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1.

1. Let E be a bounded Borel set of points on g-plane. We distribute a
positive mass du (4) of total mass 1 on E and let

@)= log— L du(a), (u(B) = 1),

E Iz — al

then 4 (z) is harmonic outside of E. Let I/, be the upper limit of () for
[gl < and IV =inf /., then C(E)=¢-" is called the logarithmic capacity
of E. Hence if C (]%) >0, i.e. I/ < w, then we can distribute a positive mass
du on E, such that IV, < «.

Evans® proved the following theorem, which we use in the proof of
Theorem 5,

Lewma 1. (Evans.) Let E be a bounded closed set of logarithmic capacity gero
on g-plane, then we can distribute a positive mass of total mass 1 on E, such that
#(g) tends to+ o, when g tends to any point of E.

Beurling” proved the following important theorems :

TueoreM 1. (BrURLING.) Let w=f(g) be regular in 13| <1 and the area A
on w-plane, which is described by w= f) (gl <1) be finite, i. e.

A= ] 17 e rado < =,
[z} <1

then the set E of points ¢* on |g| =1, such that

*) Received October 5, 1949.

1) G. C. Evans: Potentials and positively infinite singularities of harmonic functions.
Monatshefte fiir Math. u. Phys. 43 (1936). Evans proved for Newtonian potentials
and the proof can be easily modified in the case of logarithmic capnacity. This
is done by K.Noshiro in his paper : Contributions to the theory of the singularities
of analytic functions. Jap. Jour., Math. 19 No.4 (1948).

2) Beurling: Ensembles exceptionelles. Acta Math, 72 (1940).
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1

S If (re®)| dr =0

is of logarithmic capacity gero.
Hence the set of points ¢%, such that lim f(r%) does not exist or
r—1"
lim [f (re*)| =  is of logarithmic capacity zero.
7—1
Turorem 2. (BeurLiNG) Let w=f(3) be meromorphic in |g| <1 and the
area A on w-sphere, which is described by w =f(3) (Ig] < 1) be finite, i. e.

Lf )] Y’
a= I} (i) o <=

then the set E of points ¢ on |g| =1, such that im f(re®) does not exist is of
r—1

logarithmic capacity gero.
We will prove the following more general theorems :

Tueorem 3. Let w= f(3) be regular in || <1 and
A= SS If (re®®)|® rdrd 6 <

lzl<1

then there. exists a certain set E on Iz] =1, which is of logarithmic capacity
ero, such that if ¢ does mot belong to E, them a rectilinear segment, which
connects e% to any point 3 in || <1 is mapped on a rectifiable curve on w-plane.

TueoreM 4. Let w = f(3) be meromorphic in |g| <1 and

() i<

then there exists a certain set E on 3| =1, which is of logarithmic capacity
gero, such that if €% does wot belomg to E, then a rectilimear segment, which
connects e to any point g in |3| <1 is mapped on a rectifiable curve on w-sphere.

Hence the set of points ¢#, such that Sl_—!'—jj[-}%?"l)-]z dr=ow is of loga-

rithmic capacity zero.

o 7 (4050
If ST%LI}T dr < o then 1’1311 f(re*®) exists.

2. We use the following lemmas in the proof.

Lewva 2. Let w=f(3) be meromorphic in a domain D: 0< r<R,
0=0=<0,(3=re*) and take certain three values finite times in D.
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(i) If'lfgnf(r) =a, 'lilglf(re"‘*‘)= B exist, then a =B = o and f(3) tends to o
uniformly, when g tends to 3 =0 from the inside of D.

(i) If l'izroxf(r) = w exitts, then [(3) tends to o uniformly, when g tends to 3 =G
Sfrom the inside of an angular domain D,: 0<r=<R, 0=0=<6,—8 for any
6> 0.

(i) is due to Lindelof and (iij is Montel’s theorem, when f () is bounded

in D. The general case can'be reduced to this case by means of modular
function in the well known way.

(o9 2
Remark. If S;g <ﬁ%)9)—lg> rdrd @ < o, then f(z) takes almost all values

finite times in D, so that satisfics the above condition.

