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1. Introduction. Let h be a closed subgroup of the proper rotation
group O+(n} in an n dimensional Euclidean space En, and yί be a set of
coordinates. Consider an exterior differential form ω of rank p
(1.1) ω = 0<lί2 - - ipdyίldy^ - dy'p J )

with constant coefficients β^ ip (0^ ip 's are skew symmetric with
respect to their indices). If ω is ι invariant under every transformation of
the group h, we say that ω is invariant under h.

Now, consider an orientable Riemannian manifold Mn of class C"r with
positive definite fundamental quadratic form. Let O be an arbitrary point
of Mn and h be the homogeneous holonomy group2> (throughout this paper
we shall call it holonomy group for brevity) referred to the natural
frame e , at O with respect to some coordinate neighbourhood of O. Then,
we can easily see that h is a closed subgroup of the proper orthogonal
group O+(n). Let P be another point of Mn and C be a curve which
combine O with P. Then we can transplant the natural frame at O by
Levi-Civita's Όarallelism in the tangent space at P. We shall denote the
irame by ^ ^P, C/. If we denote the components of the transplanted
vector at P of the infinitesimal vector dyl at O with respect, to an arbitrary
allowable coordinate neighbourhood xf at P by dtf, then we have
(1.2) dy'^tydxJ |δjl=M).
Of course, the constants jj depend on the curve C. Hence if we put the
last equation into (1.1), we get an exterior form of the type
(1. 3) β ί l - . £ p (p, C) dx!l dtf*.
If we assume that the exterior differential form ω is invariant under the

*) The contents of this paper is essentially the first half of the second posthumous
manuscript of late Mr. Iwamoto (Of. Footnote of the paper 2). Putting the
contents of his manuscript in order, adding proofs and translating in English,
we publish it here. Of all contents of this paper, the translator takes the responsi-
bility. (Translator : S. Sasaki)

1) Throughout this paper, we assume that indices take the following values :
i, j , k = 1, 2, , n,
α, 6, c = 1, 2, ,p Cp<?0,
α, β> 7 =P+ I, »W,

λ, μ, v = 1, 2, ,m ζm<ιϊ),
ξ, rj, ζ = m -J 1, ,n,

2) Of. H. IWAMOTO, On the structure of Eiernannian Spaces whose holonomy groups
fix a null system, this Journal (2)1 no. 2 (1950) pp. 109-135.



60 H. IWAMOTO

group h, then we can easily see that the coefficients of (1. 3 ) do not depend
on the curve C joining O to P and depend only on P. Hence, if the form
(1.1) is invariant under the homogeneous holonomy group h, then there
exists an exterior differential form
(1.4) ω = Ait ip(x) dx:ι dx*p
defined over the whole manifold Mn. Hereafter we shall call such differen-
tial form as exterior differential form of rank p on Mn invariant under
the holonomy group h. It is evident that the coefficients At^ «„(#) are
of class C' and satisfy the remarkable relation
(1.5) Aflis-•••«„,* = 0,
where comma denotes covariant derivative.

An exterior differential form ω defined over the whole mainfold Mn is
called exact or closed if the exterior derivative ω' vanishes identically
and is called derive! or a null form if &> may be regarded as the exterior
derivative of another differential form Π which is of rank p—l. According
to de Rham's theory3) it is well known that the theory of exact differential
forms on any closed orientable manifold Mn is in a close relation with the
homological structure of Mn. And according to Hodge's theory4) of harmonic
integrals, when Mn is Riemannian manifold, the same relation holds good
even if we restrict the set of exact differential forms only to the set of
harmonic differential forms.

In the present paper we shall investigate relations between homological
structure of any closed orientable Riemannian manifold Mn and exterior di-
fferential forms on Mn invariant under the holonomy group h.

2. Fundamental theorems.

THEOREM 1. Every exterior differential form which is invariant under
the holonomy group h is exact.

PROOF. Let (1.4) be the differential form in consideration. Then, by
(1.5), we get

(2.1) 4ciliβ . ••'*,*) ^ ° '
whence we can easily deduce the desired relation ω =• 0.

