

We define a coupling B : V (G�H) × V (G�H) → [0, 1] as follows.

B((x1, y1), (x2, y2))

=




dG/(dG + dH ) · A(u1, u2) + dH/(dG + dH ) · α if x1 = u1, x2 = u2, y1 = y2 = v ,

dG/(dG + dH ) · A(x1, x2) if y1 = y2 = v ; (x1, x2) �= (u1, u2),

dG/(dG + dH ) · mα
v (y1) if x1 = u1, x2 = u2,

y1 = y2 = y ∈ ΓH(v) ,

0 otherwise .

Now we verify that B is a coupling between mα
(u1,v) and mα

(u2,v).

∑
(x2,y2)∈V (G�H)

B((x1, y1), (x2, y2))

=
∑

x2∈V (G)

B((x1, v), (x2, v))δv(y1)

+
∑

y2∈ΓH (v)

B((u1, y1), (u2, y2))δu1(x1)(1 − δv(y1))
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=
∑

x2∈V (G)

dG

dG + dH

A(x1, x2)δv(y1) + dH

dG + dH

αδu1(x1)δv(y1)

+ dH

dG + dH

mα
v (y1)δu1(x1)(1 − δv(y1))

= dG

dG + dH

mα
u1

(x1)δv(y1) + dH

dG + dH

mα
v (y1)δu1(x1)

= mα
(u1,v)(x1, y1) .

Similarly, we have ∑
(x1,y1)∈V (G�H)

B((x1, y1), (x2, y2)) = mα
(u2,v)(x2, y2) .

Thus, we have

W(mα
(u1,v),m

α
(u2,v)) ≤

∑
(x1,y1),(x2,y2)

B((x1, y1), (x2, y2))d((x1, y1), (x2, y2))

=
∑

x1,x2∈V (G)

B((x1, v), (x2, v))d((x1, v), (x2, v))

+
∑

y1∈ΓH (v)

B((x1, y1), (x2, y1))d((x1, y1), (x2, y1))

=
∑

x1,x2∈V (G)

dG

dG + dH

A(x1, x2)d(x1, x2) + α
dH

dG + dH

+
∑

y1∈ΓH (v)

dH

dG + dH

mα
v (y1)

= dG

dG + dH

W(mα
u1

,mα
u2

) + dH

dG + dH

.

We get

κG�H
α ((u1, v), (u2, v)) = 1 − W(mα

(u1,v),m
α
(u2,v))

≥ 1 − dG

dG + dH

W(mα
u1

,mα
u2

) − dH

dG + dH

= dG

dG + dH

(1 − W(mα
u1

,mα
u2

))

= dG

dG + dH

κG
α (u1, u2) .

PROOF OF CLAIM 2. Let f be a 1-Lipschitz function which achieves the supremum in
the duality theorem of W(mα′

u1
,mα′

u2
), i.e.,

W(mα′
u1

,mα′
u2

) =
∑

x∈N(u1)

f (x)mα′
u1

(x) −
∑

y∈N(u2)

f (y)mα′
u2

(y) .
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We define a function F : N((u1, v)) ∪ N((u2, v)) → R as

F(x, y) =



f (x) if y = v ,

(f (u1) + f (u2) + 1)/2 if x = u1 , y �= v ,

(f (u1) + f (u2) − 1)/2 if x = u2 , y �= v .

It is easy to check F is an 1-Lipschitz function over N((u1, v)) ∪ N((u2, v)) so that F can be
extended to an 1-Lipschitz function over V (G�H). Thus, we have

W(mα
(u1,v),m

α
(u2,v)) ≥

∑
(x,y)∈N((u1,v))

F (x, y)mα
(u1,v)(x, y)

−
∑

(x,y)∈N((u2,v))

F (x, y)mα
(u2,v)(x, y)

=
∑

x∈N(u1)

f (x)mα
(u1,v)(x, v) −

∑
x∈N(u2)

f (x)mα
(u2,v)(x, v)

+ f (u1) + f (u2) + 1

2
(1 − α)

dH

dG + dH

− f (u1) + f (u2) − 1

2
(1 − α)

dH

dG + dH

= dG + αdH

dG + dH

[ ∑
x∈N(u1)

f (x)mα′
u1

(x) −
∑

y∈N(u2)

f (y)mα′
u2

(y)

]

+ (1 − α)
dH

dG + dH

= dG + αdH

dG + dH

W(mα′
u1

,mα′
u2

) + (1 − α)
dH

dG + dH

.

