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Abstract. The Oda’s Strong Factorization Conjecture states that a proper birational
map between smooth toric varieties can be decomposed as a sequence of smooth toric blowups
followed by a sequence of smooth toric blowdowns. This article describes an algorithm that
conjecturally constructs such a decomposition. Several reductions and simplifications of the
algorithm are presented and some special cases of the conjecture are proved.

1. Introduction. The general strong factorization problem asks if a proper birational
map between nonsingular varieties (in characteristic zero) can be factored into a sequence
of blowups with nonsingular centers followed by a sequence of inverses of such maps. Oda
[5] posed the same problem for toric varieties and toric birational maps. Since toric varieties
are defined by combinatorial data, the conjecture for toric varieties also takes a combinatorial
form.

A nonsingular toric variety is determined by a nonsingular fan and a smooth toric blowup
corresponds to a smooth star subdivision of the fan. The conjecture then is:

CONJECTURE 1.1 (Oda). Given two nonsingular fans ∆1 and ∆2 with the same sup-
port, there exists a third fan ∆3 that can be reached from both ∆1 and ∆2 by sequences of
smooth star subdivisions.

As the terminology suggests, there also exists a weak version of the factorization problem
in which blowups and blowdowns are allowed in any order. This weak conjecture is known to
hold for toric varieties [7, 4, 2] and also for general varieties in characteristic zero [9, 1]. The
strong factorization conjecture is open in all cases in dimension 3 or higher.

In this article we study a simple algorithm that is conjectured to construct the strong
factorization for toric varieties. The problem is that the algorithm may run into an infinite
loop and never finish. However, computer experiments and proofs of several special cases
suggest that the algorithm is always finite and solves Conjecture 1.1.

To construct a strong factorization between two fans, we start with a weak factorization
that is known to exist. In other words, we assume that we can get from one fan to the other
by a sequence of smooth star subdivisions and smooth star assemblies (the inverses of star
subdivisions). The goal is to “commute” star assemblies and star subdivisions to have all
assemblies after the subdivisions. The algorithm takes one star assembly followed by one star
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FIGURE 1. Algorithms A and B.

subdivision and replaces the pair with a sequence of star subdivisions followed by a sequence
of star assemblies. This step is repeated until all star subdivisions precede the star assemblies.

Let us consider 3-dimensional nonsingular fans. We draw such a fan as a cross sec-
tion, which is a 2-dimensional simplicial complex. We may assume that all maximal cones
have dimension 3 and that all star subdivisions have their subdivision rays in the middle of
2-dimensional cones. In coordinates, a cone generated by v1, v2, v3 is divided by a star sub-
division into two cones generated by v1 + v2, v2, v3 and v1, v1 + v2, v3; the ray generated by
v1 + v2 is called the subdivision ray.

Now given two star subdivisions of one fan, we need to construct a common refinement
by further star subdividing the two new fans. Figure 1 shows two ways of doing this, de-
noted by A and B. In this figure, the fan we start with consists of a single cone generated by
v1, v2, v3. The two subdivisions have subdivision rays generated by v1 +v2 and v1 +v3. Both
factorizations A and B replace the assembly-subdivision pair by two subdivisions followed
by two assemblies. (We read the sequence of maps from left to right, starting from the fan ∆1

and ending with ∆2.)
Figure 1 describes two factorization algorithms A and B completely. If we have, instead

of a single cone as in the picture, a global fan and its two star subdivisions, then the subdivi-
sions commute if the subdivision rays do not lie in one cone. If the subdivision rays do lie in
the same cone, then Figure 1 tells us how to factor the diagram. (If the cone containing the
two subdivision rays lies in a bigger fan, the star subdivisions shown in Figure 1 can clearly
be extended to star subdivisons of the bigger fan.)

Figure 2(a) shows algorithm A applied to factor two star assemblies and one star sub-
division (the lower edge of the diagram) into four star subdivisions followed by five star
assemblies (the top of the diagram).

Figure 2(b) shows the first two steps of applying algorithm B to a sequence of two star
assemblies followed by one star subdivision. One can see that after replacing the original cone
with the shaded one in the figure, we are back to the situation we started with. It follows that
algorithm B applied to the two star assemblies and one star subdivision in Figure 2(b) will run
into a cycle and never finish. However, we have not found any such infinite loops in the case
of algorithm A. Therefore we can state:
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FIGURE 2. Examples of factorization using (a) algorithm A and (b) algorithm B.

CONJECTURE 1.2. Algorithm A is always finite.

When constructing examples of factorizations using algorithm A, the most complicated
ones are similar to the one in Figure 2(a). We take two sequences of star subdivisions of a
single cone generated by v1, v2, v3. On one side we star subdivide at the rays generated by
v1 + v2, 2v1 + v2, . . . , mv1 + v2, and on the other side we subdivide at the rays generated by
v1 + v3, 2v1 + v3, . . . , nv1 + v3. The example in Figure 2(a) shows the case when m = 2
and n = 1. When both m = n = 10, the number of star subdivisions in the diagram will be
in the thousands. When m = n = 40, the number of star subdivisions needed will be in the
hundreds of thousands.

One of the main results we prove is that algorithm A is finite on the diagrams with m star
assemblies and n star subdivisions as described above. We give a precise pattern for the cones
appearing in the common refinement. On other types of diagrams the factorization algorithm
may be shorter, but we can not say anything about the regularity or patterns that may occur.
As a result we cannot prove finiteness in general.

