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Abstract. We give a complete analysis of the spectrum of the unique self-adjoint ex-
tension of the sub-Laplacian on the one-dimensional Heisenberg group.

1. The sub-Laplacian on the Heisenberg group. If we identify R2 with the complex
plane C via the obvious identification

R2 � (x, y) ↔ z = x + iy ∈ C ,

and we let

H = C × R ,

then H becomes a noncommutative group when it is equipped with the multiplication · given
by

(z, t) · (w, s) =
(

z + w, t + s + 1

4
[z,w]

)
, (z, t), (w, s) ∈ H ,

where [z,w] is the symplectic form of z and w defined by

[z,w] = 2 Im(zw) .

In fact, H is a unimodular Lie group on which the Haar measure is just the ordinary Lebesgue
measure dz dt .

Let h be the Lie algebra of all left-invariant vector fields on H . Then a basis for h is
given by X, Y and T , where

X = ∂

∂x
+ 1

2
y

∂

∂t
,

Y = ∂

∂y
− 1

2
x

∂

∂t
,

and

T = ∂

∂t
.
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The sub-Laplacian L on H is then defined by

L = −(X2 + Y 2) .

Let ∂/∂z and ∂/∂z be partial differential operators on C defined by

∂

∂z
= ∂

∂x
− i

∂

∂y

and
∂

∂z
= ∂

∂x
+ i

∂

∂y
.

Then we look at the vector fields Z and Z on H given by

Z = X − iY = ∂

∂z
+ 1

2
iz

∂

∂t

and

Z = X + iY = ∂

∂z
− 1

2
iz

∂

∂t
.

Z is the celebrated Hans Lewy operator in [9] that defies local solvability on R3, and

L = −1

2
(ZZ + ZZ).

A simple computation gives

L = −� − 1

4
(x2 + y2)

∂2

∂t2 +
(

x
∂

∂y
− y

∂

∂x

)
∂

∂t
,

where

� = ∂2

∂x2 + ∂2

∂y2 .

The symbol σ(L) of L is then given by

σ(L)(x, y, t ; ξ, η, τ ) =
(

ξ + 1

2
yτ

)2

+
(

η − 1

2
xτ

)2

for all (x, y, t) and (ξ, η, τ ) in H . It is then easy to see that L is nowhere elliptic on R3. Since

[X,Y ] = T ,

it follows from a theorem of Hörmander [8, Theorem 1.1] that L is hypoelliptic.
The aim of this paper is to compute the spectrum of the unique positive and self-adjoint

extensionL0 of the sub-Laplacian L as an unbounded linear operator from L2(H ) into L2(H )

with dense domain given by the Schwartz space S(H ). This is carried out by using the spectral
analysis of the twisted Laplacians obtained by taking the inverse Fourier transform of the sub-
Laplacian with respect to the center, i.e., the time t of the Heisenberg group.

We recall in Section 2 the twisted Laplacians and their spectral analysis. The essential
self-adjointness of L as an unbounded linear operator from L2(H ) int L2(H ) with dense
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domain S(H ) is recalled in Section 3. The spectrum of the unique self-adjoint extension L0

of L is then computed in Section 4.
The results in this paper are valid for the sub-Laplacian on the n-dimensional Heisen-

berg group H n, n > 1, in which the underlying space is Cn × R, but we have chosen to
present the results for the one-dimensional Heisenberg group H for the sake of simplicity and
transparency.

2. The twisted Laplacians. For τ ∈ R \ {0}, let Zτ and Zτ be partial differential
operators given by

Zτ = ∂

∂z
+ 1

2
τz,

and

Zτ = ∂

∂z
− 1

2
τz .

Then we are interested in the twisted Laplacian Lτ defined by

Lτ = −1

2
(ZτZτ + ZτZτ ).

More explicitly,

Lτ = −� + 1

4
(x2 + y2)τ 2 − i

(
x

∂

∂y
− y

∂

∂x

)
τ .

The fundamental connection between the sub-Laplacian and the twisted Laplacians is
given by the following theorem [1, 3, 4].

THEOREM 2.1. Let u ∈ S ′(H ) ∩ C∞(H ) be such that ǔ(z, τ ) is a tempered distribu-
tion of τ on R for each z in C, where ǔ is the inverse Fourier transform of u with respect to
time t . Then for almost all τ in R \ {0},

(Lu)τ = Lτu
τ ,

where

(Lu)τ (z) = (Lu)∨(z, τ ) , z ∈ C ,

and

uτ (z) = ǔ(z, τ ) , z ∈ C .

