NOTES ON FOURIER ANALYSIS (XXVI) : SOME NEGATIVE EXAMPLES IN THE THEOREY OF FOURIER SERIES*)

By
\section*{Shin-ichi Izumi}

Introduction. W. Randels ${ }^{1)}$ has proved the following Theorem.
Theorem A. There is a function $f(t) \varepsilon L^{2}$ such that
1a. $\int_{0}^{t} \boldsymbol{\varphi}_{x}(u) \mid d u \neq o(t), \phi_{x}(t)=f(x+t)+f(x-t)-2 f(x)$,
2^{0}. the series

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) / \sqrt{\log n} \tag{0.1}
\end{equation*}
$$

converges, where

$$
\begin{equation*}
f(t) \sim \frac{a_{n}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) . \tag{0.2}
\end{equation*}
$$

R.E.A.C. Paley" has proved

Theorem B. There is an integrable function $f(t)$ such that
$1^{1} . \int_{0}^{t} \Phi_{x}(u) d u \neq o(t)$,
2^{0}. the Fourier series (0.2) of $f(t)$ converges at $t=x$.
As a generalization of Theorem A we prove that
Theorem 1. There is a bounded function $f(t)$ such that
$1^{0} . \int_{0}^{t}\left|\boldsymbol{\varphi}_{x}(u)\right| d u \neq 0$,
2^{2}. the Fourier series (0.2) of $f(t)$ converges at $t=x$.
We prove also the following theorem containing Theorem A and B. That is,
*) Received Oct. 1, 1949.

1) W. Randels, Bull. Am. Math. Soc., 46 (1940).
2) R. E. A. C. Paley, Proc. Cambridge Phil. Soc., 26 (1930).

Theorem 2. Let $\infty>p \geqq$. Then there is a function $f(t) \varepsilon L^{p}$ such that
10. $\int_{0}^{t} \phi_{x}(u) d u \neq o(t)$,
2^{2}. the Fourier series ($0 .{ }^{\circ}$) of $f(t)$ converges at $t=x$.
It is known that ${ }^{3)}$
Theorem C. If
$1^{10} . a_{n}=O\left(1 / n^{\delta}\right), b^{n}=O\left(1 / n^{\delta}\right)(n=1,2, \cdots)$
where $\delta>0$ and a_{n}, b_{n} are Fourier coefficients of $f(t)$,

$$
z^{\prime \prime} \cdot s_{n}(x)-f(x)=o(1 / \log n)
$$

where sn denotes the fartial.sum of the Fourier series (1.2) of $f(t)$, then

$$
\int_{0}^{t} \varphi_{x}(u) d u=o(t) .
$$

In this thcorem the condition 2^{0} is the best possible, that is, o cannot be replaced by O. In fact we prove

Theorem 3. There is an integrable function $f(t) \in L^{p}$ such that

$$
1^{1} . a_{n}=O\left(1 / n^{\delta}\right), b_{n}=O\left(1 / n^{\delta}\right)(n=1,2, \cdots)
$$

where $\delta>0$ and a_{n}, b_{n} are Fourier coefficients of $f(t)$,
$2^{\prime \prime} . s_{n}(x)-f(x) \neq o(1 / \log n), s_{n}(x)-f(x)=O(1 / \log n)$,
3. $\int_{0}^{t} \phi_{x}(u) d u \neq o(t)$.

This is a generalization of Theorem 2.
On the other hand L.R. Bosanquet ${ }^{4)}$ and R.E.A.C. Paley proved that
Theorem D. Let $\alpha \geqq 0$. If the Fourier series (0.2) of $f(t)$ is (C, α)-sumsmable to $f(x)$ at $t=x$, then

$$
\begin{equation*}
\Phi_{a+1+z}(t)=0(1) \quad(t \rightarrow 0) \tag{0.3}
\end{equation*}
$$

where $\Phi_{\beta}(t)$ is the $\beta-$ th mean of $\Phi_{x}(u)$. that is,

$$
\Phi_{\beta}(t) \equiv \frac{1}{t_{\beta}} \int_{0}^{t}(t-u)^{\beta-1} \boldsymbol{\varphi}_{x}(u) d u .
$$

Conversely, if

$$
\Phi_{a}(t)=o(1) \quad(t \rightarrow 0)
$$

3) G.H. Hardy and J.E. Littlewood, Annali di Pisa, 3 (1932).
4) L.S. Bosanquet, Proc. London Math. Soc., 31 (19302.
then the Fourier series of $f(t)$ at $t=x$ is $(C, \boldsymbol{x}+\varepsilon)$-summable.
It is said that the Theorem is not true for $\varepsilon=0$. But Paley has proved the case $\alpha=0$ and $\mathrm{Hahn}^{5)}$ has proved the case $\alpha=1$ of the converse part. Bosanquent ${ }^{6)}$ states that Wiener's general Tauberian Theorem implies that the converse part of the theorem is not true for $\varepsilon=0$ and any $\alpha \geqq 0$. Therefore there is no concrete example for general α. We prove the following theorems.

Theorem 4. Let $1 \leqq p<\infty \alpha \geqq 0$. Then there is an integrable function $f \in L^{p}$ such that
10. $\int_{0}^{t}\left|\Phi_{a}(u)\right| d u \neq o(t)$.
2. The Fourier series (0.2) of $f(t)$ is summable (C, α) at $t=x$.

The case $\alpha=0$ is contained in Theorem 1 .
Theorem 5. Let $1 \leqq p<\infty$ and $\alpha \geqq 0$. Then there is $f(t) \varepsilon L^{p}$ suib that
$1^{\rho}: \Phi_{\alpha}(u)=0(t)$,
20. the Fourier series (0.2) of $f(t)$ is not summable (C, α) at $t=x$.

Theorem f. Let $\alpha \geqq 0$ and $1 \leqq p<\infty$. There is an integrable function $f(t) \varepsilon L^{p}$ such that

$$
1^{0} . \quad \sigma_{n}^{\alpha}(x) \cdots f(x) \neq o\left(1_{i} \log n\right), \sigma_{n}^{n}(x) \cdots f(x)=O(1 \log n),
$$

where $\sigma_{n}^{\alpha}(t)$ denotes the α-th Cesaro mean of the. Fourier series (J.2) of $f(t)$,
$2^{0} . \boldsymbol{\varphi}_{a+1}(t) \neq o(1)$.
The case $\alpha=0$ is contained in Theorem 3. This containes Theorem 4 as a special case. In spite of this we prove Theorem 4, for its proof is simpler than that of Theorem 6, and suggests the method of proof of Theorem 6.
§1. Before going to the proof of theorems we explain the type of examples used. We take a sequence of disjoint intervals

$$
\begin{equation*}
\Delta_{k} \equiv\left(\frac{\pi}{n_{k}}, \frac{\pi}{n_{k}}+\frac{\pi}{m_{k}}\right) \quad(k=1,2, \cdots) \tag{1.1}
\end{equation*}
$$

and define an even periodic function $f(t)$ such that

$$
\begin{equation*}
f(t)=c_{k} \sin M_{k} t \quad\left(t \in \Delta_{k}\right) \tag{1.2}
\end{equation*}
$$

for $k=1,2, \cdots$ and $f(t) \equiv 0$ in $(0, \pi)-\cup \Delta_{k}$. Here $(n k),(m k)$ and $\left(M_{k}\right)$ are increasing sequences of integers and $\left(c_{k}\right)$ is a sequence of positive numbers.
5) H. Hahn, Jahrbte. Deutschen Math. Ver., 25 (1916).
6) L.S. Bosanquet, Proc. London Math. Soc., 37 (1934),

They are suitably determined in each problem and (1.1) is sometimes replaced by

$$
\Delta_{k} \equiv\left(\frac{\pi}{n_{k}}, \quad \frac{\pi}{m_{k}}\right) \quad(k=1,2, \cdots)
$$

and further (1.2) may be changed to

$$
f(t) \equiv c_{k} \cos M_{k} t \quad\left(t \varepsilon \Delta_{k}\right)
$$

or

$$
f(t) \equiv c_{k} t \sin M_{k} t \quad\left(t \varepsilon \Delta_{k}\right)
$$

and so on.
This is a function-analogy of the Fejér example defined by series in a sense. Many problems which solved by the Fejér's example, are also proved by this type of examples, and we can go more in some cases.