Lemma 3. (Fejir anp F. Riesz.)» Lez w=f(3) be regular in |3| =1, then

Slf(z)l ldz| < —— g If ()] 11,

- m 1

where the left hand side is integrated on the diameter (=1, 1) of |g| =1
If we apply the lemma on f' (), we have

S If Q&= —- g If' () 14zl

! T =1
the left hand side is the length of the image of the diameter (- 1, 1) and the
right hand side is that of || =1,

When f(g) is regular in |gj <1. except at =1 and is continuous in
[x] =1, it is easily proved that the same relation holds.
Lemma 4. Let w= f(3) be regular in a domain D: 0<r<R, 0<60=<6,
(z = re®) and takes certain three values finite times in D. If
R

R
S [f(r)dr=L <o, S If (re®)| dr < L < w0,
0 0

then

R
L) = S If (re®)| dr < L + KR, (0=6=<0,),

where K =01;4'clx If (Re®)].

3) L. Fejér u. F. Riesz: Uber einige funktionentheoritische Ungleichungen, Math. Zeits.,
11 (1921),
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R R
Proor. Since ‘ If ()] dr < o, S If (re?®)| dr < o, lir? VAR lirgl [ (reio)

exist, so that by lemma 2, f(g) is continuous in the closed domain D. We
map D conformally on a unit circle [£| <1, such that the segm nt g = re*/2
(0= r < R) is mapped on a diameter of [¢| =1. Since |f'(3)||dg| is invariant
by conformal mapping, we have by letima 3,

R R R
(g )= eanids g (if Ol s g {1 ceold
6o .
+ %g If (Re®)| Rd6 = L + KR6,/2. (1)

We divide the interval (0, 6,) into 2* equal parts, then we will prove by
induction, that
I(yﬁo/z”)éL—}- KR00(2—1+ et 2—”)’ (Vz 0,1, 2""72”)’ (2)

By (1), (2) holds for »=1.
Suppose that (2) holds for # = , then

L(v0,/2") <L+ KR 6,(2-2+ --- + 2-m), 0= v=2m),
L(»+1)6/2") <L+ KR 6,21+ - + 2-m), O=r=2m-1).

Similarly as (1), we have

L (v + 1) 6427+) < —— L (#65/27) + 3 L{(v + 1) 0,/27)

(v+1)60,2™
+ 5|1/ R RdO<L+KRO, @+ - +2°7)
vég 2m
+ KR 0y/2m+1 =L+ KR 6, (2-1 + - + 2-m-1), (00X p=<2m—1),
L (20 60,/2m+1) = L (v0y2") <L + KR 6,2~ + - + 2-m)
<L+ KRG,(2- 1+ -.. + 2-m-1), (0 < v < 2m),

so that (2) holds for n=m+ 1, (0 <» <2n+1). Hence by induction, (2) holds
for any #.
From (2), we have

L (v 6,/2%) < L + KR 6,. (3)

Let 6 be any value in (0, 6,), then we can find »,, such that », 6,/2% > 6
(n—> o), so that by (3),
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. o
Loz () U
Remark, Hence
R R
L(ﬂ)églf’(r)ldr+Slf’(re"%)ldwr KR 6, (5)
0 0

Lemva 5. Let w=f(3) be meromorphic in a domain D: 0<r=R,
0=<6 =<0, (g =re®) and take certain three values finite times in D. If
R

\_ FAG) dr < oo, 1\3 [ f (ret®)] i< o,
J I+ 1f(nI2 J1+ |f (re®0)]
then there exists a constant K, such that
R .
_( If (re")]
L@e=\_Y V"7 Jr<K, 0<60=<40,).
©) Sl+lf(re“’)l‘~’ 4 ( 0

0

Proor. From the hypothesis, lim f(r) = a, lim f(re'%) = B exist, so that

r-0 -0
by Lemma 2, « = 8= o and f(z) tends to o uniformly, when g tends to
g =0 from the inside of D. By a suitable rotation of u-sphere, we may

assume that o =0 and f(g) is regular and bounded in D, such that |f(z)| < M
in D, then by the remark of Lemma 4. '

0

B o ) R ‘ R R ‘
L(6)= Sftl—_l_f@;iwdréig | f (re®)] d/‘§§ [ f(r)] dr + § [ f-(re*®) dr + KR 6,
f

(re*)]|
I+ [f(re®o)]

R R
2 ,f/(r)l 2
=0+ M)§m_2_dr+(l+ M)S

so that L (¢) is bounded for 0 <6 < 4,.

dr + KR 8,,

0

3. Proor or THEOREM 4,

We will prove Theorem 4, since Theorem 3 can be proved similarly. Let

¢ be a point on |z| =1 and K be a circle 1Z _ 3% 1

—|= which has a radius

% and touches |g| =1 internally at ¢%.