REMARK 2.2. We note that the Fourier transform f̂ of a function f in L1(R) is taken
to be the one defined by

f̂ (ξ) = (2π)−1/2
∫ ∞

−∞
e−ixξf (x) dx , ξ ∈ R.
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In order to study the spectral theory of Lτ , we first introduce the τ -Fourier-Wigner trans-
form Vτ (f, g) of the functions f and g in the Schwartz space S(R) by

Vτ (f, g)(q, p) = (2π)−1/2|τ |1/2
∫ ∞

−∞
eiτqyf

(
y + p

2

)
g
(

y − p

2

)
dy

for all q and p in R. If τ = 1, then we get

V1(f, g) = V (f, g) ,

which is the classical Fourier-Wigner transform in, for instance, [6, 13, 16]. It can be shown
easily that

Vτ (f, g)(q, p) = |τ |1/2V (f, g)(τq, p) .

For τ ∈ R \ {0} and k = 0, 1, 2, . . . , we define the function ek,τ on R by

ek,τ (x) = |τ |1/4ek(
√|τ |x), x ∈ R,

where ek is the Hermite function given by

ek(x) = 1

(2kk!√π)1/2
e−x2/2Hk(x) , x ∈ R ,

and

Hk(x) = (−1)kex2
(

d

dx

)k

(e−x2
) , x ∈ R .

For j, k = 0, 1, 2, . . . , we define the function ej,k,τ on C by

ej,k,τ = Vτ (ej,τ , ek,τ ) ,

and an easy computation gives

ej,k,1 = V1(ej,1, ek,1) = V (ej , ek) ,

where V (ej , ek) is the classical Hermite function on C studied in [16].
The following result is an analog of [16, Proposition 21.1].

PROPOSITION 2.3. The set {ej,k,τ ; j, k = 0, 1, 2, . . . } is an orthonormal basis for
L2(C).

The following theorem gives a complete spectral analysis of Lτ , τ ∈ R \ {0}.
THEOREM 2.4. For j, k = 0, 1, 2, . . . ,

Lτ ej,k,τ = (2k + 1)|τ |ej,k,τ .

A proof of Theorem 2.4 can be modeled on the proof of [16, Theorem 22.2].
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3. Essential self-adjointness. In this section we look at the sub-Laplacian L as an
unbounded linear operator from L2(H ) into L2(H ) with dense domain given by S(H ).

PROPOSITION 3.1. L is a symmetric operator from L2(H ) into L2(H ) with dense
domain S(H ). In fact, it is positive.

The proof follows from a simple integration by parts and is hence omitted. So, the sub-
Laplacian L is closable and we denote its closure by L0. Thus, L0 is a closed, symmetric
and positive operator from L2(H ) into L2(H ). In fact, from the work [10] of Masamune, L
is essentially self-adjoint in the sense that it has a unique self-adjoint extension, which is the
same as L0. Details on essential self-adjointness can be found in [11, Theorem X.23].

4. The spectrum. Let A be a closed linear operator from a complex Banach space X

into X with dense domain D(A). Then the resolvent set ρ(A) of A is defined to be the set of
all complex numbers λ for which A − λI : D(A) → X is bijective, where I is the identity
operator on X. The spectrum Σ(A) is simply the complement of ρ(A) in C.

Following Yosida [17], the point spectrum Σp(A) of A is the set of all complex numbers
λ such that A − λI is not injective. The continuous spectrum Σc(A) of A is the set of all
complex numbers λ such that the range R(A − λI) of A − λI is dense in X, (A − λI)−1

exists, but is unbounded. The residual spectrum Σr(A) of A is the set of all complex numbers
λ such that (A − λI)−1 is bounded, but the range R(A − λI) is not dense in X. It is easy to
see that Σp(A), Σc(A) and Σr(A) are mutually disjoint and

Σ(A) = Σp(A) ∪ Σc(A) ∪ Σr(A) .

Moreover, it is well-known that if A is a self-adjoint operator on a complex and separable
Hilbert space X, then

Σr(A) = ∅ .