To study algorithm A, we reduce it to the local case and prove that finiteness of the
local algorithm implies finiteness of the global one. The local algorithm is more algebraic. It
can be applied to sequences of symbols instead of drawing pictures, and it can also be easily
implemented on a computer.

We will work only with fans in dimension 3. The algorithm, however, also applies to fans
in dimension greater than 3. In higher dimensions we can again assume that all subdivision
rays lie in 2-dimensional cones. Then two star subdivisions commute unless their subdivision
rays lie in the same 3-dimensional cone. In the latter case we can apply the algorithm as in
the 3-dimensional case. Everything we say below for 3-dimensional fans is also true, with
minimal modifications, for higher dimensinal fans.

Acknowledgements. The two algorithms discussed in this article are certainly not new and have
been studied by many people. The second author would especially like to thank Dan Abramovich, Kenji
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Matsuki and Jaroslaw Włodarczyk for fruitful discussion regarding these algorithms and their possible
extensions to non-toric situations.

2. The local algorithm.
2.1. Fans and star subdivisions. We refer to [3, 6] for background material about

fans and toric varieties.
We only consider 3-dimensional fans in R3 where all maximal cones have dimension 3.

A nonsingular cone σ = 〈v1, v2, v3〉 is generated by a basis v1, v2, v3 of the lattice Z3 ⊂ R3.
A nonsingular fan has all its maximal cones nonsingular. A star subdivision of a nonsingular
fan is called smooth if the resulting fan is again nonsingular. The inverse of a smooth star
subdivision is called a smooth star assembly.

There are two types of star subdivisions of 3-dimensional fans – the subdivision ray
can be in the interior of a 3-dimensional cone, or in a 2-dimensional cone. We can always
replace the first type of star subdivision by a sequence of star subdivisions and assemblies of
the second type (see Figure 3). A smooth star subdivision of a cone σ = 〈v1, v2, v3〉 of the
second type has its subdivision ray generated by vi + vj for i �= j .

2.2. The global algorithm. Recall from the introduction that we start with a sequence
of nonsingular fans, connected by smooth star subdivisions. We may assume that all subdi-
vision rays lie in 2-dimensional cones. This property is preserved after applying one step of
algorithm A, hence we will only consider star subdivisions and assemblies of this type. The
algorithm terminates if all star subdivisions precede star assemblies; in other words, when we
have a strong factorization.

At each step of the algorithm there may be many choices of pairs of a star assembly
followed by a star subdivision that we wish to commute. To make the algorithm not depend
on any choices, we need to fix one ordering of such pairs, for example we can insist that
always the leftmost pair is commuted. However, finiteness of the algorithm or its end result
(in case it is finite) does not depend on the chosen order.

It is also clear that the algorithm is finite if it is finite when applied to a sequence of star
assemblies followed by a sequence of star subdivisions (or just one star subdivision). Thus we
may consider a single fan ∆ and two sequences of smooth star subdivisions of this fan. If the

FIGURE 3. Replacing one star subdivision by a sequence of subdivi-
sions and assemblies.
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algorithm is finite, it will produce extensions of these two sequences resulting in a common
refinement.

2.3. Localization. To localize the algorithm, we replace a fan by a single cone and a
star subdivision by a subdivision of the cone together with a choice of a cone in the subdivided
fan. When drawing pictures of local subdivisions, we indicate the chosen cone by shading it.

Now given two local subdivisions of the same cone, we can use the global algorithm
to construct a local factorization. Figure 4 shows an example of such a local factorization.
Notice that the factorization of the two initial local subdivisions in this example is unique:
there is a unique choice of cone for each subdivision provided by algorithm A.

Figure 5 shows two different local factorizations of one pair of initial local subdivisions.
In this case, algorithm A provides two choices of local factorizations. When factoring a se-
quence that is longer than two star subdivisions, at each step of applying algorithm A we
have one or two choices of local factorization. As a result, we get in general many local
factorizations of one initial sequence.

FIGURE 4. Local factorization using algorithm A.

FIGURE 5. Two local factorizations of the same initial sequence.
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A local star subdivision can be represented by a matrix as follows. Consider a cone
〈v1, v2, v3〉 and its local star subdivision resulting in the new cone 〈v1, v1 + v2, v3〉. Let M

be the 3 × 3 matrix with columns v1, v2, v3 and N the matrix with columns 〈v1, v1 + v2, v3〉.
Then

N = ME12 ,

where E12 is an elementary matrix that differs from the identity matrix by the entry 1 at
position (1, 2). In the same way all 6 possible local subdivisions of the cone 〈v1, v2, v3〉 can
be represented by elementary matrices Eij for i, j ∈ {1, 2, 3}, i �= j . Star assemblies are
represented by inverses E−1

ij of these elementary matrices.
To understand the local factorization algorithm in terms of matrices, consider Figure 6

where we have labeled the local star subdivisions by elementary matrices. The factorization
replaces the bottom of the diagram, which we read from left to right as E−1

12 E31, with the top
of the diagram E31E32E

−1
12 . We denote this replacement as:

E−1
12 E31 ⇒ E31E32E

−1
12 .

(One can recognize this as an actual equality between products of elementary matrices, but
we use the symbol ⇒ to indicate the direction in which the replacement is done.)

The local factorization algorithm can now be described as follows. We start with a se-
quence of elementary matrices and their inverses. At each step, we look for a pair E−1

ij Ekl

in the sequence, and the algorithm tells us how to commute these matrices, possibly inserting
new elementary matrices. The algorithm is finished when all elementary matrices lie to the
left of the inverses.