We get

κG�H
α ((u1, v), (u2, v)) = 1 − W(mα

(u1,v),m
α
(u2,v))

≤ 1 − dG + αdH

dG + dH

W(mα′
u1

,mα′
u2

) − (1 − α)
dH

dG + dH

= dG + αdH

dG + dH

(1 − W(mα′
u1

,mα′
u2

))

= dG + αdH

dG + dH

κG
α′ (u1, u2) .

The proof of Theorem 3.1 is finished. �

4. Graphs with positive Ricci curvatures. Here is a Bonnet-Myers type theorem on
graphs, which is corresponding to Ollivier’s [20, Proposition 23].

THEOREM 4.1. For any x, y ∈ V (G), if κ(x, y) > 0, then

d(x, y) ≤
⌊

2

κ(x, y)

⌋
.
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Moreover, if for any edge xy, κ(x, y) ≥ κ > 0, then the diameter of graph G is bounded as
follows:

diam(G) ≤ 2

κ
.

PROOF. By Lemma 2.2, we have

κα(x, y)

1 − α
≤ 2

d(x, y)
.

Take the limit as α → 1. We have

κ(x, y) ≤ 2

d(x, y)
.

Since κ(x, y) > 0, we have

d(x, y) ≤ 2

κ(x, y)
.

If for any edge xy, κ(x, y) ≥ κ . By Lemma 2.3, for any x, y ∈ V (G), we have κ(x, y) ≥ κ .
Thus, the diameter of G is at most 2/κ . �

Now we assume G is a finite graph on n vertices. Let A be the adjacent matrix of the
graph G and D = diag(d1, d2, . . . , dn) be the diagonal matrix of degrees. The normalized
Laplacian is the matrix L = I −D−1/2AD−1/2. The eigenvalues of L are called the Laplacian
Eigenvalues of G, which is listed as

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 .

The following theorem is slightly stronger than Ollivier’s [20, Proposition 30].

THEOREM 4.2. Suppose G is a finite graph and λ1 is the first nonzero Laplacian
eigenvalue of G. If for any edge xy, κ(x, y) ≥ κ > 0, then λ1 ≥ κ .

PROOF. Since G is finite, limα→1 κα(x, y)/(1 − α) converges uniformly for all x, y ∈
V (G). For any ε > 0 small enough, there exists an α0 ∈ [0, 1) such that for any α ∈ (α0, 1)

and for any x, y ∈ V (G), we have

κα(x, y)

1 − α
> (1 − ε)κ > 0 .

Let Mα be the average operator associated to the α-lazy random walk, i.e., for any function
f : V (G) → R, Mα(f ) is a function defined as follows:

Mα(f )(x) =
∑

z∈V (G)

f (z)mα
x (z) .

If f is k-Lipschitz, then we have

|Mα(f )(x) − Mα(f )(y)| =
∣∣∣∣ ∑
z∈V (G)

f (z)(mα
x (z) − mα

y (z))

∣∣∣∣
≤ kW(mα

x ,mα
y )

≤ k(1 − (1 − ε)(1 − α)κ)d(x, y) .
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Mα(f ) is a k(1 − (1 − ε)(1 − α)κ)-Lipschitz function. The mixing rate of Mα is at most
1 − (1 − ε)(1 − α)κ . On the other hand, Mα can be written as an n × n-matrix

Mα = αI + (1 − α)D−1A .

It has eigenvalues 1, 1 − (1 − α)λ1, 1 − (1 − α)λ2, . . . , 1 − (1 − α)λn−1. As α → 1, the
mixing rate of Mα is exactly 1 − (1 − α)λ1. We have

1 − (1 − α)λ1 ≤ 1 − (1 − ε)(1 − α)κ .