Let / be a seg nent through ¢, which makes an angle ¥ — Z < ¢ < l;—)
with the radius of [g| =1 through ¢* and /, be the part of J, which is con-

tained in K.
We put
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] 7
L) = Slq, 1;_]‘!}(?%)1}3 fdzf, (1)
2(0) = § L () cos ¥ dpr. (2)
—%/2

L (p) is the length of the image of /, on w-sphere by »w = f(3).

First we will prove that the set E of points ¢ on |g| =1, such that
2(6) = o is of logarithmic capacity zero.

Suppose that C(E) >0, then E contains a closed sub-set of positive
capacity, so that we may suppose that E is closed. Since: C (E) > 0, we can
distribute a positive mass of total mass 1 on E, such that for [z| < 0,

4®) = u(re) = S log ——-‘ltgiﬁ du(@) =V, < . (3)

E

#(g) is harmonic in [g| <1 and its Fourier expansion is

©

u(2)='§~-’%(hn cosn 6 + k,sin n6), (4)
where
By = icos n0du (6),  kn stin 16 du (), (5)
so that
iu (re™) due (6) = ; Tt R =V
whence
é—%(ki-f‘ki)é]ym (6)
Hence
mL(—g—‘r‘—f rdrdo = _g—é—}z—(hg+ k2) < —72[_V’“ (7)
If we put
I= SS A 17 rdrdo, (8)

S () o
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sl<1

Now on |g| = 7, we have

_g’;, rd@ =— id arg (re* — ) du (o),

so that

1

=§2du (¢)gdr

0

S‘—’ )] (— darg(re® — ¢')).

14 ;9)12

Hence if we put

FE ()] y
L@)=dr| 7 (- dem8 e = ),

we have

(1@ dule).
E

We will prove that I (@) = « for any point ¢* ¢ E.
Suppose that z =1 (@ = 0) belongs to E, then

x(0)= .
If we put
- i _ - T
— Y =arg (re¥® — 1), ( 5 <Y< 5 >’
then
0=2%
10
1(0) = S (e i

2o 1+[f(re"’)'
: : _ ____rsing Tos] =
Since sin{ = JTEr e —9rcosd’ we have on |g| =7,

_ cosf —r
dr=r 1+ 7>—2rcosd aé.

119

(9)

(10)

(1)

(12)

(13)

(14)

(15)

Hence if we put cos-ir =86, then ¥ =0 for [8] <6, and <0 for

o= |0] < =, so that
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If (re®)] [f (re®®)]
0= § e 5 ). o e 09

We remarI\ that the point [g| = ¢ (0,< |0] <) lies outside a circle

0= 0=
g
|

t

|

Si <9l < <. r—cosf ,‘._1_~< 1 Julp!
ince for §,< ‘0| <7, 0= TR ey v 1, we have |dyr]

lIA

% \

<rd#, so that

4

!—/ﬁ

S N g fOe)  d < vrd.
16

i i }]“(;,eig‘)';_ ' 2, 1 + f(reto),z

(=%

o =

Hence

f e =
o= S L e VA

— f (Z)u drdlr — /= ) .
};L% Ty v — V2 A (17)

+ Now we change variables in the double integral (17) from (r, ¥) to (¢£,%)
by = r'e"* =1 — te- 1"/’ then

, _r cos 1 — .
drd = Vi4 g 2;‘ cos Y drd
Since 1 + #* — 2¢cosir <1 in EZ _12_i§ 1), we have
/2 cos ’
Sg I (Z)]___dl”d\lf— [ v S“i__'f_(__z)l , cos — # i
s By L IRF . 3 T+ IR VI+ = Zzcosy
7 2 (cos ¢ 2
ZSEQS—W(Z'\'I“‘ ]fl‘(z),’)df:%.X(O):OO)

xe o IR

so that from (17), I(0)= . Similarly we have (@)= » for any ¢ € E.
Hence ] = «, which contradicts (9), so that C(E)=0.