One problem with the local factorization algorithm that we haven’t discussed is that the
matrix representation M of a cone 〈v1, v2, v3〉 depends on the ordering of the generators.
However, if we choose one ordering of generators, then we automatically get an ordering of
generators after one local star subdivision and hence the elementary matrix that represents

FIGURE 6. Local factorization represented by matrices.
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FIGURE 7. Ordering of generators in a factorization diagram.

this subdivision. Now the question is, if we have two sequences of local star subdivisions
starting and ending with the same cone, do the orderings induced from both sequences agree
at the final cone? The answer is “no” in general. Figure 7 shows a local factorization step
prescribed by algorithm A, where there is no consistent ordering of generators in all cones.
The two orderings of generators in the top cone are cyclic permutations of each other. We
write this factorization as:

E−1
12 E13 ⇒ E31E23R321E

−1
32 E−1

21 .

Here R321 is a permutation matrix that represents the cyclic permutation of generators.

(1) E−1
ij Eji ⇒ stop.

(2) E−1
ij Eij ⇒ 1.

(3) E−1
ij Ekj ⇒ EkjE

−1
ij .

(4) E−1
ij Ejk ⇒ EjkE

−1
ik E−1

ij .

(5) E−1
ij Eki ⇒ EkiEkjE

−1
ij .

(6a) E−1
ij Eik ⇒ EikE

−1
ij

(6b) E−1
ij Eik ⇒ EkiEjkRkjiE

−1
kj E−1

ji .

(7) RkjiE
±1
lm ⇒ E±1

r(l)r(m)Rkji , r : i �→ j �→ k �→ i.

FIGURE 8. Rules for local algorithm A.

Figure 8 lists the commutation rules for the local algorithm A in terms of elementary
matrices. These rules apply for {i, j, k} = {1, 2, 3}. Rule (1) tells us that there is no local
factorization and we have to stop the algorithm. The matrices Eij and Eji appearing in rule
(1) describe the same global subdivision but with different choices of cones. Rule (2) tells us
to cancel Eij with its inverse. Rules (3) through (6) can be read off from the global diagram of
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algorithm A in Figure 1. Each of these rules corresponds to one cone in the final refinement.
Rule (6) gives us a choice between two different factorizations; the two factorizations are
shown in Figure 5. Rule (6b) is the only one where there is no consistent labeling of the
generators and we need to use the permutation matrix Rkji . Rule (7) shows how to commute
the permutation matrix with the elementary matrices.

As explained above, we start with a sequence of elementary matrices and their inverses.
The goal is to apply the commutation rules to get all elementary matrices to the left of the
inverses of such matrices. We do not care about the location of the permutation matrices Rijk ;
they can be moved to the right or to the left as desired. An example of applying the algorithm
is:

E−1
12 E−1

12 E13
(6b)	⇒ E−1

12 E31E23R321E
−1
32 E−1

21

(5)	⇒ E31E32E
−1
12 E23R321E

−1
32 E−1

21

(4)	⇒ E31E32E23E
−1
13 E−1

12 R321E
−1
32 E−1

21 .

At each step we have underlined the pair to which the rule is applied and the rule number is
shown on the arrow. Note that at the first step we chose to apply rule (6b). If at the first step
we apply rule (6a), then at the next step we would again have a choice between rules (6a) and
(6b). This gives a total of three different factorizations of the initial sequence.

As in the global algorithm, there is a choice of the order in which we apply these rules.
Since we want to compare the local and the global algorithms, we have to use the same order
in both algorithms. For example, we can always apply the rule at the leftmost place. In the
local case, when applying rule (6) there is also a choice between (6a) and (6b). Below, when
talking about different choices in applying the local algorithm, we always mean the choice
between (6a) and (6b); we assume that the order of applying the rules has been fixed.

CONJECTURE 2.1. The local algorithm A is finite: starting with any sequence of ele-
mentary matrices and their inverses, the rules can be applied only a finite number of times for
any choices between rules (6a) and (6b) that may occur.

Note that the factorization algorithm ends whenever we apply rule (1), or if there are no
more places to apply the rules and we have a local strong factorization.

The main result we prove in this section is:

PROPOSITION 2.2. Conjecture 2.1 implies Conjecture 1.1.

PROOF. Let S be a finite sequence of global star subdivisions and star assemblies. In
other words, S is a sequence of fans, each one obtained from the previous one by one star sub-
division or one star assembly. A local subsequence T of S is a choice of a cone in each fan of
S such that each cone in the sequence is either equal to the previous cone, or is obtained from
the previous cone by a local star subdivision or a local star assembly. A local subsequence
gives a sequence of local star subdivisions and star assemblies.
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A global sequence S has many local subsequences. In fact, if we choose any cone in the
first fan in the sequence S, we can extend this choice to a local subsequence T . Similarly, if we
choose a cone in one fan in the sequence S, we can extend this choice to a local subsequence,
going in both directions.

Now suppose S1 and S2 are two global sequences and S2 is obtained from S1 by applying
one step of the factorization algorithm. The two sequences can be put into a diagram of the
same type as in Figure 2. If T1 is a local subsequence of S1, we seek to extend it to a local
subsequence T2 of S2. By this we mean a choice of cones for each fan of S2 that agrees with
the choice T1 on the fans that are the same in both sequences S1 and S2. If such an extension
T2 exists, then as sequences of local star subdivisions and assemblies, T2 is either equal to
T1 or T2 is obtained from T1 by one step of the local factorization algorithm. The extension
of T1 to T2 may not always exist. However, suppose that instead of T1 we are given a local
subsequence T2 of S2, then there is always a unique extension of this subsequence to a local
subsequence T1 of S1. The reason for this is as follows. When we star subdivide a cone, we
have a choice of two cones to turn it into a local star subdivision; but if we star-assemble a
cone, there is no choice at all, and it is automatically a local star assembly. If T1 is the unique
extension of T2, then as sequences of local star subdivisions and assemblies, T2 is either equal
to T1 or is obtained from it by one step of the local algorithm.