Or

λ1 ≥ (1 − ε)κ .

Let ε → 0. We get

λ1 ≥ κ . �

REMARK. Theorems 4.1 and 4.2 are tight for Kn, Qn and C3.

Given the maximum degree � and the diameter D, the number of vertices of a graph G

can not exceed the Moore bound:

n ≤ 1 +
D∑

k=1

�(� − 1)k−1 .(9)

The following theorem bounds the number of vertices in a graph with positive Ricci
curvature. It is much smaller than the Moore bound.

THEOREM 4.3. Suppose that for any xy ∈ E(G), the Ricci curvature κ(x, y) ≥ κ >

0. Let � be the maximum degree of G. Then the number of vertices is at most

n ≤ 1 +
�2/κ�∑
k=1

�k
k−1∏
i=1

(
1 − i

κ

2

)
.

For any two distinct x, y, the neighborhood of y can be partitioned into three sets ac-
cording to their distance to x. Namely

Γ +
x (y) = {v ; v ∈ Γ (y), d(x, v) = d(x, y) + 1} ;(10)

Γ 0
x (y) = {v ; v ∈ Γ (y), d(x, v) = d(x, y)} ;(11)

Γ −
x (y) = {v ; v ∈ Γ (y), d(x, v) = d(x, y) − 1} .(12)

The following lemma improves Lemma 2.2.

LEMMA 4.4. For any two distinct vertices x and y, we have

κ(x, y) ≤ 1 + (|Γ −
x (y)| − |Γ +

x (y)|)/dy

d(x, y)
.



RICCI CURVATURE OF GRAPHS 617

PROOF. For any 0 ≤ α < 1, the function f (z) = d(x, z) is clearly a 1-Lipschitz
function. Thus,

W(mα
x ,mα

y ) ≥
∑

z∈V (G)

d(x, z)(mα
y(z) − mα

x(z))

= αd(x, y) + 1 − α

dy

|Γ −
x (y)|(d(x, y) − 1) + 1 − α

dy

|Γ 0
x (y)|d(x, y)

+ 1 − α

dy

|Γ +
x (y)|(d(x, y) + 1) − (1 − α) .

= d(x, y) − (1 − α)(|Γ −
x (y)| − |Γ +

x (y)|)
dy

− (1 − α) .

We have

κ(x, y) = lim
α→1

κα(x, y)

1 − α

= lim
α→1

1 − W(mα
x ,mα

y )/d(x, y)

1 − α

≤ 1

d(x, y)

[
1 + (|Γ −

x (y)| − |Γ +
x (y)|)

dy

]
.

The proof of this Lemma is finished. �

PROOF OF THEOREM 4.3. Theorem 4.1 states that the diameter is at most �2/κ�. Pick
any vertex x, for 1 ≤ i ≤ �2/κ�, and let Γi(x) = {y ; d(x, y) = i}. For any y ∈ Γi(x), by
Lemma 4.4, we have

2 − iκ ≥ 2 − d(x, y)κ(x, y)

≥ 1 − |Γ −
x (y)| − |Γ +

x (y)|
dy

≥ 2|Γ +
x (y)|
dy

.

Thus,

|Γ +
x (y)| ≤

(
1 − iκ

2

)
dy ≤

(
1 − iκ

2

)
� .

We have

|Γi+1(x)| ≤
∑

y∈Γi(x)

|Γ +
x (y)|

≤
∑

y∈Γi(x)

(
1 − iκ

2

)
�

= |Γi(x)|
(

1 − iκ

2

)
� .
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By induction on k, we have

|Γk(x)| ≤ �k
k−1∏
i=1

(
1 − iκ

2

)
.

We have

n = 1 +
�2/κ�∑
k=1

|Γk(x)|

≤ 1 +
�2/κ�∑
k=1

�k

k−1∏
i=1

(
1 − iκ

2

)
.