As an illustration we will prove some classical theorems by our example.
Theorem D. There is a continuous function $f(t)$ with Fourier series divergent at a point x.

Proof. Whithout loss of generality we can suppose that $x=0$. Let $s_{n}(x)$ be the n-th partial sum of Fourier series of $f(t), f(t)$ being defined by (1.2). Then

$$
\begin{align*}
r_{M_{k}}(0) & =\frac{2}{\pi} \int_{0}^{\pi} f(t) \frac{\sin M_{k} t}{t} d t+o(1) \tag{1.3}\\
& =\frac{2}{\pi} \sum_{i=1}^{\infty} c i \int_{\Delta i} \frac{\sin M_{i t} \sin M_{k t}}{t} d t+o(1) \\
& =\frac{2}{\pi}\left[\sum_{i=1}^{k-1} c i \int_{\Delta i}+c_{k} \int_{\Delta k}+\sum_{i=k+1}^{\infty} c i \int_{\Delta i}\right]+o(1) \\
& =\frac{2}{\pi}\left[I_{1}+I_{2}+1_{3}\right]+o(1),
\end{align*}
$$

say. First we have

$$
\begin{align*}
I_{2} & =c_{k} \int_{\Delta k} \frac{\sin ^{2} M_{k} t}{t} d t=\frac{c_{k}}{2} \int_{\Delta k} \frac{d t}{t}+\frac{c_{k}}{2} \int_{\Delta k} \frac{\cos 2 M_{k} t}{t} d t \tag{1.4}\\
& =\frac{c_{k}}{2} \log \left(1+\frac{n_{k}}{m_{k}}\right)-\frac{c_{k}}{2}-\int_{2 \pi M M_{k} n_{k}}^{2\left(\pi n_{k}+\pi / m_{k} \cdot M_{k}\right.} \frac{\cos t}{t} d t \\
& =\frac{c_{k}}{2} \log \left(1+\frac{n_{k}}{m_{k}}\right)+O\left(\frac{c_{k} M_{k}}{M_{k}}\right)
\end{align*}
$$

concerning I_{1},

$$
\begin{align*}
I_{1} & =\sum_{i=1}^{k-1} c_{i} \int_{\Delta_{i}} \frac{\sin M_{i} t \sin N_{k} t}{t} d t \tag{1.5}\\
& =\sum_{i=1}^{k-1}-c_{i}^{c i}\left[\int_{\pi n_{i}}^{\pi n_{i}+\pi^{\prime} m_{i}} \frac{\cos \left(M_{k}-N_{i}\right) t}{t} d t\right. \\
& \left.-\int_{\pi / n_{i}}^{\pi / n_{i}+\pi_{i} m_{i}} \frac{\cos \left(M_{k}+M_{i}\right) t}{t} d t\right]=\sum_{i=1}^{k-1} O\binom{c_{i} m_{i}}{M_{k}-M_{i}} .
\end{align*}
$$

Similarly we have

$$
\begin{equation*}
I_{3}=\sum_{i=1}^{k+1} O\binom{c i M_{i}}{M_{i}-M k} . \tag{1.6}
\end{equation*}
$$

If we take $c_{k} \equiv 1 / \sqrt{k}$, then $f(t)$ is continuous at $t=0$. W. hen

$$
\begin{equation*}
n k\left|M_{k}, \quad m_{k}\right| N_{i k} \quad(k=1, ?, \cdots) \tag{1.7}
\end{equation*}
$$

$f(t)$ is continuous everywhere. Let us take

$$
m_{k} \equiv 2^{k} \cdot 2^{k^{2}}, m^{k} \equiv 2^{k^{\prime}}, M_{k} \equiv \varepsilon^{(k+1)^{2}} .
$$

Then $n_{k} m_{k}=\delta^{k}$ and $c_{k} m_{k} / M_{k} \rightarrow 0$. Thus by (1.4) $1_{3} \rightarrow 0$ as $k \rightarrow \infty$. As easily may be seen $I_{1}+I_{3} \rightarrow 0$ by (1.5) and (1.6), and also the intervals (1.1) are disjoint mutually. Thus the theorem is proved.

Theorem E. There is a continuous function $f(t)$ such that the Fourier series of $f(t)$ diverges at $t=x$ and the continuity modulus $\omega(\delta)$ of $f(t)$ satisfies

$$
\begin{equation*}
\omega(\delta)=O\left(1 / \log \frac{1}{\delta}\right) . \tag{1.8}
\end{equation*}
$$

Proof. In stead of (1.2), we take

$$
\begin{equation*}
f(t) \equiv(-1)^{k} c_{k} \sin M_{k} t \tag{k}
\end{equation*}
$$

for $(k=1,2, \cdots)$, and put

$$
c_{k} \equiv 1 / k^{2}, r_{k} \equiv 2^{z k^{2}}, m_{k} \equiv 2^{k^{2}}, M_{k} \equiv 2^{4 k^{2}} .
$$

Then, using the notation in the proof of Theorem D ,

$$
\begin{aligned}
I_{2} & =(-1)^{k} \cdot \frac{c k}{2} \log \left(1+\frac{n k}{m k}\right)+o(1) \\
& =(-1)^{k} \frac{1}{2} \bar{q}^{2} \log 2 k^{2}+o(1)=(-1)^{k} \log 2+o(1)
\end{aligned}
$$

and $c_{k} \log n_{k}=O(1)$. Thus $s_{M_{k}}$ does not converge and (1.7) is satisfied.
Theorem F. There is a continuous function $f(t)$ such that its Fourier series converges everywhere but does not converge uniformly at a point.
$P_{\text {roof. }}$ Let us take the function $f(t)$ defined by (1.2). We will take $n_{k}=m k$. Then if we denote by I_{2}^{\prime} the term in $s_{M_{k}}\left(x_{k}\right)$ corresponding to I_{2}, putting $X_{k} \equiv 2 \pi^{\prime} n k-\pi^{\prime} n_{k}{ }^{\prime}$,

$$
\begin{aligned}
I_{2}^{\prime} & =c_{k} \int_{\Delta_{k}} \sin M_{k} t \frac{\sin M_{k}(x-t)}{x-t} d t \\
& =\frac{c_{k}}{2} \int_{\Delta_{k}}\left\{-\cos M_{k x}+\cos \left(M_{k x}-2 M_{k} t\right)\right\} \frac{d t}{x-t} \\
& =-J_{1}+J_{2},
\end{aligned}
$$

say, where integrals are taken in the Cauchy sense. First,

$$
J_{1}=\frac{1}{2} c_{k} \cos M_{k} x \int_{\Delta_{k}}-\frac{d t}{x-t}=\frac{1}{2} c_{k} \cos M_{k}^{\prime} x \log \left(\gamma_{k}-2\right) .
$$

If we suppose $n k^{2} \mid M_{k}$, then

$$
\cos \left(M_{k} x-2 M_{k} t\right)=+\cos 2 M_{k}(x-t)
$$

and then $J_{2}=O\left(c_{k}^{\prime} M_{k}\right)$. Let us take

$$
c_{k} \equiv 1 / k, \quad m k \equiv n_{k} \equiv 2^{k^{2}}, \quad M_{k} \equiv 2: k^{3}
$$

Then I_{2}^{\prime} does not converge. As easily may be seen from the proof of Theorem D, the Fourier series of $f(t)$ converges everywhere, but does not converge uniformly at $t=0$.

We are now easy to construct a continuous function which satisfies the condition in Theorem F and (1.8).
§2. Proof of Theorem 1. Let us consider a sequence of intervals

$$
\begin{equation*}
\Delta_{n} \equiv\left(\frac{1}{n}, \frac{1}{n}+\frac{1}{n^{2}}\right) \quad(n=2,3, \cdots) \tag{2.1}
\end{equation*}
$$

which are mutually disjoint. Let us define the even periodic function $f(t)$ by

$$
\begin{equation*}
f(t) \equiv \sin M_{n} t\left(t \varepsilon \Delta_{n}\right) \tag{2.2}
\end{equation*}
$$

for $n=2,3, \cdots$ and $f(t) \equiv 0$ in $(0, \pi)-\cup \Delta_{n}$, where $\left(M_{n}\right)$ is an increasing sequence of integers determined later.