Hence there exists a certain set £ on 'gi =1, which is of logarithmic
eapacity zero, such that if ¢ does not belong to E, then x(6) < . If x(6)
< w0, we have from (2), L () < © for almost all ¥, so thar by Lemma 5,
L(¥) < o for all ¥, which proves the Theorem.

Remark. If in the proof, we replace |f(3)'/(1 4+ If()I°) by If ()i and
use Lemma 4 instead of Lemma 5, we have Theorem 3.
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2.

Let w = f(y) be meromorphic in |g] <1 and F be its Riemann surface
spread over w-spere K. Let 4 be a point on K and K, be a spherical disc of
radius p with ¢ as its center. Let s(p) be the total area of the part of F,
which lies above K,.

If

n(a) = 133:(47) (mp% < o0, (1)

then ¢ is called an ordinary value of f(3)-

Evidently # () < # (4), where #(a) is the number of zero points of f(3)—a
in |z <1

If

If (re*)] \2
A= "Il ) rdrdf < o, 2
[,5£1<1+ 7o) (2)
then by Lebesgue’s theorem, #(z) = #(4) for almost all ¢ on K.

_ Beurling proved: Let » =f(3) be meromorphic in || <1 and A<
and 4 be an ordinary value of f(g), then the set of E of points ¢# on Iz]=1,
such that lim f(re*?) = 4 is of logarithmic capacity zero. We will prove the

1
following more general theorem -

TueoreM 5. Let w = f(3) be meromorphic in 13! <1 and take certain three
ralues finite times in |g| <1 and a be an ordinary value of f(3). Then the set E
of points ¢* on 13| =1, such that 1irr11 f(re®y = a is of logarithmic capacity gers.

Proor. Without loss of generality, we may suppose that z=0. Since
7(0) = 7(0), f(z) has only a finite number of zero points g, -, g, in g < L
If p is small, then the part of the Riemann surface F of w=f(3) above a
disc |w] (1 + |w]?)-% < p is mapped on domains D, -, D, A,, where D;")
contains g; and is bounded by a Jordan curve lying in lz]< 1 and A, consists
of connected domains {AMy, which have boundary points on 2l =1 and at
every boundary point in [g] <1, [f(z)] U+ [f(z)]})-12=p.

Then by definition, for a suitable constant K,

Ke*=s(0) = SS (%)ﬁmme. (3)

Bp

Suppose that C(E) > 0, then as in the proof of Theorem 4, if we put
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—(( 1 (re)]  om 1
I §S1+!f re"’)l" or rdrd 6, ()

mﬂgw_ LY rdrdo [ (28 rdrdo <Ko ([ (21 rdrdo.

1+ | f (re%)]? o 2
Since
drd

mL( ) rdrd @ < o
we have

i {1 (5) rre

o

so that

Il <ep, where e — 0 with p » 0. {5)

As in the proéf of Theorem 4, we have

1={I1(@)du(e), (6)

E

where

_t4 If (re)] o _ o ‘
I(®) —§ g SEA T3 G ( darg(re ")), (7)

Suppose that =1 (@ = 0) belongs to E, then hm f(r)y=0, hence by
Lemma 2, lim f(r) = 0 uniformly, when g tends to g = 1 in an angular domain
w, which has its vertex at =1 and symmetrical to the radius of [g] =1

through ¢ =1 and is of aparture /2, so that the part of w in the vicinity ‘of
2 =1 belongs to A,.

Let A, (1) be the common part of » and A,, then if p is small, A, (1) lies

in a circle lz - —l_ = so that as the proof of Theorem 4, we have

10z §f LA drav | gg(i’<fe“_>_' ) rirdo (3 rarao]®

oy T+ FRF ANER I PEOTE )
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= ([ VO gy —ep=] ¥ agf R 4o (3
= N et = | ST e e

where ¢ » 0 with p >0 and /, is the part of the line Y =const., which is
contained in A, (1). As remarked before, J, contains a segment, which con-
nects ¢ =1 to a boundary point of A,, so that the im-ge of /, on w-sphere
contains an arc, which connects » = 0 with a point on a circle |w|/(1 + [w]*)*
= p, so that

R g
§¢1+ e’ =°

hence 1(0) = p/ v/ 2 — &p. Similarly we have [ (@) = p /2 — ¢p for any ¢i%€ E,
so that from (6), I = p/v/2 — &p.
From (5), we have

PlVZ —ep<I<ep or 1/y/2 —¢ =<,

which is absurd, since ¢ >0, ¢, - 0 with p— 0. Hence C(E) = 0.