�

5. Ricci curvature of random graphs. In this section we will examine the Ricci Cur-
vature of the classical Erdős-Renyi random graphs G(n, p). Here G(n, p) is a random graph
on n vertices in which a pair of vertices appear as an edge of G(n, p) with probability p inde-
pendently. We say a graph property P is almost surely satisfied if the limit of the probability
that P holds goes to 1 as n goes to infinity. We say f (n) 
 g(n) if limn→∞ g(n)/f (n) = 0.

THEOREM 5.1. Suppose that xy is an edge of the random graph G(n, p). The follow-
ing statements hold for the curvature κ(x, y).

1. If p ≥ 3
√

(ln n)/n, almost surely, we have

κ(x, y) = p + O

(√
ln n

np

)
.

In particular, if p 
 3
√

(ln n)/n, almost surely, we have κ(x, y) = (1 + o(1))p.
2. If 3

√
(ln n)/n > p ≥ 2

√
(ln n)/n, almost surely, we have

κ(x, y) = O

(
ln n

np2

)
.

3. If 1/
√

n 
 p 
 3
√

(ln n)/n2, almost surely, we have

κ(x, y) = −1 + O(np2) + O

(
ln n

n2p3

)
.

4. If 3
√

1/n2 
 p 
 (ln n)/n, almost surely, we have

κ(x, y) = −2 + O(n2p3) + O

(√
ln n

np

)
.
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5.1. Lemmas. We will use the following Chernoff’s inequality.

LEMMA 5.2 ([2]). Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi , Pr(Xi = 0) = 1 − pi .

We consider the sum X = ∑n
i=1 Xi , with expectation E(X) = ∑n

i=1 pi . Then we have

(Lower tail) Pr(X ≤ E(X) − λ) ≤ e−λ2/2E(X) ,

(Upper tail) Pr(X ≥ E(X) + λ) ≤ e−λ2/(2E(X)+2λ/3) .

Before we prove our theorem, we need a few lemmas.

LEMMA 5.3. If p ≥ (8 ln n)/(3n), then with probability at least 1 − 2/n, all degrees
of G(n, p) fall in the range ((n − 1)p − √

4np ln n, (n − 1)p + √
6np ln n).

PROOF. For each vertex v, the degree dv is the sum of n − 1 independent random
variables X1, . . . , Xn−1 with identical distribution

Pr(Xi = 1) = p , Pr(Xi = 0) = 1 − p.

Note E(dv) = (n − 1)p. Applying Chernoff’s inequality with the lower tail λ = √
4np ln n,

we have

Pr(dv − (n − 1)p < −√
4np ln n) ≤ e−(4np ln n)/(2(n−1)p) <

1

n2
.

Applying Chernoff’s inequality with the upper tail λ = √
6np ln n, we have

Pr(dv − (n − 1)p >
√

6np ln n) ≤ e−(6np ln n)/(2(n−1)p+2/3
√

6np ln n) <
1

n2 .

In the last step, we used the assumption p ≥ (8 ln n)/(3n).
The probability that there is a vertex v so that dv �∈ ((n − 1)p − √

4np ln n, (n − 1)p +√
6np ln n) is at most

n

(
1

n2 + 1

n2

)
= 2

n
. �

The co-degree dxy of a pair of vertices (x, y) is the cardinality of the common neigh-
borhood of x and y. Roughly speaking, when p 
 √

(ln n)/n, dxy follows the binomial
distribution B(n− 2, p2); when p � √

(ln n)/n it follows the Poisson distribution with mean
(n − 2)p2. We can expect that all co-degrees are concentrated around a small interval if
p = Ω(

√
(ln n)/n) and are bounded by O(ln n) if p is p = O(

√
(ln n)/n). The transition

occurs around p = O(
√

(ln n)/n). We have the following Lemma, where the constant “2” is
not significant.

LEMMA 5.4. If p ≥ 2
√

(ln n)/n, then with probability at least 1−1/n, all co-degrees
of G(n, p) fall in the range ((n − 2)p2 − √

6np2 ln n, (n − 2)p2 + √
9np2 ln n).