For the proof of Theorem 1 we can suppose $x=0$ without any loss of generality. Since $f(0)=0, f(t)=\phi_{0}(t) / 2$. Evidently $f(t)$ is bounded and

$$
\int_{0}^{t} \left\lvert\, f(x)^{\prime} d u \geqq \frac{1}{\pi} \sum_{n=1 / t /+1}^{\infty} \frac{1}{n^{-}}>-\frac{t}{2 \pi}\right.
$$

Thus the condition 1 of the theorem is satisfied. Let us prove that the condition 2 is also satisfied. For this purpose it is sufficient to prove that

$$
\begin{equation*}
I \equiv \int_{0}^{\pi} f(t)-\frac{\sin m t}{\bar{t}} d t=o(1) \quad(m \rightarrow \infty) \tag{2.3}
\end{equation*}
$$

Substituting (2.2) we get

$$
\begin{aligned}
I & =\sum_{n=2}^{\infty} \int_{\Delta_{n}} \sin M_{n} t-\frac{\sin m t}{t} d t \\
& =\sum_{n=2}^{\infty} \int_{1 / n}^{1+n+1 / n^{2}} \sin M_{n} t \frac{\sin m t}{t^{2}} d t \\
& =\sum_{n=2}^{\infty}\left[!_{1 n}^{1 / n+1 / n^{n}} \cos \left(M_{n}-m\right) t \frac{d t}{t}-\int_{1 / n}^{1 n+1 / n^{2}} \cos \left(N_{n}+m\right) t \begin{array}{c}
d t \\
t
\end{array}\right] .
\end{aligned}
$$

For any m there is a μ such as $M_{\mu} \leqq m<M_{\mu+1}$. Thus $\mu \rightarrow \infty$ as $m \rightarrow \infty$. Let us devide I into two parts.

$$
\begin{equation*}
I=\sum_{n=2}^{\infty}=\sum_{n=2}^{\mu}+\sum_{n=\mu+1}^{\infty} \equiv I_{1}+I_{2}, \tag{2.4}
\end{equation*}
$$

say. The term $n=\mu$ in I_{1} is

$$
\begin{array}{rl}
& \int_{1 / \mu}^{1 / \mu+1 \mu^{\prime} \mu^{2}} \cos \left(m-M_{\mu}\right) t \frac{d t}{t}-\int_{1 / \mu}^{1 / \mu+1^{\prime} \mu^{2}} \cos \left(m+M_{\mu}\right) t d t \\
= & \int_{\left.m-M_{\mu}\right) 1 / \mu}^{\left(m-M_{\mu}\right)\left(1 / \mu+1 / \mu^{2}\right)} \cos t \\
t & d t-\int_{\left(m+M_{\mu}\right) 1 \mu}^{\left(m+M_{\mu}\right)\left(1 / \mu+1 / \mu^{2}\right)} \frac{\cos t}{t} d t \\
= & O\left(\log \left(1+\frac{1}{\mu}\right)\right)=o(1)
\end{array}
$$

as $m \rightarrow \infty$. The term $n=\mu+1$ in l_{2} is similarly $o(1)$ as $m \rightarrow \infty$.
In order to estimate the remaining terms of I_{1}, we suppose $n<\mu$. If (M_{n}) is convex, then

$$
\begin{equation*}
m-M_{n}>M_{\mu}-M_{n} \geqq(\mu-n)\left(M_{n+1}-M_{n}\right) . \tag{2.5}
\end{equation*}
$$

If we take $M_{n} \equiv n^{3}$, then $M_{n+1}-M_{n} \geqq n^{2}$, whence

$$
\left(m-M_{n}\right) / n \geqq(\mu-n) n
$$

by (2.5). Hence the n-th term of 1_{1} is

$$
\begin{gathered}
\int_{\left(m-M_{n}\right) / n}^{\left(m-M_{n}\right)\left(1 n+1 / n^{2}\right)} \frac{\cos t}{t} d t-\int_{\left(m+M_{n}\right) n}^{\left(m+M_{n}\right)\left(1 / n+1 n^{2}\right)} \frac{\cos t}{t} d t \\
=O\left(\frac{n}{m-M_{n}}\right)=O\left(\frac{1}{(\mu-n) n}\right)
\end{gathered}
$$

Thus

$$
\begin{align*}
I_{1} & =\sum_{n=2}^{\mu-1}+o(1)=O\left(\sum_{n=2}^{\mu-1} \frac{1}{(\mu-n) n}\right)+o(1) \tag{2.6}\\
& =O\left(\frac{\log \mu}{\mu}\right)+o(1)=o(1) .
\end{align*}
$$

Similarly we have

$$
\begin{align*}
I_{2} & =o\left(^{1}\right)+\sum_{n=\mu+1}^{\infty}=o(1)+O\left(\sum_{n=\mu+1}^{\infty} \frac{n}{M_{n}-m}\right) \tag{2.7}\\
& =o(1)+O\left(\sum_{n=\mu+1}^{\infty} \frac{1}{(n-\mu) n}\right)=o(1) .
\end{align*}
$$

By (2.4), (2.6) and (2.7) we get $I=o(1)$. Thus we get, (2.3), which is the required.
§ 3. Proof of Theorem 2. Let ($m \mathrm{k}$) and ($n k$) be increasing sequences of integers, which will be determined later and let us take a sequence of intervals

$$
\begin{equation*}
\Delta_{k} \equiv\left(\frac{\pi}{n_{k}}, \quad \frac{\pi}{n_{k}}+\frac{\pi}{m_{k}}\right) \quad(k=1,2, \cdots) \tag{3.1}
\end{equation*}
$$

which are taken disjoint mutually. Let us define an even function such that

$$
\begin{equation*}
f(t)=c_{k}\left[t \cos M_{k} t+\frac{1}{M_{k}} \sin M_{k} t\right] \quad\left(t \varepsilon \Delta_{k}\right) \tag{3.2}
\end{equation*}
$$

for $k=1,2, \cdots$ and $f(t) \equiv 0$ in $(0, \pi)-U \Delta_{k}$, where $\left(c_{k}\right)$ is a sequence of positive numbers and $\left(M_{k}\right)$ is an increasing sequence of positive integers, which will be determined later. We shall first suppose that

$$
\begin{equation*}
n_{k}\left|M_{k}, \quad m k\right| M_{k} \quad(k=1,2, \cdots) . \tag{3.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
I_{k} \equiv \int_{\Delta_{k}} f(t) d t=\left[\frac{c_{k}}{M_{k}^{-}} t \sin M_{k} t\right]_{t=\pi n_{k}}^{t=\pi n_{k}+\pi m_{k}}=0 \tag{3.4}
\end{equation*}
$$

By

$$
\int_{0}^{\pi}|f(t)|^{p} d t \leqq \sum_{k=1}^{n} \int_{\Delta_{k}}|f(t)|^{p} d t \leqq \sum_{k=1}^{\infty} \frac{c_{k}^{p}}{n_{k}^{p}} \cdot \frac{1}{m k},
$$

in order that $f(t)$ belongs to L^{p} it is sufficient that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{c_{k}^{D}}{n_{k}^{D}} \frac{1}{m k}<\infty . \tag{3.5}
\end{equation*}
$$

By (3.4)

$$
f_{1}(t) \equiv \int_{0}^{t} f(u) d u=-\stackrel{c_{k}^{k}}{M_{k}^{k}} t \sin M_{k} t
$$

for $t \varepsilon \Delta_{k}$, and $f(t)=0$ outside $U \Delta_{k}$. If we take

$$
\begin{equation*}
c_{k}=M_{k} \quad(k=1,2, \cdots) \tag{3.6}
\end{equation*}
$$

then the condition 1^{0} is satisfied. In this case (3.5) becomes

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{M_{k}^{p}}{n_{k}^{p}} \frac{1}{m k}<\infty . \tag{3.7}
\end{equation*}
$$

Let us now consider the Fourier series (1.2) of $f(t)$ and by s_{n} we denote the n-th partial sum of (0.2) at $t=0$. The condition 2^{0} is satisfied when

$$
\begin{equation*}
I \equiv \int_{0}^{\pi} f(t) \frac{\sin n t}{t} d t=o(1) \tag{3.8}
\end{equation*}
$$