Suppose we have a global sequence of star subdivisions and assemblies S1 on which the
algorithm is infinite. Applying the algorithm step-by-step, we construct new sequences S2, S3,
. . . . Let us also construct a graph with vertices Si and edges going from Si to Si+1, indicating
that Si+1 is obtained from Si by one step of the algorithm. Next we construct a graph of local
subdivisions. The vertices are all local subsequences Ti of Si for i ≥ 1 and there is an edge
from Ti to Ti+1 if Ti is a local subsequence of Si and Ti+1 is an extension of this to a local
subsequence of Si+1. By the discussion above, this graph of local subsequences is a set of
trees (a forest) with roots the local subsequences of S1. Since there are infinitely many Si , at
least one of the trees of local subsequences must contain an infinitely long path. We claim that
one of such infinitely long paths then corresponds to an infinite number of local factorization
steps applied to a local subsequence of S1, implying that the local factorization algorithm is
not finite.

The problem with the claim above is that, in the graph of trees, some edges correspond to
the identity transformation. It is conceivable that, in all infinite paths, all edges are eventually
identities. Since the trees have finite valence, this means that for some N > 0 all edges that
have distance at least N from the roots are identities. To get a contradiction, we can find in
some fan in SM for large M a cone that is very “small” in the sense that it takes more than N

local subdivisions to reach this cone from any cone in a fan in S1. We extend this choice of a
cone to a local subsequence TM of SM . By construction, this TM can be reached from a root
by more than N non-identity edges, which is a contradiction. �

The proof of the previous proposition also applies to algorithm B of the introduction and
its corresponding local version. Since we know that the global algorithm B is not finite, the
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same must be true for the local algorithm. Figure 9 lists the rules for the local algorithm B. The
rules are similar to the rules of algorithm A. In rule (6) we again have a choice between (6a)

and (6b). In this algorithm, there is no need for the permutation matrix. A local factorization
corresponding to Figure 2(b) is:

E−1
13 E−1

12 E13
(6b)	⇒ E−1

13 E32E13E
−1
32

(4)	⇒ E32E
−1
13 E−1

12 E13E
−1
32 .

The middle three matrices in the last sequence are the same as in the original sequence, hence
this algorithm can be repeated cyclically.

(1) E−1
ij Eji ⇒ stop.

(2) E−1
ij Eij ⇒ 1.

(3) E−1
ij Ekj ⇒ EkjE

−1
ij .

(4) E−1
ij Ejk ⇒ EjkE

−1
ij E−1

ik .

(5) E−1
ij Eki ⇒ EkjEkiE

−1
ij .

(6a) E−1
ij Eik ⇒ EjkE

−1
ij E−1

jk .

(6b) E−1
ij Eik ⇒ EkjEikE

−1
kj .

FIGURE 9. Rules for local algorithm B.

The local rules for the two algorithms are also valid in dimension n > 3. We need to
assume that {i, j, k} forms a 3-element subset of {1, 2, . . . , n}, and we need one additional
rule

E−1
ij Ekl ⇒ EklE

−1
ij ,

where i, j, k, l are distinct.

3. Finiteness results. We prove finiteness of algorithm A in some cases. The term
“algorithm” always refers to algorithm A. We denote by S, T , . . . sequences of elementary
matrices with positive powers. We also assume everywhere that {i, j, k} = {1, 2, 3}.

3.1. Directed sequences. We call a sequence S directed toward i (or simply directed)
if it consists of elementary matrices Eij and Eik . Thus, a directed sequence has the form

S = E
m1
ij E

n1
ik E

m2
ij · · ·Enl

ik .

Our main goal in this section is to prove that if S and T are both directed, not necessarily
toward the same i, then the local algorithm is finite on S−1T .

Let us first add an extra rule to the algorithm that is useful when factoring directed se-
quences. The rule

(8) EijEik ⇒ EikEij .
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allows us to commute Eij with Eik . We claim that rule (8) “commutes” with the factorization
algorithm in the following sense. Suppose U is a sequence of elementary matrices and their
inverses and V is obtained from U by applying the rule (8) once. Then, if all factorizations
of U are finite, then all factorizations of V are also finite. Moreover, the finite factorizations
of U are in one-to-one correspondence with finite factorizations of V , and the latter ones are
obtained from the former ones by at most one application of rule (8). To prove this claim, it
suffices to compare factorizations of E−1

αβ EijEik with factorizations of E−1
αβ EikEij for differ-

ent indices α, β. We do here two cases and leave the remaining 4 cases to the reader. First, let
Eαβ = Ejk . Then

E−1
jk EijEik ⇒ EijEikE

−1
jk Eik⇒ EijEikEikE

−1
jk ,

E−1
jk EikEij ⇒ EikE

−1
jk Eij ⇒ EikEijEikE

−1
jk .

Clearly the two factorizations differ by one application of rule (8). Next, let Eαβ = Eij . Then

E−1
ij EijEik ⇒ Eik ,

E−1
ij EikEij

(6a)	⇒ EikE
−1
ij Eij⇒ Eik .