If p ≤ 2
√

(ln n)/n, then with probability at least 1 − 1/n, all co-degrees of G(n, p) are
at most 6 ln n.
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PROOF. For a pair of vertices x and y, the co-degree |Γ (x)∩Γ (y)| is the sum of n− 2
independent random variables X1, . . . , Xn−1 with identical distribution

Pr(Xi = 1) = p2 , Pr(Xi = 0) = 1 − p2 .

Note E(|Γ (x) ∩ Γ (y)|) = (n − 2)p2. Applying Chernoff’s inequality with the lower tail
λ = √

6np2 ln n, we have

Pr(|Γ (x) ∩ Γ (y)| − (n − 2)p2 < −
√

6np2 ln n) ≤ e−(6np2 ln n)/(2(n−2)p2) <
1

n3 .

If p ≥ 2
√

(ln n)/n, we apply Chernoff’s inequality with the upper tail λ = √
9np2 ln n.

Pr(|Γ (x) ∩ Γ (y)| − (n − 2)p2 >
√

9np2 ln n) ≤ e−(9np2 ln n)/(2(n−2)p2+2/3
√

9np2 ln n) <
1

n3 .

If p ≤ 2
√

(ln n)/n, we apply Chernoff’s inequality with the upper tail λ = 6 ln n.

Pr(|Γ (x) ∩ Γ (y)| − (n − 2)p2 > 6 ln n) ≤ e−(6 ln n)2/(2(n−2)p2+2/3·6 ln n) <
1

n3
.

Now the number of pairs is at most
(
n
2

)
< n2/2. The sum of the probabilities of small events

is at most

n2

2

(
1

n3
+ 1

n3

)
= 1

n
. �

The following lemma holds for general graphs.

LEMMA 5.5. Suppose that φ : Γ (x) \ N(y) → Γ (y) \ N(x) is an injective mapping.
Then we have

κ(x, y) ≥ 1 − 1

dy

∑
u∈Γ (x)\N(y)

d(u, φ(u)) + 1

dx

− 3(dy − dx)

dy

.

PROOF. We denote the co-degree of xy by dxy = |Γ (x)∩Γ (y)|. Let R = Γ (x)\N(y)

and r = |R|. We have r = dx − 1 − dxy . Let T = Γ (y) \ (N(x) ∪ φ(R)) and t = |T |. We
have t = dy − dx . We define a coupling A between mα

x and mα
y as follows.

A(u, v) =




(1 − α)/dy if u ∈ R and v = φ(u) ,

α − (1 − α)/dx if u = x, v = y ,

(1 − α)(1/dx − 1/dy) · 1/t if u ∈ N(x) \ {y}, v ∈ T ;
(1 − α)/dx if u = v = y ,

(1 − α)/dy if u = v = x ,

(1 − α)/dy if u = v ∈ Γ (x) ∩ Γ (y) ,

0 otherwise .

We have

W(mα
x ,mα

y ) ≤
∑
u,v

A(u, v)d(u, v)

= A(x, y) +
∑
u∈R

A(u, φ(u))d(u, φ(u)) +
∑

u∈N(x)\{y},v∈T

A(u, v)d(u, v)
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≤
(

α − 1 − α

dx

)
+ 1 − α

dy

∑
u∈R

d(u, φ(u)) + 3(1 − α)

(
1

dx

− 1

dy

)
dx .

We have

κ(x, y) = lim
α→1

1 − W(mα
x ,mα

y )

1 − α

≥ 1 − 1

dy

∑
u∈R

d(u, φ(u)) + 1

dx

− 3(dy − dx)

dy

. �

5.2. Proof of Theorem 5.1.

PROOF OF THEOREM 5.1. First let us prove items 1 and 2.
Without loss of generality, we assume dx ≤ dy . For any edge xy of G(n, p), we define a

1-Lipschitz function f over N(x) ∪ N(y) as follows.

f (v) =
{

0 if v ∈ N(y) , v �= x ,

1 otherwise .

We have

W(mα
x ,mα

y ) ≥
∑
v

f (v)(mα
x (v) − mα

y(v))

= α − 1 − α

dy

+ (1 − α)
dx − dxy − 1

dx

= 1 − (1 − α)

(
1

dy

+ dxy + 1

dx

)
.