We will begin by the case $n=M_{k}$. Dividing I into three parts, we put

$$
I=\sum_{i=1}^{\infty} \int_{\Delta_{i}}=\sum_{1=i}^{\infty} I_{i}=\sum_{i=1}^{k-1} I_{i}+I_{k}+\sum_{i=k,+1}^{\infty} I_{i} \equiv J_{1}+J_{2}+J_{3}
$$

say. We have by (3.6),

$$
\begin{align*}
J_{2} & =\int_{\Delta_{k}} \sin ^{\circ} M_{k} t \frac{d t}{t}+M_{k} \int_{\Delta_{k}} \sin M_{k} t \cos M_{k} t d t \tag{3.9}\\
& =\frac{1}{2} \int_{\Delta_{k}}\left(1-\cos 2 M_{k} t\right)+\frac{M_{k}}{2} \int_{\Delta_{k}} \sin 2 M_{k} t d t \\
& =\frac{1}{2} \log \left(1+\frac{n_{k}}{m_{k}}\right)+O\left(\frac{m_{k}}{M_{k}}\right) .
\end{align*}
$$

If we take

$$
\begin{equation*}
n k_{i}^{\prime} m k \rightarrow 0 \quad(k \rightarrow \infty) \tag{3.10}
\end{equation*}
$$

then $J_{2}=o(1)$.

$$
\begin{equation*}
J_{1}=\sum_{i=1}^{h-1}\left\{\int_{\Delta_{i}} \sin M_{i} t \sin N_{k} t \frac{d t}{t}+M_{i} \int_{\Delta_{i}} \cos M_{i} t \sin M_{k} t d t\right. \tag{3.11}
\end{equation*}
$$

$$
=O\left(\sum_{i=1}^{k-1} \frac{n_{i}}{M_{k}-M_{i}}\right)+O\left(\sum_{i=1}^{k-1} \frac{M_{i}}{M_{k}-M_{i}}\right)=O\left(\sum_{i=1}^{k-1} \frac{M_{i}}{M_{k}-M_{i}}\right) .
$$

Similarly

$$
\begin{equation*}
J_{2}=O\left(\sum_{i=k+1}^{\infty} \frac{n i}{M i-N_{k}}+M_{k} \sum_{i=k+1}^{\infty} \frac{M_{i}}{m i n i}\right) . \tag{3.12}
\end{equation*}
$$

Let us take

$$
\begin{equation*}
c_{k} \equiv M_{k} \equiv k^{3} 2^{k^{2}}, \quad m k \equiv k^{2} z^{2}, \quad n k \equiv 2^{2}, . \tag{3.13}
\end{equation*}
$$

Then the conditions (3.3), (3.6), (3.7) and (3.10) are satisfied, and the sequence of intervals (3.1) is disjoint. By (3.11) and (3.12), $J_{1}=o(1), J_{2}=o$ (1).

Thus the condition 2^{0} is satisfied for $n=N_{1 k}(k=1,2, \ldots)$. We have to show it for all n. For this purfose we take k such as $M_{k}<n<M_{k+1}$, and put

$$
I=\sum_{i=1}^{\infty} I_{i}=\sum_{i=1}^{k-1} I_{i} \dot{r}^{-}\left(I_{k}+I_{k+1}\right)+\sum_{i=k+2}^{\infty} I \equiv J_{1}^{\prime}+J_{2^{\prime}}+J_{3}^{\prime}
$$

J_{2}^{\prime} can be estimated similarly as J_{2}, except that the second term of (3.9) does not vanish but is sufficiently small. J_{1}^{\prime} and J_{3}^{\prime} are similarly estimated as J_{1} and J_{3}, respectively. Thus Theorem 2 is completely proved.
§4. Proof of Theorem 3. Let us take the sequence of intervals (3.1) and define $f(t)$ by (3.2). If the condition (3.3), (3.6) and (3.7) are satisfied, thẹn (3.4) holds, $f \varepsilon L^{p}$ and the condition 3^{0} is satisfied. The condition 2^{0} is satisfied when

$$
\begin{equation*}
l \equiv \int_{0}^{\pi} f(t)-\frac{\sin n t}{t} d t=O\left(\frac{1}{\log n}\right) \tag{4.1}
\end{equation*}
$$

Putting $n \equiv M_{k}$ and $I \equiv J_{1}+J_{2}+J_{3}$ as in \S 3, we get, by (3.9),

$$
\begin{equation*}
J_{2}=\frac{n_{k}}{2 m_{k}}(1+o(1)) \tag{4.2}
\end{equation*}
$$

when (3.10) is satisfied. If we take

$$
\begin{equation*}
\frac{n_{k}}{m_{k}} \log M^{k} \rightarrow a \neq 0, \tag{4.3}
\end{equation*}
$$

then $J_{2}=O\left(1 / \log M_{k}\right)$.
Lẹt us put

$$
\begin{equation*}
c_{k} \equiv N_{k} \equiv k^{3} \cdot k^{2}, \quad m_{k} \equiv k^{2} \cdot \subset k^{2}, \quad r_{k} \equiv 2^{k^{2}} . \tag{4.4}
\end{equation*}
$$

Then the condition (3.3), (3.6), (3.7), (3.10) and (4.3) are satisfied and $J_{1}+J_{3}=$ $O\left(1 / \log M_{k}\right)$. Thus we get (4.1). For general n we get also (4.1) as in $\S 3$.

Concerning the condition 1^{0},

$$
\begin{aligned}
a_{M_{k}} & =\frac{?}{\pi} \int_{0}^{\pi} J(t) \cos M_{k} t d t \\
& =\frac{2}{\pi} \sum_{i=1}^{\infty} M_{i} \int_{\Delta i}\left[t \cos M_{k} t+\frac{1}{M_{k}} \sin M_{k} t\right] \cos M_{k} t d t \\
& =\frac{1}{\pi} \frac{M_{k}}{n_{k} m_{k}}(1+o(1))=O\left(M_{k}^{-8}\right)
\end{aligned}
$$

for $0<\delta<1$. For general n, a_{n} becomes also $O\left(1 / n^{\delta}\right)$. Thus the theorem is completely proved.
§ 5. Proof of Theorem 4. The case $\alpha=1$. Let us consider the sequence of intervals (3.1) and let $f(t)$ be an even function such that

$$
\begin{equation*}
f(t) \equiv \frac{M_{k}}{n_{k}} \cos M_{k} t \quad\left(t \in \Delta_{k}\right) \tag{5.1}
\end{equation*}
$$

for $k=1,2, \cdots$ and $f(t) \equiv 0$ in $(0, \pi)-U \Delta_{k}$. If we suppose (3.3), then

$$
\begin{equation*}
\int_{\Delta_{k}} f(t) d t=\left[\frac{\sin M_{k} t}{n k}\right]_{t=\pi n_{k}}^{t=\pi n_{k}+\pi / m_{k}}=0 . \tag{5.2}
\end{equation*}
$$

By

$$
\int_{0}^{\pi}|f(t)|^{p} \leqq \sum_{k=1}^{\infty}\left(\frac{M_{k}}{n k}\right)^{p} \int_{\Delta k} d t=\pi \sum_{k=1}^{\infty} M_{\varphi}^{*} / n^{p} m_{k},
$$

In order that $f \varepsilon L^{p}$, it is sufficient to take

$$
\begin{equation*}
\sum_{k=1}^{\infty} M_{k}^{p} / n_{k}^{p} m_{k}<\infty \tag{5.3}
\end{equation*}
$$

For $t: \Delta_{k}$,

$$
\begin{equation*}
\int_{0}^{t} f(u) d u=\int_{\pi n_{k}}^{t} f(u) d u=\frac{\sin M_{k} t}{n k} \tag{5.4}
\end{equation*}
$$

by (5.1) and (5.2). If we suppose (3.10), then, by (5.2) and (5.4), $\Phi(t)$ $\frac{1}{t} \int_{0}^{t} f(u) d u=(1+o(1)) \sin M_{k} t\left(t \in \Delta_{k}\right)$ for $k=1,2, \cdots$ and $\Phi(t)=0$ in $(0, \pi)$ - $\cup \Delta_{k}$. And then, for $t \varepsilon \Delta_{k}$,

$$
\begin{equation*}
\int_{0}^{t}|\Phi(u)| d u \geqq \frac{1}{\pi} \sum_{j=k+1}^{\infty} \int_{\Delta j} d u \geqq \sum_{j=k+1}^{\infty} \frac{1}{m_{j}} . \tag{5.5}
\end{equation*}
$$