Here the two factorizations are the same. Note that we chose rule (6a) in the first step of the
second factorization because rule (6b) would be followed by an application of rule (1) and
that would not produce a factorization.

Using rule (8) we can write a directed sequence as

S = Em
ij En

ik .

Since rule (8) is symmetric with respect to j and k, it can be applied infinitely many times by
switching the two matrices back and forth. In practice, when we factor two directed sequences
S−1T , we apply rule (8) at the beginning of the algorithm to bring both S and T to the form
above, and then run the algorithm without rule (8). Finiteness of the algorithm on the special
S and T then implies finiteness of the algorithm on the original S and T .

PROPOSITION 3.1. Let S be a sequence directed toward i and T a sequence directed
toward j , where i �= j . Then S−1T has at most one factorization, which is of the form T1S

−1
1 ,

where S1 is directed toward i and T1 is directed toward j .

PROOF. Let

S = Em
ij En

ik ,

T = E
p
jiE

q
jk .

Then S−1T factors as

S−1T = E−n
ik E−m

ij E
p

jiE
q

jk ⇒




E
p

jiE
q+np

jk E−n
ik if m = 0

E
q
jkE

−n−mq
ik E−m

ij if p = 0

stop if m �= 0, p �= 0 . �
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Now consider the case where S and T are both directed toward i:

S = Em
ij En

ik ,

T = E
p
ijE

q
ik .

To factor S−1T , we can first use rule (8) and rule (2) to cancel elementary matrices with their
inverses. Depending on the values of m,n, p, q , this brings us to the following 4 cases:

S−1T ⇒




Ea
ijE

b
ik

E−a
ij E−b

ik

E−a
ij Eb

ik

E−a
ik Eb

ij

for some a, b ≥ 0. In the first two cases there is nothing more to do. In the last two cases, if
we only use rule (6a), we can factor:

E−a
ij Eb

ik ⇒ Eb
ikE

−a
ij

E−a
ik Eb

ij ⇒ Eb
ijE

−a
ik .

From this we get the following proposition.

PROPOSITION 3.2. Let S and T be two sequences directed toward i. If we do not use
rule (6b), then S−1T has a unique factorization T S−1.

�
COROLLARY 3.3. When rule (6b) is removed from the local algorithm A, then the

algorithm is finite.

PROOF. It suffices to prove finiteness of S−1T , where S consists of one elementary
matrix, or more generally, where S is directed. Divide T into directed sequences T =
T1T2 · · · Tn. By previous propositions we know that

S−1T1 ⇒ UV −1 ,

where both U and V are directed. By induction on n, the factorization of V −1T2 · · · Tn is
finite. �

To finish proving finiteness of the algorithm on S−1T where S and T are directed, the
only case remaining is when

S−1T = E−m
ij En

ik

and we are allowed to use the full algorithm.

3.2. Factorization of E−m
ij En

ik . We will prove below that all factorizations of

E−m
ij En

ik are finite. Since we are allowed to use both rules (6a) and (6b), there are in gen-
eral many factorizations, and the number of different factorizations grows rapidly with m and
n. The table in Figure 10 lists the number of different factorizations (not counting the ones
ending in stop) for different values of m = n. These numbers were found using a computer.
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m = n number of factorizations
1 2
2 6
3 16
5 68

10 658
20 8094
30 37,322
40 112,610

FIGURE 10. Number of different factorizations of E−m
ij

En
ik

.

A group H(j, k, i) is a sequence of elementary matrices of the form

H(j, k, i) = (EjkEji)
m1E

n1
kj (EjkEji)

m2E
n2
kj · · · (EjkEji)

ml E
nl

kjEjkEij

for some ni,mi, l ≥ 0. To have a unique expression for H(j, k, i) as above, we require that
all mi, ni > 0, except possibly m1 and nl , and also that l > 0. The shortest group is simply
H(j, k, i) = EjkEij . A partial group Hp(j, k, i) is an initial segment in a group H(j, k, i).
We sometimes write Hp(j, k, i)αβ to indicate that the partial group ends with letter Eαβ .

THEOREM 3.4. All factorizations of E−m
ij En

ik are finite and if

E−m
ij En

ik ⇒ T S−1 ,

then either T = En
ik or T has the form

T = E
q

ikEki(H(j, k, i)Rjki)
rHp(j, k, i)

for some q, r ≥ 0.

Note that since the algorithm is symmetric, S in the statement of the theorem has the
same form as T (with indices j and k interchanged). The case T = En

ik occurs when we
commute E−m

ij with En
ik using rule (6a). The other form of T occurs when we apply rule (6b)

at least once.
Let us say that a sequence T has the form (�) if it is as in the theorem:

T = E
q

ikEki(H(j, k, i)Rjki)
rHp(j, k, i) . (�)

Given such a T , we write Tαβ to indicate that the last symbol of T is Eαβ .
We start with an auxiliary lemma.

LEMMA 3.5. Consider sequences
(a) TkjE

−1
ij (H(j, k, i)Rjki)

rHp(j, k, i),

(b) TjkE
−1
ik Rjki(H(j, k, i)Rjki)

rHp(j, k, i),

where T is of the form (�). The algorithm is finite on both sequences and produces factoriza-
tions T1S

−1, where T1 again has the form (�).
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PROOF. Note that both sequences have a single inverse elementary matrix in them. We
prove both parts of the lemma simultaneously by induction on the number of elementary
matrices to the right of the inverse.