Thus

κ(x, y) = lim
α→1

1 − W(mα
x ,mα

y )

1 − α

≤ dxy + 1

dx

+ 1

dy

.

By Lemmas 5.3 and 5.4, with probability at least 1 − 3/n, for any edge xy, we have

κ(x, y) ≤ (n − 2)p2 + √
9np2 ln n + 2

(n − 1)p − √
4np ln n

= p + O

(√
ln n

n

)
.

For the lower bound, we will construct a matching M from Γ (x) \ N(y) to Γ (y) \ N(x)

as follows. Let U0 = Γ (x) \ N(y) and V0 = Γ (y) \ N(x). Pick up a vertex u1 ∈ U0.
Reveal the neighborhood of u1 in V0. Pick a vertex in the neighborhood, and denote it by v1.
Let U1 = U0 \ {u1} and V1 = V0 \ {v1} and continue this process. The process ends when
Γ (ui+1)∩Vi = ∅. The probability that the maximum matching between U0 and V0 is at most
k is less than

k∑
i=1

(1 − p)|V0|−i <
1

p
(1 − p)|V0|−k ≤

√
n

ln n
e−p(|V0|−k) ≤ ne−p(|V0|−k) .
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Choose k = �|V0| − (3 ln n)/p�. With probability at least 1 − 1/n2, there is a Matching M of
size k between Γ (x) \ N(y) and Γ (y) \ N(x).

Now we extend the matching M to an injective mapping φ : Γ (x)\N(y) → Γ (y)\N(x)

arbitrarily. Applying Lemmas 5.3, 5.4 and 5.5, with probability at least 1 − 4/n, we have

κ(x, y) ≥ 1 − 1

dy

∑
u∈Γ (x)\N(y)

d(u, φ(u)) + 1

dx

− 3(dy − dx)

dy

≥ 1 − 1

dy

(k + 3(|V0| − k)) + 1

dx

− 3(dy − dx)

dy

≥ dxy

dy

− 2(3 ln n/p)

dy

− 3(dy − dx)

dy

≥ (n − 2)p2 − √
6np2 ln n

(n − 1)p + √
6np ln n

− 6(ln n/p)

(n − 1)p − √
4np ln n

− 6
√

6np ln n

(n − 1)p − √
4np ln n

= p − O

(√
ln n

np

)
− O

(
ln n

np2

)
.

Combining the upper bound and the lower bound, we have

κ(x, y) = p + O

(√
ln n

np

)
+ O

(
ln n

np2

)
.

If p > 3
√

(ln n)/n, we have p ≥ √
(ln n)/(np) ≥ (ln n)/(np2). Thus,

κ(x, y) = p + O

(√
ln n

np

)
.

If 3
√

(ln n)/n ≥ p, we have p ≤ √
(ln n)/(np) ≤ (ln n)/(np2). Then

κ(x, y) = O

(
ln n

np2

)
.

Next we consider the range 3
√

(ln n)/n2 � p � 1/
√

n. The upper bound comes from
the following 1-Lipschitz function f . Let

S = {u ∈ Γ (x) \ N(y) ; d(u, v) ≥ 2 for any v ∈ Γ (y) \ {x}} .

Define f over N(x) ∪ N(y) as follows.

f (v) =



2 if v ∈ S ,

1 if v ∈ N(x) \ S, v �= y ,

0 otherwise .

We have

W(mα
x ,mα

y ) ≥
∑
v

f (v)(mα
x (v) − mα

y(v))

= 2|S| (1 − α)

dx

+ α − 1 − α

dy

(1 + dxy) + (1 − α)
dx − |S| − 1

dx
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= 1 + (1 − α)

( |S| − 1

dx

− 1 + dxy

dy

)
.

Thus

κ(x, y) = lim
α→1

1 − W(mα
x ,mα

y )

1 − α

≤ −|S|
dx

+ 1

dx
+ 1 + dxy

dy
.