If we suppose

$$
\begin{equation*}
\sum_{j=k+1}^{\infty} \frac{1}{m_{j}}>\frac{1}{2 n_{k}} \tag{5.6}
\end{equation*}
$$

then
(5.7')

$$
\int_{0}^{t}|\Phi(u)| d u \geqq \frac{t}{2},
$$

which implies the condition 1^{10}.
Let us consider the Fourier series (1.2) of $f(t)$, and by σ_{n} denote its ($C_{2} 1$) mean at $t=0$. Then

$$
\begin{align*}
\sigma_{n}-f(0) & =\sigma n=\frac{1}{\pi(n+1)} \int_{0}^{\pi} f(t) \frac{\sin ^{2}(n+1) t / 2}{\sin ^{2} t / 2} d t \tag{5.8}\\
& =\frac{4}{\pi n} \int_{0}^{\pi} f(t) \frac{\sin ^{2} n t / 2}{t^{2}} d t+o(1) \\
& =\frac{2}{\pi} \int_{0}^{\pi} \Phi(t) \frac{\sin n t}{t} d t+\frac{8}{\pi n} \int_{0}^{\pi} \Phi(t) \frac{\sin ^{2} n t / 2}{t^{2}} d t+o(1) \\
& \equiv \frac{2}{\pi} 1+J+o(1)
\end{align*}
$$

say. By the definition

$$
\int_{0}^{t} \Phi(u) d u=o(t), \int_{0}^{t}|\Phi(u)| d u=O(t),
$$

which implies $J=o(1)$ by a well known theorem. We have also

$$
\begin{aligned}
I & =\int_{0}^{\pi} \Phi(t) \frac{\sin n t}{t} d t \\
& =\sum_{k=1}^{\infty} \int_{\Delta_{k}}(1+o(1)) \sin M_{k} t \frac{\sin n t}{t} d t \\
& =\sum_{k=1}^{\infty}\left[\int_{\Delta_{k}}(1+o(1)) \frac{\cos \left(M_{k}-n\right) t}{t} d t-\int_{\Delta_{k}}(1+o(1)) \frac{\cos \left(M_{k}+n\right) t}{t} d t\right] .
\end{aligned}
$$

For any n there is a μ such as $M_{\mu}<n \leqq M_{\mu+1}$. Let

$$
I=\sum_{k=1}^{\infty}=\sum_{k=1}^{\mu}+\sum_{k=\mu+1}^{\infty} \equiv l_{1}+I_{2}
$$

As I_{2}^{\prime} in $\S 3$, the last term in I_{1} and the first term of I_{2} are

$$
O\left(\log \left(1+n_{k} / m_{k}\right)\right)=O\left(n_{k} / m_{k}\right)=O(1)
$$

by (3.10). If (M_{k}) is taken as convex and

$$
\begin{equation*}
M_{k+1}-M_{k}>k n_{k} \quad(k=1,2, \ldots) \tag{5.9}
\end{equation*}
$$

then, for $k<\mu$:

$$
\left(n-M_{k}\right) \vdots n>\left(M_{\mu}-M_{k}\right) / n_{k}>(\mu-k)\left(M_{k+1}-M_{k}\right) / n_{k}>(\mu-k) k .
$$

Thus

$$
\begin{aligned}
& I=\sum_{k=1}^{\mu-1}+o(1)=O\left(\sum_{k=1}^{\mu-1} \frac{n k}{n-M M_{k}}\right)+o(1) \\
& =O\left(\sum_{k=1}^{\mu-1} \frac{1}{(\mu-k) k}\right)+o(1)=o(1) .
\end{aligned}
$$

Let a be an integer $>2 p+1$ and put

$$
\begin{equation*}
M_{k} \equiv k^{a+2}, \quad m k \equiv k^{a+1}, \quad n k \equiv k^{a} . \tag{5.10}
\end{equation*}
$$

Then the conditions (3.3), (5.3), (3.10), (5.7) and (5.9) are satisfied. Moreover

$$
I_{2}=o(1)+\sum_{k=\mu+1}^{\infty} O\left(\frac{n_{k}}{M_{k}-M_{\mu}}\right)=o(1)
$$

Thus $I=o(1)$, where $\sigma_{n}=o(1)$ by (5.9). Thus Theorem 4 is proved for $\alpha=1$.
§6. Proof of Theorem 4. The general case. We may restrict to the case $0<\alpha<1$ only. For, the cases $\alpha=0$ and $\alpha=1$ were proved and the general case $\alpha>1$ is obtained by the combination of two methods in $\S 5$ and $\S 6$.

We need a lemma ${ }^{4}$.
Lemma. If $0<\alpha<1$ and

$$
\begin{equation*}
\int_{0}^{t} \phi_{x}(u) d u=o\left(t^{1 \alpha}\right) \quad(t \rightarrow 0) \tag{6.1}
\end{equation*}
$$

then the Fourier series (1.2) of $f(t)$ is summable (C, a) at $t=x$.
For the proof of Theorem 4, we may suppose that $x=0$. Taking a sequence of disjoint intervals (3.1) and put

$$
\begin{equation*}
f(t) \equiv \frac{M_{k}^{\alpha}}{n_{k}^{\alpha}} \cos M_{k} t \quad\left(t \in \Delta_{k}\right) \tag{6.3}
\end{equation*}
$$

for $k=1,2, \ldots$ and $f(t) \equiv 0$ in $(0, \pi)-U \Delta_{k}, f(t) \equiv f(-t)$ in $(-\pi, 0)$. If we suppose (3.3), then (5.2) holds. If

[^0]\[

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{M_{k}^{\alpha \phi}}{3_{k}^{\alpha \phi} m k}<\infty \tag{6.4}
\end{equation*}
$$

\]

then $f \varepsilon L^{p}$ for $p>1$. By $f_{\alpha}(u)$ we denote the α-th integral of $f(u)$, then

$$
\begin{aligned}
f_{u}(t) & =\sum_{j=k+1}^{\infty} \int_{\Delta_{j}} f(u)(t-u)^{\alpha-1} d u+\int_{\pi}^{t} f(u)(t-u)^{\alpha-1} d u \\
& =\sum_{j=k+1}^{\infty} \frac{M_{j}^{\alpha}}{n_{j}^{\alpha}} \int_{\Delta_{j}} \cos M_{j} t(t-u)^{\alpha-1} d u+\frac{M_{k}^{\alpha}}{n_{k}^{\alpha}} \int_{\pi n_{k}}^{t} \cos M_{k} t(t-u)^{\alpha-1} d u
\end{aligned}
$$

for t in Δ_{k}. If we put

$$
\psi_{f_{\alpha}}(t)=\frac{M_{k}^{\alpha}}{t^{\alpha} \beta_{i k}^{\alpha}} \int_{\frac{i}{n_{k}}} \cos M_{k} u(t-u)^{\alpha-1} d u \quad\left(t \varepsilon \Delta_{k}\right)
$$

for $k=1,2, \ldots$ and $\Psi_{\alpha}(t) \equiv 0$ in $(0 . \pi)-U \Delta_{k}$, and put

$$
\Theta_{\alpha}(t) \equiv \sum_{j=k+1}^{\infty} \frac{M_{j}^{\alpha}}{t^{\alpha} n_{j}^{\alpha}} \int_{\Delta_{j}} \cos M_{j u}(t-u)^{\alpha-1} d u
$$

in the interval $\Delta_{k}^{1} \equiv\left(\frac{\pi}{n_{k+1}}+\frac{\pi}{m_{k+1}} \cdot \frac{\pi}{n_{k}}+\frac{\pi}{m_{k}}\right)\left(k^{\prime}=1,2, \ldots\right)$, then we have

$$
\Phi_{a}(t)=\Psi_{\alpha}(t)+\Theta_{\alpha}(t) .
$$

Since

$$
\left|\int_{\Delta_{i}} \cos M_{i u}(t-u)^{\alpha-1} d u\right| \leqq \frac{1}{M_{i}}\left(t--\frac{\pi}{n_{i}}\right)^{\alpha-1},
$$

for $i \geqq k+1$, we have

$$
\begin{gathered}
\left|\Theta_{\infty}(t)\right| \leqq \frac{1}{t} \sum_{i=k+1}^{\infty} \frac{1}{n_{i}^{\alpha} M_{i}^{1-\infty}}, \\
\int_{0}^{t}\left|\Theta_{a}(u)\right| d u \leqq 2 \sum_{j=k+1}^{\infty} \log \frac{n_{i+1}}{n_{j}} \sum_{i=j+1}^{\infty} \frac{1}{n_{i}^{n} M_{i}^{-a}} .
\end{gathered}
$$