The precise description of the spectrum of the sub-Laplacian on the Heisenberg group is
given by the following theorem.

THEOREM 4.1. Σ(L0) = Σc(L0) = [0,∞).

PROOF. We first prove that L0 has no eigenvalues in [0,∞). We know from the paper
[4] that 0 is not an eigenvalue of L0. Now, let λ be a positive number such that there exists a
function u in L2(H ) for which

L0u = λu .

Then

Lτu
τ = λuτ .

But this implies that uτ = 0 for all τ in R \ {0} with

|τ | �= λ/(2k + 1) , k = 0, 1, 2, . . . .
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This proves that u = 0 and hence we get a contradiction. Since L0 is self-adjoint, it follows
that

Σ(L0) = Σc(L0) .

So, it remains to prove that L0 −λI is not surjective for all λ in [0,∞). Suppose that L0 −λ0I

is surjective for some λ0 in [0,∞). Then λ0 is in the resolvent set ρ(L0) of L0. Hence there
exists an open interval Iλ0 such that λ0 ∈ Iλ0 and Iλ0 ⊂ ρ(L0). Let f be the function on H

defined by

f (x, y, t) = h(x, y)e−t2/2 , x, y, t ∈ R ,

where h is an arbitrary function in L2(R2). Then for all λ in Iλ0 , we can find a function uλ in
L2(H ) such that

(L0 − λI)uλ = f .

Taking the inverse Fourier transform with respect to t , we get

(Lτ − λI)uτ
λ = he−τ 2/2

for almost all τ in R\{0}. So, Lτ −λI is surjective for all τ in a set Sλ for which the Lebesgue
measure m(R \ Sλ) of R \ Sλ is zero. Now, let τ ∈ ⋂

r∈Iλ0∩Q Sr , where Q is the set of all
rational numbers. Then Lτ − λI is surjective and hence injective for all λ in Iλ0 ∩ Q. Hence
Lτ − λI is bijective for all λ in Iλ0 by the fact that the resolvent set of Lτ is an open set. On
the other hand, Lτ − λI is one to one if and only if

λ �= (2k + 1)|τ | , k = 0, 1, 2, . . . .

This is a contradiction if we choose τ in
⋂

r∈Iλ0
Sr to be a sufficiently small number such that

(2k + 1)|τ | ∈ Iλ0 for some nonnegative integer k. �

As an application of Theorem 4.1, we first give the various essential spectra that are
useful to us. Let A be a closed linear operator densely defined on a complex Banach space
X. The essential spectrum ΣDS(A) of A due to Dunford and Schwartz [5] is the set of all
complex numbers λ such that R(A − λI) is not closed in X. Now, let ΦW(A) be the set of
all complex numbers λ such that A − λI is Fredholm and let ΦS(A) be the set of all complex
numbers λ such that A−λI is Fredholm with zero index. Then the essential spectrum ΣW(A)

and the essential spectrum ΣS(A) of A due to, respectively, Wolf [14, 15] and Schechter [12]
are defined by

ΣW(A) = C \ ΦW (A)

and

ΣS(A) = C \ ΦS(A) .

It is obvious that

ΣDS(A) ⊆ ΣW (A) ⊆ ΣS(A) .
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In the situation of the sub-Laplacian on the Heisenberg group, we have the following
result.

THEOREM 4.2. The equalities

ΣDS(L0) = ΣW(L0) = ΣS(L0) = [0,∞)

hold.

PROOF. It is enough to prove that

[0,∞) ⊆ ΣDS(L0) .

Suppose that λ ∈ [0,∞) is not in ΣDS(L0). Then the range R(L0 − λI) of L0 − λI is closed
in L2(H ). By Theorem 4.2, λ ∈ Σc(L0) and hence R(L0 −λI) is dense in L2(H ). Therefore
L0 − λI is bijective, i.e., λ ∈ ρ(L0). This is a contradiction. �

REMARK 4.3. The technique in this paper can be used to compute the spectrum of the
unique self-adjoint extension �H ,0 of the Laplacian �H on the Heisenberg group H given
by

�H = −(X2 + Y 2 + T 2) .

In fact,

Σ(�H ,0) = Σc(�H ,0) = [0,∞) ,

which is a result in [7], and furthermore,

ΣDS(�H ,0) = ΣW (�H ,0) = ΣS(�H ,0) = [0,∞) .
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