3.

Let D be a simp.ly connected domain on- w-plane, which does not contain
w= o as an inner point and I' be its boundary.

We map D conformally on [g] <1 by w=f(g). Let s be an access ble
boundary point of D and ¢ be the set of points ¢ on |y| =1, such that
lim f (re") = a. Since ¢ is an ordinary value of f(z), we have by Theorem 5,
;\751 Beurling remarked, ¢ is of logarithmic capacity zero. We will prove:

Tueorem 6. Let E be a closed set of accessible boundary points on T, which
is of logarithmic capacity gero and E correspond to a set e on |g| =1, then e is of
logarithmic capacity gero.

Proor. Since any simply connected domain can be mapped on a bounded
domain, we may assume that D is bounded.
Since E is closed, by Lemma 1, we can distribute a positive mass du (2} of
total mass 1 on E, such that
1
/ -
”“’”)_i log - du(a) ((E)=1) (1)

tends to », when » tends, to any point of E. Hence the niveau curve C,:
# (w) = const. = r consists of a finite number of Jordan curves. which cluster
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to E as r—»> .

If we put
1 _ . .
i log =a] du(a) = u(w) + iv(w), (2)
then
S dw=S~§%ds=S -g% ds = 2w, (3)
Cr Cr Cr

where ds is the arc element and » is the inner normal of C,.
Let

1

= — _ 1
r=tR) = S log i due) = g log -

=7 du(a)=u+ iv,

then #(z) is regularin [¢]| < 1. Since  —, as w tends to E and D is bounded,
we can find a positive constant ¢ > 0, such that 4(») + ¢ =1 for any point »
of D, hence if we put

E=tR)=0¢R)+ s, (5)
then ¢ (g) is regular in |g| <1. Let 4 be the area on ¢-plane, which is

. _ \ . 1 t
described by ¢ =¢ (z) (Ig] < 1), then since df = -5 ‘(t—-ké pTE we have

1 SS du dy

=0 ) (+ o) + o) (6)

A
where A is the Riemann surface on # = (# + i»)-plane, which is described by
= 4 (w) + iv (w), when w varies in D.
Let C, (D) be the part of C, contained in D, then by (3),

dy < 2m,
Cr(D)
so that
1 ¢ v 1 7 du
A< =\ du -_ < -\ %" dy
- 9 2)2/3 — 9 4/:
1~Sc Cr(SD) ((ﬂ + 5)9 +o )2 ’ 150 (“ + f) ’ CrSD)

=< 2m i dr _ 27 < 0,

9 )\ T 73

1

Hence by Theorem 1, the set ¢ of point ¢# on [g] =1, such, that
lim1 [¢(re®)] = o is of logarithmic capacity zero. From
-
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1 —¢
mdﬂv(ﬂ)"’ c=¢ (1{),

1
ilog o dula) + c=§zlog
we see that ¢ coincide with ¢. Hence C(¢) = 0. q. e. d.

In the general case, where E is not closed, if the boundary of D is a
Jordan curve I', then we can prove that C(¢) = 0 as follows.

Suppose that C(¢) >0, then ¢ contains a closed subset ¢, such that
'C(¢) >0. Let¢ correspond to E' on I, then E' is closed and C(E')=0.
Hence by Theorem 6, C(¢') = 0, which contradicts C(¢’) > 0, so that C(e) =0.
Hence we have:

Turorem 7. Let T be a Jordan curve on w-plane and E be a set of loga-
rithmic capacity gero ox . If we map the inside of T' on 3| <1 conformally,
then E corresponds to a set of logarithmic capacity geio on |g| =1

Marnemazecar InsTITUTE, ToRY0o UNIVERSITY.