Hence, if

$$
\begin{equation*}
\sum_{j=k+1}^{\infty} \log \frac{n_{j+1}}{n_{j}} \sum_{i=j+1}^{\infty} \frac{1}{n_{i}^{\alpha} M_{j}^{1-\alpha}}=0\left(\frac{1}{n k}\right), \tag{6.5}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\int_{0}^{t}\left|\Theta_{a}(u)\right| d u=o(t) . \tag{o.6}
\end{equation*}
$$

On the other hand, for $t \in \Delta_{k}$,

$$
\begin{aligned}
\Psi_{a u}(t) & =-\frac{1}{t^{\alpha}}-\int_{\pi, n_{k}}^{t} \frac{M_{k}^{\alpha}}{u_{k}} \cos M_{k u}(t-u)^{\alpha-1} d u \\
& =\frac{M_{k}^{\alpha}}{t^{\alpha} n_{k}} \int_{\pi i n_{k}}^{t} \cos M_{k u}(t-u)^{\alpha-1} d u \\
& =\frac{M_{k}^{\alpha}}{u_{k}} \int_{\pi t n_{k}}^{1} \cos M_{k} t u(1-u)^{\alpha-1} d u
\end{aligned}
$$

As easily may be seen by elementary estimation, we have

$$
\int_{\Delta_{k}}\left|\Psi_{\alpha}(t)\right| d t \geqq \frac{\text { const }}{m_{k}}
$$

Thus, if the condition (5.7) is satisfied, we get

$$
\int_{0}^{t}\left|\Psi_{a}(u)\right| d u \neq o(t) .
$$

whence, by (6.6),

$$
\int_{0}^{t}\left|\Phi_{a}(u)\right| d u \neq o(t) .
$$

This is nothing but the condition 1^{0}.
Concerning the condition 2^{0}, it is sufficient to prove (6.1). ${ }^{5}$) We have

$$
\int_{0}^{t} f(u) d u=\int_{\pi / n_{k}}^{t} f(u) d u=\frac{M_{k}^{\alpha}}{n_{k}^{\alpha}} \int_{\pi n_{k}}^{t} \cos M_{k u} d u=O\left(\overline{n_{k}^{\alpha}} \frac{1}{M_{k}^{1-\alpha}}\right)
$$

for t in Δ_{k}, which is $o\left(n_{k}^{1}\right)$ when

$$
\begin{equation*}
\frac{1+\alpha}{n_{k}^{\alpha}} / M_{k}=o(1) . \tag{6.7}
\end{equation*}
$$

Let us take

$$
\begin{equation*}
M_{k} \equiv k^{b}, \quad m k \equiv k^{a+1}, \quad n k \equiv k^{a} \tag{6.8}
\end{equation*}
$$

a and b being positive integers. (3.3) and (3.10) are evident when $b>a+1$. (6.4) and (6.7) are satisfied when

$$
\begin{equation*}
a(\alpha+1)>\alpha b \tag{6.9}
\end{equation*}
$$

(6.5) is satisfied for sufficiently large p.

Hence the theorem is proved.
For the general α we remark that, for integral α we use α times the integration by parts to the α-th Cesàro mean σ_{n}^{α} of the Fourier series and use
5) Cordition 2° can, of course, be proved directly, without use of Lemma. Direct estimation leads also to (6.7).
the method of $\S 5$, and for non-integral α we use $[\alpha]$ times integration by parts to σ_{n}^{α} and the above method. In these case $\Phi_{\alpha}(t)$ does not vanish in $(0, \pi)-U \Delta_{k}$ for $\alpha \geqq 2$. Estimation of terms rising from such part is easy. ${ }^{6}{ }^{6}$
§7. Proof of Theorem 5. We can prove the theorem modifying the example of theorem 4. We will now show the method of modification for the case $\alpha=1$. In the example of Theotem $4 n_{k} / m_{n} \rightarrow 0$, but in this case $m k / n k \rightarrow 0$, that is, the length of Δ_{k} is taken longer in this case. Therefore we denote the sequence of intervals by

$$
\begin{equation*}
\Delta_{k}=\left(\frac{\pi}{n_{k}}, \frac{\pi}{m k}\right) \quad(k=1,2, \cdots) \tag{7.1}
\end{equation*}
$$

We define an even function by

$$
\begin{equation*}
f(u)=\frac{M_{k}}{m k} \cdot c_{k} \cos M_{k: 3} \quad\left(u \in \Delta_{k}\right) \tag{7.2}
\end{equation*}
$$

for $k=1,2, \cdot \cdot$ and $f(u) \equiv 0$ in $(0, \pi)-U \Delta_{k}$. When (3.3) is satisfied, (5.2) holds. When

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{N_{k}^{p}}{m_{i k}^{p+1}}<\infty, \tag{7.3}
\end{equation*}
$$

$f \in L^{p}$. Moreover

$$
\Phi(t)=\frac{1}{t} \int_{0}^{t} f(u) d u=c_{k}(1+o(1)) \sin M_{k} t \quad\left(t \varepsilon \Delta_{k}\right)
$$

for $k=1,2, \cdots$ and $\Phi(t)=0$ in $(0, \pi)-U \Delta_{k}$. Thus $\Phi(t)=o(1)$ as $t \rightarrow 0$, when

$$
\begin{equation*}
c_{k} \rightarrow 0 \quad(k \rightarrow \infty) . \tag{7.4}
\end{equation*}
$$

Hence the condition 1^{0} is satisfied.
In order to verify the condition 2^{0}, we consider (5.8). Evidently $J \ni o(1)$. Hence it is sufficient to show that $I \rightarrow \infty$. Now

$$
\begin{aligned}
\frac{\pi}{2} l & =\int_{0}^{\pi} \Phi(t) \frac{\sin M_{\mu} t}{t} d t \\
& =\sum_{k=1}^{\infty} c_{k} \int_{\Delta_{k}}(1+o(1)) \cdot \sin M_{k} t \frac{\sin M_{\mu} t}{t} d t
\end{aligned}
$$

for $n=M_{\mu}(\mu=1,2, \cdots)$. Here we can omit the term $o(1)$ by its structure. Hence
6) Cf. §8. In the case $\alpha \geqq 1$, insted of (6.1) use $\int_{0}^{t} \mathscr{P}_{x}(u) d u=O\left(t^{2-1 / \alpha}\right)$. See Izumi and Sunouchi; loc. cit.

$$
\begin{aligned}
I^{\prime} & \equiv \sum_{k=1}^{\infty} c_{k} \int_{\Delta_{k}} \frac{\sin M_{k} t \sin M_{\mu} t}{t} d t \\
& =\sum_{k=1}^{\mu-1}+c_{\mu} \int_{\Delta_{\mu}} \frac{\sin ^{2} M_{\mu} t}{t} d t+\sum_{k=\mu+1}^{\infty} \\
& \equiv I_{1}^{\prime}+I_{2}^{\prime}+I_{3^{\prime}}^{\prime}
\end{aligned}
$$

say, where

$$
\begin{aligned}
I_{2}^{\prime} & =c_{\mu} \int_{\pi n_{\mu}}^{\pi, m_{\mu}} \frac{\sin ^{3} M_{\mu} t}{t} d t \\
& =\frac{c_{\mu}}{2} \int_{\pi n_{\mu}}^{\pi / m_{\mu}} \frac{d t}{t}-\frac{c_{\mu}}{2} \int_{\pi n_{\mu}}^{\pi m_{\mu}} \frac{\cos 2 M_{\mu} t}{t} d t \\
& =\frac{c_{\mu}}{2} \log \frac{n_{\mu}}{m_{\mu}}+o\left(\frac{n_{\mu}}{M_{\mu}^{-}}\right),
\end{aligned}
$$

which tends to ∞ when c_{μ} tends to zero sufficiently showly and

$$
\begin{equation*}
n_{k}!m_{k} \rightarrow \infty, \quad n_{k} A_{k} \rightarrow 0 \quad(k \rightarrow \infty) \tag{7.5}
\end{equation*}
$$