THEOREM 2. If a differential form ω which is invariant under the
holonomy group h is derived, then ω vanishes identically.

PROOF. Let ft> defined by (1.4) be a derived form of rank p which is
invariant under the holonomy group h. We construct from it the dual
form ft>*, i. e.
(2.2) ω*= Aii ' t^d^ .' dx1"-*,
where we have put
(2.3) At!t* in-P = </~g~A1'* Jp€jιj* v i ' * " ••«»-!»•

3) G. DE RHAM, Sαr 1'analysis situs des varietes a n dimension. J. Math. Pares
et Appl. 10 C193O PP 115-200.

4) W. V. D. HODGE, The theory and applications of harmonic integrals. (Ί940).
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We can easily see that ω* is also an invariant differential form of the
group h. Hence by Theorem 1, ω* is also an exact differential form. Conse-
quently, we know that ω is a harmonic differential form in the sense of
Hodge.

Now, consider the differential form of rank n
(2.4) Ω = ωω* - v/yAί!...^...^.. t^AK'-Jidx*. -dx^dx^- dx^-p.
We can easily verify that Ω is reducible to the following form
(2. 5) Ω = A V γdxldx2 -. .. dxn,
where we have put

(2.6) A* - Aίl...vA*1 " ί l '
As the tensor A^..^ saisfies (1.5) by hypothesis, we see that A is constant
over the whole manifold Mn. It is not zero unless ω vanishes identically,

for A2 is the square of the tensor A^..^. Accordingly, | Ω is a harmonic

* n

integral and its value does not vanish. Whence, we can deduce that Ω can
never be a derived form, for if Ω = Π', we see

which contradicts to the fact stated above.
Now, by hypothesis, ω is a derived form. Hence, if we put

ω = ω'

lj

then we have
(fϋjO*)' = ω[ω* — ωω* = Ω,

which shows that Ω is a derived-form. Hence ω can not be a derived
form unless ω vanishes identically. Q. E. D.

Now, consider the totality of exact differential forms of rank p and
denote it by Z$. We can divide elements of ZP into classes (we shall call
them homology classes for brevity) each of which is constituted of forms
of rank p which are homologous to each other. Then, according to de
Rham's theory, the maximum number of linearly independent homology
classes in ZP is equal to the ^-th Betti number of the manifold Mn. On
the other hand, a homology class of ZP may not contain differential forms
which are invariant under the holonomy group h. But, if the homology
class contains a differential form ω which is invariant under h, then we
can easily see, in virtue of Theorem 2, that any other invariant differential
forms under h which belong to the homology class in consideration are
necessarily constant multiples of ω. Hence we obtain the following
theorem:

THEOREM 3. Let BP be the p-th Betti number of a dosed orientable
Riemannian mainfold Mn and B'v the maximum number of linearly independ-
ent (in the sense of algebra} differential forms of rank p which are invariant
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under the holonomy group h, then the folloiving relation holds good :
(2.7) BP>B'P.^

It is well known that the direct sum of Zp's (p = 0, 1, • •••, ri) con-
stitutes a ring R and the direct sum of the set of null forms NP constitutes
a ideal / of R. The residue class ring R/I is a topological invariant of
the given manifold Mn. On the other hand we can easily recognize that
the direct sum of the set of exact differential forms H# which are invariant
under the holonomy group h constitutes also a subring of R. It will be
easily seen that the last subring can be regarded as a subring of R/I.
Hence we can restate Theorem 3 in the following way :

THEOREM 4. In order that we can metrize a given closed orientable
manifold of class C r (r ^ 3 ) so that its holonomy group is an arbitrary
preassigned group h {subgroup of the proper orthogonal group O+(w).), it
is necessary that the residue class ring R/I contains a ring isomorphic to the
ring RO tυhich is the set of exterior forms of En invariant under the given
orthogonal group h as a subring.