The value |S| can be estimated as follows. First we reveal the neighborhood of y. For any
v �∈ N(y), v ∈ S if vx is an edge and vu is not an edge for any u ∈ N(y) \ {x}. Let
Xv be the 0-1 random variable indicating whether v ∈ S. Since v is not in N(y), we have
Pr(Xv = 1) = p(1 − p)dy and Pr(Xv = 0) = 1 − p(1 − p)dy . Then |S| = ∑

v �∈N(y) Xv

is a sum of independent random variables. Apply Chernoff’s inequality (Lemma 5.2) with
λ = 2

√
(n − dy − 1)p(1 − p)dy ln n and E(|S|) = (n − dy − 1)p(1 − p)dy . With probability

at least 1 − 1/n2, we have

|S| ≥ E(|S|) − λ

= (n − dy − 1)p(1 − p)dy − 2
√
(n − dy − 1)p(1 − p)dy ln n

= np(1 − O(np2)) − O(
√

np ln n)

= np

(
1 − O(np2) − O

(√
ln n

np

))
.

In above calculation, we applied Lemma 5.3 to estimate dy . Since p ≤ 2
√

(ln n)/n, by
Lemma 5.4, with probability 1 − 1/n, dxy ≤ 6 ln n.

We have

κ(x, y) ≤ −|S|
dx

+ 1

dx

+ 1 + dxy

dy

≤ −1 + O(np2) + O

(√
ln n

np

)
.

Now we prove the lower bound. Without loss of generality, we assume dx ≤ dy . We greedily
construct an injective mapping φ from Γ (x)\N(y) to Γ (y)\N(x) so that most pairs (u, φ(u))

have distance at most 2. Let U0 = Γ (x)\N(y), V0 = Γ (y)\N(x), and W0 = V (G)\(N(x)∪
N(y)). Let m = min{|Γ (x) \ N(y)|, �dy − dxy − 1 − 4(ln n)/(np2)�}. For i = 1, 2, . . . ,m,
pick a vertex ui ∈ Ui−1, explore its neighborhood in Wi−1 and then its second neighborhood
in Vi−1. Pick a vertex vi ∈ Vi−1, which has distance 2 to ui . Define Ui = Ui−1 \ {ui},
Vi = Vi−1 \ {vi}, and Wi = Wi−1 \ Γ (ui). Map the remaining vertices (in Um) to Vm in any
1-1 way. Note np2 = o(1). We have for all 1 ≤ i ≤ m

|Wi | ≥ |Wm| > n − (m + 2)D > n − (D + 2)D = (1 − o(1))n >
2

3
n .
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Here D is the maximum degree of G(n, p). Here we use the facts D = (1 + o(1))np and
np2 = o(1).

Note that |Γ (ui)∩Wi−1| can be viewed as the sum of 0-1 independent random variables.
Let X = |Γ (ui) ∩ Wi−1|. Then E(X) = |Wi−1|p > 2np/3. Applying Chernoff inequality to
X with λ = 2

√
E(X) ln n. With probability at least 1 − 1/n2, we have

|Γ (ui) ∩ Wi−1| = X

≥ E(X) − 2
√

E(X) ln n

>
2

3
np − 2

√
np ln n

>
1

2
np .

Also note that |Vi−1| ≥ dy − dxy − 1 − m ≥ 4(ln n)/(np2). Thus, the probability that there
is no edge between Γ (ui) ∩ Wi−1 and Vi−1 is at most

(1 − p)|Γ (ui)∩Wi−1||Vi−1| ≤ e−p·(np)/2·4(ln n)/(np2) = 1

n2
.

The above argument shows that with probability at least 1 − 1/n

m = �dy − dxy − 1 − 4(ln n)/(np2)� .

Applying Lemma 5.3 and 5.5, with probability at least 1 − 4/n, we have

κ(x, y) ≥ 1 − 1

dy

∑
u∈Γ (x)\N(y)

d(u, φ(u)) + 1

dx

− 3(dy − dx)

dy

≥ 1 − 1

dy

(2m + 3(dx − dxy − 1 − m))) + 1

dx

− 3(dy − dx)

dy

= −2 + m + 3dxy + 3

dy

+ 1

dx

> −1 − dy − dxy − 1 − m

dy

≥ −1 − 4(ln n)/(np2)

(n − 1)p − √
4np ln n

= −1 − O

(
ln n

n2p3

)
+ O

(√
ln n

np

)
.