Now, concerning I_{1},

$$
\begin{aligned}
I_{1}^{\prime} & =\sum_{k=1}^{\mu-1}<\left[\int_{\pi n_{k}}^{\pi m_{k}} \frac{\cos \left(M_{\mu}-M_{k}\right) t}{t} d t-\int_{\pi, M_{k}}^{\pi m_{k}} \frac{\cos \left(M_{\mu}+M_{k}\right) t}{t} d t\right] \\
& =\sum_{k=1}^{\mu-1} \frac{c_{k}}{2}\left[\int_{\pi, M_{\mu}-M_{k}, m_{k}}^{\pi\left(M_{\mu}-M_{k}\right) \cdot m_{k}} \frac{\cos t}{t} d t-\int_{\pi, M_{\mu}+M_{k} m_{k}}^{\left.\pi M_{\mu}+M_{k}\right) ; m_{k}} \frac{\cos t}{t} d t\right],
\end{aligned}
$$

and so

$$
\left|I_{1}^{\prime}\right| \leqq 2 \sum_{k=1}^{\mu-1} \frac{n_{k}}{M_{\mu}-M_{k}}
$$

Let $\left(M_{k}\right)$ be a convex sequence and

$$
\begin{equation*}
M_{k} \equiv k^{2} n_{k} \quad(k=1,2, \cdots), \tag{7.6}
\end{equation*}
$$

then $M_{\mu}-M_{k} \geqq(\mu-k) k \cdot n k$ and then $I_{1}{ }^{\prime}=0$ (1). Similarly $I_{3}{ }^{\prime}=0(1)$. Thus we get $I \rightarrow \infty$.

If we take

$$
M_{k} \equiv k^{2}{ }^{k}, \quad m_{k} \equiv k^{\prime} k, \quad n_{k} \equiv 2^{k}, \quad c_{k} \equiv 1 / \log \log k,
$$

then the conditions (3.3), (7.3), (7.4), (7.5) and (7.6) are satisfied. And $\left(M_{k}\right)$ is convex and $\left(\Delta_{k}\right)$ is a system of disjoint intervals.
§8. Proof of Theorem 6. The case $\alpha=0$ is proved in Theorem 3

Let us first consider the case $\alpha=1$. Taking the sequence of intervals (3.1), we define an function $f(t)$ by

$$
\begin{equation*}
f(t) \equiv \frac{c_{k}}{M_{k}^{-}} \sin M_{k} t+3 c_{k} t \cos M_{k} t-\dot{c}_{k} M t^{2} \sin M t \tag{8.1}
\end{equation*}
$$

in $\Delta_{k}(k=1,2, \cdots)$ and $f(t) \equiv 0$ in $(0, \pi)-\cup \Delta_{k}$. If we put

$$
y(t) \equiv \frac{c_{k}}{M_{k}} t \sin M_{k} t
$$

then $f(t)=\left(t y^{\prime}(t)\right)^{\prime}$ in Δ_{k}, dash denoting differentiation with respect to t. We have

$$
\frac{3}{\pi} \int_{\Delta_{k}}|f(t)| d t \leqq \frac{c_{k}}{m k M_{k}}+\frac{3 c_{k}}{n_{k} m k}+\frac{c_{k} M_{k}}{n_{k}^{2} m_{k}} .
$$

If we suppose (3.3), then

$$
\int_{0}^{\pi}\left|f(t) d t=\sum_{k=1}^{\infty} \int_{\Delta_{k}}\right| f(t) \mid d t<\infty
$$

when

$$
\begin{equation*}
\sum \frac{\dot{c}_{k}}{n_{k} m_{k}}<\infty, \quad \sum \frac{c_{k} M_{k}}{n_{k}^{2} M_{k}}<\infty . \tag{8.2}
\end{equation*}
$$

Further, if

$$
\begin{equation*}
M_{k} / m_{k}, \quad M_{k} / n_{k} \quad \text { are even }, \tag{8.3}
\end{equation*}
$$

then

$$
\begin{gathered}
\int_{I_{k}} f(t) d t=\left[c_{k}^{c}-M_{k}^{-} t \sin M t+c_{k} t^{2} \cos M_{k} t\right]_{t=\frac{\pi}{n_{k}}}^{t=\frac{\pi}{n_{k}}+\frac{\pi}{m_{k}}} \\
=c_{k} \frac{\pi_{1}}{m k}\left(\frac{2 \pi}{n_{k}}+\frac{\pi}{m k}\right) .
\end{gathered}
$$

Since

$$
\begin{aligned}
\int_{x, n_{k}}^{t} f(u) d u & =\left[\frac{c_{k}}{M_{k}^{-}} u \sin M_{k} u+c u^{2} \cos M_{k} u\right]_{u=\pi i n k}^{u=t} \\
& =\frac{c_{k}}{M_{k}} t \sin M_{k} t+c_{k} t^{2} \cos M_{k} t-c_{k}\left(\frac{\pi}{n k}\right)^{2}
\end{aligned}
$$

we have

$$
f_{1}(t)=\int_{0}^{t} f(u) d u
$$

$$
\begin{aligned}
& =\frac{c_{k}}{M_{k}} t \operatorname{tin} M_{k} t+c_{k} t^{2} \cos M_{k} t \\
& \quad+\sum_{i=k+1}^{\infty} c_{k} \frac{\pi}{m_{k}}\left(\frac{2 \pi}{n_{k}}+\frac{\pi}{m_{k}}\right)-c\left(\frac{\pi}{n_{k}}\right)^{2}
\end{aligned}
$$

for $t \in \Delta_{k}$, and

$$
f_{1}(t)=\sum_{i=k+1}^{\infty} c_{k} \frac{\pi}{m i}\left(\frac{2 \pi}{n_{i}}+\frac{\pi}{m i}\right)-c_{i}\left(\frac{\pi}{n_{i}}\right)^{2}
$$

for $\frac{\pi}{n_{k+1}}+\frac{\pi}{m_{k+1}}<t<\frac{\pi}{n_{k}}$. Let us put

$$
g_{1}(t)=\frac{c_{k}}{M_{k}} t \sin M_{k} t+c_{k}{ }^{2} \cos M_{k} t \quad\left(t \varepsilon \Delta_{k}\right)
$$

for $k=1,2, \cdots$ and $g_{1}(t) \equiv 0$ in $(0, \pi)-U \Delta_{k}$;

$$
b_{1}(t) \equiv \sum_{i=k+1}^{\infty} c_{i} \frac{\pi}{m i}\left(\frac{{ }^{r} \pi}{n_{i}}+\frac{\pi}{m i}\right)
$$

in the interval $\Delta_{k}^{\prime} \equiv\left(\frac{\pi}{n_{k+1}}+\frac{\pi}{m_{k+1}}, \frac{\pi}{n_{k}}+\frac{\pi}{m_{k}}\right)(k=1,2, \cdots)$;

$$
k_{1}(t) \equiv-c_{k}\left(\pi / n_{k}\right) \quad\left(t \varepsilon \Delta_{k}\right)
$$

for $k=1,2, \cdots$ and $k_{I}(t) \equiv 0$ in $(0, \pi)-U \Delta_{k}$. Then we have

$$
f_{1}(t)=g_{1}(t)+b_{1}(t)+k_{1}(t)
$$

for all t in $(0, \pi)$, and

$$
\begin{align*}
\Phi(t) & =\frac{f_{1}(t)}{t}=\frac{g_{1}(t)}{t}+\frac{b_{1}(t)}{t}+\frac{k_{1}(t)}{t} \tag{8.4}\\
& \equiv \psi_{1}(t)+\chi_{1}(t)+\theta_{1}(t)
\end{align*}
$$

say.
Let us consider the Fourier series of $f(t)$ and σ_{n} be its Cesàro mean of order 1. In order to get $\sigma_{n}=O(1 / \log n)$, it is sufficient to prove that

$$
\sigma n^{\prime} \equiv \frac{1}{n} \int_{0}^{\pi} f(t) \frac{\sin ^{2} n t / 2}{t^{2}} d t=O(1 / \log n)
$$