Consider first the sequence (a):

TkjE
−1
ij (H(j, k, i)Rjki)

rHp(j, k, i) = TkjE
−1
ij (EjkEji)

m1E
n1
kj · · · .

If m1 > 0, the factorization stops with E−1
ij Eji , so assume m1 = 0. If n1 > 0, we apply one

step of the algorithm:

TkjE
−1
ij E

n1
kj · · · ⇒ TkjEkjE

−1
ij E

n1−1
kj · · · .

We can combine TkjEkj into one T ′
kj that again has the form (�) and we are back to the case

of (a), but with one less elementary matrix to the right of E−1
ij . If also n1 = 0, then we apply

the algorithm:

TkjE
−1
ij EjkEijRjki · · · ⇒ TkjEjkE

−1
ik E−1

ij EijRjki · · ·
⇒ TkjEjkE

−1
ik Rjki · · · .

We combine TkjEjk into T ′
jk , and this brings us inductively to the case (b). There is also the

possibility that in the sequence (a) the group H(j, k, i) occurring is the last partial group,
and in that group either the last symbol Eij or both EjkEij are missing. In both cases the
algorithm terminates and the form of T1 can be read off from the formulas above.

Now consider sequence (b):

TjkE
−1
ik Rjki(H(j, k, i)Rjki)

rHp(j, k, i) ⇒ TjkRjkiE
−1
ji (EjkEji)

m1E
n1
kj · · · . (∗)

When m1 > 0, we apply three steps of the algorithm to get:

TjkRjkiE
−1
ji (EjkEji)

m1E
n1
kj · · · ⇒ TjkEijRjki (EjkEji)

m1−1E
n1
kj · · · .

Note that TjkEij is of the form (�) and it ends with a complete group. Thus:

TjkEijRjki = E
q
ikEki(H(j, k, i)Rjki)

r ,

(EjkEji)
m1−1E

n1
kj · · · = (H(j, k, i)Rjki)

sHp(j, k, i).

Concatenating these sequences gives the T1 as stated in the lemma.
When m1 = 0 and n1 > 0, we apply the algorithm to the sequence (∗) as follows:

TjkRjkiE
−1
ji E

n1
kj · · · ⇒ TjkRjkiEkjEkiE

−1
ji E

n1−1
kj · · ·

⇒ TjkEjiEjkE
−1
ik RjkiE

n1−1
kj · · · .

Combining TjkEjiEjk = T ′
jk, we are inductively back to sequence (b).

Finally, when m1 = n1 = 0, we factor the sequence (∗) as

TjkRjkiE
−1
ji EjkEijRjki · · · ⇒ TjkRjkiEkjEikRkijE

−1
ki E−1

ij EijRjki · · ·
⇒ TjkRjkiEkjEikRkijE

−1
ki Rjki · · ·

⇒ TjkEjiEkjE
−1
ki · · · .
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This brings us by induction to the sequence (a). We should also consider the case where either
Eij or both EjkEij are missing from the final partial group. Both these cases are easy to deal
with and lead to the required form of T1. �

PROOF OF THEOREM 3.4. To factor E−m
ij En

ik , we use induction on m. If all factoriza-

tions of E
−(m−1)
ij En

ik have the claimed form T S−1, it suffices to prove that all factorizations

of E−1
ij T have the same form. The base case m = 0 is trivial.

When T = En
ik , we can either commute E−1

ij with T using rule (6a), or we can commute
the first p steps, then apply rule (6b):

E−1
ij En

ik ⇒ E
p
ikE

−1
ij EikE

q
ik

⇒ E
p
ikEkiEjkRkjiE

−1
kj E−1

ji E
q
ik

⇒ E
p
ikEkiEjkRkjiE

−1
kj E

q
ikE

−q
jk E−1

ji

⇒ E
p
ikEkiEjkRkji (EikEij )

qE−1
kj E

−q
jk E−1

ji

⇒ E
p

ikEkiEjk(EjiEjk)
qRkjiE

−1
kj E

−q

jk E−1
ji .

Note that Ejk(EjiEjk)
q = (EjkEji)

qEjk is a partial group Hp(j, k, i), thus the result

T ′ = E
p
ikEkiHp(j, k, i)

is as required.
Now let us assume that T is of the form (�) and consider factorizations of E−1

ij T :

E−1
ij T = E−1

ij En
ikEki(H(j, k, i)Rjki)

rHp(j, k, i).

From the above we know how to factor E−1
ij En

ik . First suppose that the factorization is

En
ikE

−1
ij . Then we continue with the algorithm:

En
ikE

−1
ij Eki(H(j, k, i)Rjki)

rHp(j, k, i) ⇒ En
ikEkiEkjE

−1
ij (H(j, k, i)Rjki)

rHp(j, k, i) .

Since the initial segment En
ikEkiEkj = T ′

kj , where T ′ is of the form (�), we are reduced to the
case (a) of the lemma.