Combining the upper bound and the lower bound, we have

κ(x, y) = −1 + O(np2) + O

(√
ln n

np

)
+ O

(
ln n

n2p3

)

= −1 + O(np2) + O

(
ln n

n2p3

)
.

In the last step, we use the fact that
√

(ln n)/(np) ≤ (
np2 + (ln n)/(n2p3)

)
/2.
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Now we consider the range (ln n)/n � p � 3
√

1/n2. The lower bound is trivial since
κ(x, y) ≥ −2 holds for any x, y and any graph G.

The upper bound comes from the following 1-Lipschitz function f . Let

S = {u ∈ Γ (x) \ N(y) ; d(u, v) = 3 for any v ∈ Γ (y) \ {x}} ;
T = {v ∈ Γ (y) \ N(x) ; d(u, v) = 3 for any u ∈ Γ (x) \ {y}} .

Define f over N(x) ∪ N(y) as follows.

f (v) =




2 if v ∈ S ,

1 if v ∈ N(x) \ S ,

−1 if v ∈ T ,

0 otherwise .

We have

W(mα
x ,mα

y ) ≥
∑
v

f (v)(mα
x (v) − mα

y (v))

= 2|S| (1 − α)

dx

+ α − 1 − α

dy

+ (1 − α)
dx − |S| − 1

dx

+ |T | (1 − α)

dy

= 1 + (1 − α)

( |S| − 1

dx

+ |T | − 1

dy

)
.

Thus

κ(x, y) = lim
α→1

1 − W(mα
x ,mα

y )

1 − α

≤ −
( |S| − 1

dx

+ |T | − 1

dy

)
.

The value |S| can be estimated as follows. Explore the neighborhood of y first. Then explore
the neighborhood of Γ (y) \ {x}. Let U denote the set Γ (Γ (y) \ {x}) \ {x}. For any v �∈
U ∪ N(y), v ∈ S if vx is an edge and vu is not an edge for any u ∈ U . Let Xv be the 0-1
random variable indicating whether v ∈ S. Since v is not in U ∪ N(y), we have Pr(Xv =
1) = p(1 − p)|U | and Pr(Xv = 0) = 1 − p(1 − p)|U |. Then |S| = ∑

v �∈U∪N(y) Xv is a
sum of independent random variables. Apply Chernoff’s inequality (Lemma 5.2) with λ =
2
√
(n − dy − |U |)p(1 − p)|U | ln n and E(|S|) = (n− dy −|U |)p(1 −p)|U |. Also note |U | ≤

(dy − 1)D ≤ D2 ≤ (1 + o(1))n2p2. Thus with probability at least 1 − O(1/n2), we have

|S| ≥ E(|S|) − λ

= (n − dy − |U |)p(1 − p)|U | − 2
√
(n − dy − |U |)p(1 − p)|U | ln n

= np(1 − O(n2p3)) − O(
√

np ln n)

= np

(
1 − O(n2p3) − O

(√
ln n

np

))
.



626 Y. LIN, L. LU AND S.-T. YAU

Here we applied Lemma 5.3 for the estimation of dy . By symmetry, with probability at least
1 − O(1/n2), we have

|T | ≥ np

(
1 − O(n2p3) − O

(√
ln n

np

))
.

We have

κ(x, y) ≤ −|S| − 1

dx

− |T | − 1

dy

≤ −2
np

(
1 − O(n2p3) − O(

√
(ln n)/(np))

) − 1

(n − 1)p + √
6np ln n

≤ −2 + O(n2p3) + O

(√
ln n

np

)
.

�

REMARK. For p = c/
√

n, the curvature drops quickly from 0 to −1 as c decreases.
For p = c/n2/3, the curvature drops quickly from −1 to −2 as c decreases. For the range that
p < (c ln n)/n, the degrees are not asymptotically regular. For most edge xy, xy is not in any
small cycles C3, C4 or C5. We have κ(x, y) = −2 + 2/dx + 2/dy .
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