Now

$$
\sigma_{n}^{\prime}=\int_{0}^{\pi} \Phi(t) \frac{\sin n t}{t} d t-\frac{2}{n} \int_{0}^{\pi} \Phi(t) \frac{\sin ^{2} n t}{t^{2}} d t \equiv J_{1}+J_{2}
$$

say. Substituting (8.4) into J_{1},

$$
J=\int_{0}^{\pi} \psi_{1}(t) \frac{\sin n t}{t} d t+\int_{0}^{\pi} x_{1}(t) \frac{\sin n t}{t} d t+\int_{0}^{\pi} \theta_{1}(t) \frac{\sin n t}{t} d t \equiv K_{1}+K_{2}+K_{3}
$$

say. Similarly we put $J_{2} \equiv K_{1}{ }^{\prime}+K_{2}{ }^{\prime}+K_{3}{ }^{\prime}$.

$$
\begin{aligned}
K_{1} & =\int_{0}^{\pi} \psi_{1}(t) \frac{\sin n t}{t} d t=\sum_{i=0}^{\infty} \int_{\Delta_{i}} \frac{g_{1}(t)}{t} \frac{\sin n t}{t} d t \\
& =\sum_{i=0}^{\infty} \int_{\Delta_{i}}\left\{\frac{c_{i}}{M_{i}} \sin M_{i} t+c_{i} t \cos M_{i} t\right\} \frac{\sin n t}{t} d t
\end{aligned}
$$

Putting first $n=M_{k}$, and dividing K_{1} into three parts, we put

$$
K_{1}=\sum_{i=0}^{\infty} \int_{\Delta_{i}}=\sum_{i=0}^{k-1} \int_{\Delta_{i}}+\int_{\Delta_{k}}+\sum_{i=k+1}^{\infty} \int_{\Delta_{i}} \equiv L_{1}+L_{2}+L_{3}
$$

where

$$
\begin{aligned}
L_{2} & =\frac{c_{k}}{M_{k}^{-}} \int_{\Delta_{k}} \frac{\sin ^{2} N_{k k t}}{t} d t+c_{k} \int_{\Delta_{k}} \cos M_{k} t \sin M_{k} t d t \\
& =\frac{c_{k}}{2 M_{k}} \int_{\Delta_{k}}\left(\frac{1}{t}-\frac{\cos 2 M_{k} t}{t}\right) d t \\
& =\frac{c_{k}}{2 M_{k}} \log \left(1+-\frac{n_{k}}{m_{k}}\right)-\frac{c_{k}}{2 M_{k}} \int_{\frac{2 \pi M_{k}}{n_{k}}}^{2 n_{n_{k}}^{\pi}+\frac{\mathcal{H}_{k}}{m_{k}} M_{k}} \frac{\cos t}{t} d t .
\end{aligned}
$$

If the condition (3.10) is supposed,

$$
L_{2}=\frac{c_{k} n_{k}}{2 M_{k m k}}(1+o(1))+O\left(c_{k} n_{k} / M_{k}^{2}\right)
$$

In order that $L_{2}=O\left(1 / \log M_{k}\right)$, it is sufficient that

$$
\begin{equation*}
\frac{c_{k} m_{k}}{M_{k} m_{k}} \log M_{k} * 0 . \tag{8.5}
\end{equation*}
$$

Similarly estimating as (3.11) and (3.12),

$$
\begin{equation*}
L_{1}=O\left(\sum_{i=1}^{k-1} \frac{M_{i}}{M_{k}-M_{i}}\right) \tag{8.6}
\end{equation*}
$$

$$
\begin{equation*}
L_{2}=O\left(\sum_{i=k+1}^{\infty} \frac{n_{i}}{M_{i}-M_{k}}+M_{k} \sum_{i=k+1}^{\infty} \frac{M_{i}}{m_{i} n_{i}}\right) . \tag{8.7}
\end{equation*}
$$

Before going to the estimation of K_{2}, K_{3} and J_{2}, we will consider the condition 2°. We put

$$
\begin{aligned}
f_{2}(t) & \equiv \int_{0}^{t} \Phi(t) d t=\int_{0}^{t} f_{1}(u) d u+\int_{0}^{t} x_{1}(u) d u+\int_{0}^{t} \theta_{1}(u) d u \\
& \equiv g_{2}(t)+b_{2}(t)+k_{2}(t) .
\end{aligned}
$$

Since

$$
g_{9}(t)=-c_{M_{k}^{-}}^{c k} t \sin M_{k} t
$$

we have

$$
\psi_{2}(t) \equiv g_{2}(t) / t=O(1), \text { and } \neq 0(1)
$$

when

$$
\begin{equation*}
c_{k}=M_{k} \quad(k=1,2, \cdots) \tag{8.8}
\end{equation*}
$$

Then (8.5) becomes

$$
\begin{equation*}
\frac{n_{k}}{m_{k}} \log M_{k} \rightarrow a \neq 0 \tag{8.9}
\end{equation*}
$$

Let us take

$$
\begin{equation*}
c_{k} \equiv M_{k} \equiv(2 k)^{3} 2^{k^{2}}, \quad m \equiv(9 k)^{2} 2^{k^{2}}, \quad r_{k} \equiv k^{2} . \tag{8.10}
\end{equation*}
$$

Then the conditions (8.2), (8.3), (8.8), and (8.9) are satisfied. By (8.6) and (8.7;,

$$
L_{1}+L_{2}=O\left(1 / \log M_{k}\right) .
$$

Thus we get $K_{1}=O\left(1 / \log M_{k}\right)$. Similarly $K_{1}^{\prime}=O\left(1 \log M_{k}\right)$.
Concering K_{2},

$$
\begin{aligned}
K_{2} & =\int_{0}^{\pi} \chi_{1}(t) \frac{\sin M_{k} t}{t} d t \\
& =\sum_{i=1}^{\infty} \int_{\Delta_{i}} \frac{\sin M_{k} t}{t^{2}} d t \sum_{j=i+1}^{\infty} c_{j} \frac{\pi}{m_{j}}\left(\frac{2 \pi}{n_{j}}+\frac{\pi}{m_{j}}\right) \\
& =\sum_{i=1}^{k-1}+\sum_{i=k}^{\infty} \equiv K_{2}^{\prime}+K_{a^{\prime \prime}}^{\prime \prime},
\end{aligned}
$$

say. We have

$$
\begin{aligned}
& K_{2}^{\prime}=O\left(\sum_{i=1}^{k-1} \frac{n_{i+1} M_{i+1}}{M_{k} m_{i+1}}\right)=O\left(\frac{1}{\log M_{k}}\right), \\
& K_{2}^{\prime \prime}=O\left(\sum_{i=k}^{\infty} \frac{M_{k} \cdot i M_{i+1}}{m_{i+1} n_{i+1}}\right)=O\left(\frac{1}{\log M_{k}}\right) .
\end{aligned}
$$

Thus we have $K_{2}=O\left(1 / \log M_{k}\right) . K_{3}$ is also of order $O\left(1 / \log M_{k}\right)$. For general n we can estimate similarly as in the last part of $\S 3$. Thus we have proved

Theorem $\mathfrak{6}$ for $\alpha=1$. For the case $\alpha=2$, it is sufficient to use

$$
f(t)=\left(t\left(t y^{\prime}(t)\right)^{\prime}\right)^{\prime},
$$

and so on. For fractional α such as $1<\alpha<2$, we have

$$
f(t)=\left(t^{\alpha-1}\left(t y^{\prime}(t)\right)^{\prime}\right)^{(\alpha-1)}
$$

where $z^{(\beta)}$ denotes a sort of the β-th derivative $(0<\beta<1)$ such that

$$
\left(t^{n}\right)^{(\alpha-1)}=n t^{n-(x-1)},(\sin n t)^{(\alpha-1)}=n^{\alpha-1} \sin n t,(\cos n t)^{(\alpha)}=n^{\alpha-1} \cos n t
$$

and

$$
\left(q^{w}\right)^{(\beta)}=q^{(\beta)} w+q^{w^{(\beta)}} .
$$

For general α, it is easy to write the form of function. Estimation is quite similar.

Tôhoku University, Sendai.

[^0]: 4) Cf. Izumi and Sunouchi, Notes on Fourier Analysis (XXXI): Theorems concerning Cesàro summability.