Next suppose that we do not commute E−1
ij with all of En

ik:

E−1
ij T ⇒ E

p

ikEkiEjk(EjiEjk)
qRkjiE

−1
kj E

−q

jk E−1
ji EkiH(j, k, i) · · ·

⇒ E
p

ikEkiEjk(EjiEjk)
qRkjiE

−1
kj E

−q

jk EkiE
−1
ji H (j, k, i) · · ·

⇒ E
p
ikEkiEjk(EjiEjk)

qRkjiE
−1
kj Eki(E

−1
ji E−1

jk )qE−1
ji H (j, k, i) · · ·

= E
p
ikEki(EjkEji)

qEjkRkjiE
−1
kj EkiE

−1
ji (E−1

jk E−1
ji )q (EjkEji)

m1E
n1
kj · · · . (∗∗)

At the next step we cancel pairs EjkEji with pairs E−1
jk E−1

ji . The number of such cancella-
tions depends on q and m1.
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When q ≤ m1 − 1, we get:

(∗∗) ⇒ E
p
ikEki(EjkEji)

qEjkRkjiE
−1
kj EkiEjk(EjkEji)

m1−1−qE
n1
kj · · ·

⇒ E
p

ikEki(EjkEji)
qEjkRkjiEikEjiRijkE

−1
ij E−1

jk Ejk(EjkEji)
m1−1−qE

n1
kj · · ·

⇒ E
p
ikEki(EjkEji)

qEjkEjiEkjE
−1
ij (EjkEji)

m1−1−qE
n1
kj · · · .

Here

T ′ = E
p
ikEki(EjkEji)

qEjkEjiEkj = E
p
ikEki(EjkEji)

q+1Ekj

is of the form (�) and we are in the case (a) of the lemma.
When q = m1 and n1 > 0, then we get

(∗∗) ⇒ E
p
ikEki(EjkEji)

qEjkRkjiE
−1
kj EkiE

−1
ji E

n1
kj · · ·

⇒ E
p
ikEki(EjkEji)

qEjkRkjiE
−1
kj EkiEkjEkiE

−1
ji E

n1−1
kj · · ·

⇒ E
p
ikEki(EjkEji)

qEjkRkjiEkiE
−1
kj EkjEkiE

−1
ji E

n1−1
kj · · ·

⇒ E
p
ikEki(EjkEji)

qEjkRkjiEkiEkiE
−1
ji E

n1−1
kj · · ·

⇒ E
p

ikEki(EjkEji)
qEjkEijRkjiEkiE

−1
ji E

n1−1
kj · · · .

In the last sequence, we use the fact that Rkji = R2
jki and continue:

E
p

ikEki(EjkEji)
qEjkEijRjkiRjkiEkiE

−1
ji E

n1−1
kj · · ·

⇒ E
p

ikEki(EjkEji)
qEjkEijRjkiEjkE

−1
ik RjkiE

n1−1
kj · · · .

This expression falls into case (b) of the lemma.
When q = m1 and n1 = 0, then we get

(∗∗) ⇒ E
p
ikEki(EjkEji)

qEjkRkjiE
−1
kj EkiE

−1
ji EjkEij · · ·

⇒ E
p

ikEki(EjkEji)
qEjkRkjiE

−1
kj EkiEkjEikRkijE

−1
ki E−1

ij Eij · · ·
⇒ E

p
ikEki(EjkEji)

qEjkRkjiEkiEikRkij E−1
ki · · ·

⇒ E
p
ikEki(EjkEji)

qEjkEijRjkiRjkiEikRkijE
−1
ki RjkiH (j, k, i) · · ·

⇒ E
p
ikEki(EjkEji)

qEjkEijRjkiEkjE
−1
ij H (j, k, i) · · · .

This is the sequence (a) in the lemma. We also have to consider the case where the final Eij

or both EjkEij are missing, but these cases are simple and left to the reader.
When q > m1, we get

(∗∗) ⇒ E
p

ikEkiEjk(EjiEjk)
qRkjiE

−1
kj Eki(E

−1
ji E−1

jk )q−m1E−1
ji E

n1
kj · · · .

When n1 > 0, this sequence stops with E−1
jk Ekj . When n1 = 0, the sequence

(∗∗) ⇒ E
p

ikEkiEjk(EjiEjk)
qRkjiE

−1
kj Eki(E

−1
ji E−1

jk )q−m1E−1
ji EjkEij · · ·
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⇒ E
p
ikEkiEjk(EjiEjk)

qRkjiE
−1
kj Eki(E

−1
ji E−1

jk )q−m1EkjEikRkijE
−1
ki E−1

ij Eij · · ·

also stops with E−1
jk Ekj . The cases where either the final Eij or both EjkEij are missing are

left to the reader. �

3.3. A global finiteness result. We prove here finiteness of the global algorithm A in
a special case discussed in the introduction.

Consider two sequences of global star subdivisions of a single cone 〈vi, vj , vk〉. The
subdivivision rays in one sequence are generated by vi + vj , 2vi + vj , . . . ,mvi + vj , and in
the other sequence by vi + vk, 2vi + vk, . . . , nvi + vk . To prove that the algorithm is finite
when applied to this sequence of m star assemblies followed by n star subdivisions, we follow
the notation in the proof of Proposition 2.2. To prove finiteness of the global algorithm, it
suffices to prove finiteness of the local algorithm when applied to all local subsequences of
the original global sequence. The local subsequences of the m star assemblies followed by n

star subdivisions are:

E−m
ij En

ik ,

E−m
ij E

q
ikEki ,

E−1
ji E

−p

ij En
ik ,

E−1
ji E

−p

ij E
q

ikEki ,

where 0 ≤ p < m and 0 ≤ q < n. Finiteness of the local algorithm when applied to the
first sequence was proved in the previous subsection. The proof of Thorem 3.4 also covers the
case of the second sequence because T = E

q
ikEki is of the form (�) and we proved that for

any such T , the factorizations of E−m
ij T are finite. The case of the third sequence follows by

symmetry. Only the last case is remaining. Using the proof of the theorem, we can factor

E−1
ji E

−p

ij E
q

ikEki ⇒ E−1
ji T S−1 ,

where T is of the form (�). Thus it suffices to prove that all factorizations of E−1
ji T are finite.

The resulting factorizations may not follow the same pattern as in the theorem.
We apply the algorithm as follows:

E−1
ji T = E−1

ji E
q
ikEkiH(j, k, i) · · ·

⇒ E
q
ikE

−q
jk E−1

ji EkiH(j, k, i) · · ·
⇒ E

q
ikE

−q
jk EkiE

−1
ji H (j, k, i) · · ·

⇒ E
q

ikEki(E
−1
ji E−1

jk )qE−1
ji (EjkEji)

m1E
n1
kj · · · .

The part of the sequence that needs to be factored:

(E−1
ji E−1

jk )qE−1
ji (EjkEji)

m1E
n1
kj · · · = E−1

ji (E−1
jk E−1

ji )q(EjkEji)
m1E

n1
kj · · ·
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also appears as a part of the sequence (∗∗) in the proof of Thorem 3.4. We know that all
factorizations of (∗∗) are finite. This does not directly imply that all factorizations of the
current sequence are finite. One can, however, repeat the proof of finiteness of the algorithm
on (∗∗), adjusting the steps where necessary for the current sequence.

To finish the discussion of the global case, note that in the common refinement of the two
sequences of global star subdivisions, the number of maximal cones is equal to the number of
different factorizations of the four types of local sequences above. From Figure 10 we know
that this number is very large when m and n are large. Since each star subdivision of a fan
increases its number of maximal cones by one or two, it also follows that the number of star
subdivisions and star assemblies in the strong factorization of the original m-by-n sequence
is very large.

4. Further directions. To prove finiteness of the local algorithm A, one needs to find
a way to bound the complexity of the factorizations, for example their length. The proofs of
finiteness presented here do not construct such a bound. Instead, we considered very regular
initial sequences and proved that the factorizations then are also regular. The proof of The-
orem 3.4 for example does not give a bound on the length of factorizations of E−m

ij En
ik . In

computer experiments one can see that the factorizations in these cases are in fact rather short.
If a factorization has the form T S−1, then the number of elementary matrices in T is no more
than max{2m + n,m + 2n}. We discuss in this section two approaches that may lead to such
bounds on complexity and to a proof of finiteness.

4.1. The Cayley graph. It is well-known that the elementary matrices Eij gener-
ate the group SL(3,Z). Construct the Cayley graph of SL(3,Z) using these generators.
This graph has its vertices as the matrices in SL(3,Z) and there is an edge from X to Y

if Y = XEij for some i, j . If we represent cones by matrices, then a sequence of local star
subdivisions is simply a path in this graph. To make the representation independent of the
chosen order of generators for a cone, we should really consider the quotient of the Cayley
graph by the alternating group A3 that acts by cyclically permutating columns of matrices.
Then all factorization diagrams, such as the example in Figure 4, can be thought of as being
subgraphs of the quotient graph.

Cayley graphs of groups such as SL(3,Z) are studied in combinatorial group theory.
There are many techniques and results known that are similar to our problem. For example, in
studying the isoperimetric inequalities for the Cayley graph in the word metric, one starts with
a closed loop and asks how many relations are needed to contract this loop to a point. This can
be compared to the factorization problem as follows: if we start with a partial factorization
diagram, which is a loop in the graph, we seek to expand this loop by applying the relations.
It may be possible to apply techniques from combinatorial group theory to get invariants for
the factorization problem.

4.2. Factorization along a valuation. Define a valuation as a ray in R3 generated
by a vector v with rationally independent coordinates. In the local algorithm the valuation



ON ODA’S STRONG FACTORIZATION CONJECTURE 181

ray tells us which cone to choose after a star subdivision, i.e., we always choose the cone
containing the ray. Using the local algorithm when the choice of cones is given by a valuation
ray is called factorization along a valuation.

One can pose the following conjecture:

CONJECTURE 4.1. Algorithm A is finite along any valuation

As in the local case, we also have the following problem: does finiteness of the algorithm
along any valuation imply finitness of the local or global algorithm?

The factorization algorithm along a valuation is easier to visualize than the global or the
local algorithm. If a cone 〈v1, v2, v3〉 contains the vector v, write

v = b1v1 + b2v2 + b3v3

for some positive numbers b1, b2, b3. We can then represent the cone by the vector (b1, b2, b3)

in R3. A local star subdivision of this cone along the valuation corresponds to subtracting bi

from bj for some i �= j , for example

(b1, b2 − b1, b3) → (b1, b2, b3)

is one star subdivision, provided that b2 > b1. Using this representation of cones as points in
R3, one can also consider embedding a factorization diagram in R3. As before, to make this
independent of the order of generators, the triple (b1, b2, b3) should be considered up to cyclic
permutation. Because of this cyclic permutation, the ambient space R3/A3 becomes more
complicated to work with. In R3 or in the quotient R3/A3 where one can measure lengths
and distances, it may be possible to find numerical invariants that bound the complexity of the
algorithm.

We also remark that the local algorithm B does not need the cyclic permutations, hence a
factorization diagram can be embedded in R3. However, it is not hard to find a valuation and a
diagram such that the factorization algorithm B along the valuation is not finite. (The example
in Figure 2(b) is actually finite along any valuation, but if one takes a symmetric 2-by-2 initial
sequence, then there are many valuations along which the algorithm is not finite.)
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