3. Homological structure of closed orientable Rieiiianniaii mani-
folds whose holonomy groups fix an oriented p dimensional plane.

THEOREM 5. Assume that the holonomy group h of a closed orientable
Riemannian manifold Mn be reducible (in the field of real numbers} and
fixes an oriented p dimensional plane EP. Then both Betti numbers Bp and
Bn-p do not vanish.

PROOF. When the holonomy gronp h fixes an oriented plane EP, we
can choose orthogonal frames at each point of Mn so that the equations
which define the Euclidean connexion of the space take the following form :6)

j dP = ωaea -f- ωΛe<*,
(3. 1) ^dea

A part of the equations of structure of the space, i. e. the equations
which express the condition that the Euclidean connexion in consideration
is torsionless are given by

Now the p vectors ea span the invariant plane EP of the holonomy

5) Mr. Iwamoto states without any indication of the proof that "If the Eiemaiinian
manifold in consideration is symmetric in the sense of Gartan, then Bp is equal
to Bp". I shall prove it in my paper "On a theorem concerning the homoloεrical
structure and the holonomy groups of closed orientable symmetric spaces", which
will be shortly published For the method of proof is quite different from that
of this paper. (Translator)

63 M. ΛBK. Sur la reductίbiJite du groupe d/holonomie II. Les espaces de Riemann,
Proc. Imp. Acad. Tokyo, 20. pp. 177—182.
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group h and (n — pϊ vectors eΛ span the plane En-P which is completely
orthogonal to EP. From the assumption that the group h fixes the oriented
plane EP we can conclude that the group h also fixes the oriented plane
En-p. Hence the induced group of orthogonal transformations h(p) on EP

3,nάh(n—pϊ on En-P by h are subgroups of O+(pϊ and O+(n—pϊ res-
pectively.

In the next place, consider a set of Pfaffian equations
(3.3) ωp+ι = = ωn = 0.

We can easily see that the last equations are completely integrable. Hence
there exists a set of variables y* such that

It is well known that con~p ^-dimensional varieties VPs defined by y* —
const, are totally geodesic. Through every point of Mn there passes one and
only one such variety VP and p vectors ea are tangent to it. The same
is true for the set of Pfaffian equations ω : = =ωp = 0 and (n — p3) vectors
eΛ. On the other hand, the volume element
(3. 4) ίl = *J~gdxldx* - - - >dxn

of the given Riemannian manifold Mn can be written as
(3. 5) O = ωjGλj . ωn.

It is evident that ίl is invariant under the group of orthogonal transfor-
mations O+(n^ and hence under h. We can also see that
(3. 6) ω = β̂ ωa ωp1

ft) •=. et)p+-,6)p+2 . - Cύn

are volume elements of VP and Vn-P stated above and invariant differential
forms of the group h(p) and h(n — p} respectively and hence of h.

Now, as Ώ is the volume element of Mn, Ω Φ 0, hence ω Φ 0 and ω =f= Q.
Accordingly, we see, in virtue of Theorem 2, that both ω and ω are not
derived forms. Consequently, we can conclude that Bp > 0 and Bn~P > 0.

THEOREM 6. When there exist a closed orientable manifold S in the
set of totally geodesic varieties VP defined in the proof of Theorem 5, then the
manifold S can not be homologous to zero.

PROOF. Assume that S be the boundary of a (p + 1) dimensional
region D, then we can orient D and 5 so that 3D = S. By Stokes' theorem,
we obtain

/D s
On the other hand, as ω is a differential form invariant under the holonomy
group h, ω is exact. Hence we get

Γω = 0.

However, as ω is volume element of the closed orientable manifold S,
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co can not vanish. Hence we meet a contradiction. Consequently, there

does not exist any region D such that 3D = S. Q. E. D.
4. Homolog ical structure of closed orientable Biemaunian mani-

folds whose holonomy groups fix a null system which is commutative
with the fundamental polarity. At an arbitrary point P0 of an orientable
Riemannian mainfold Mn, vectors in the tangent Euclidean space En(P0)
constitute an n -dimensional vector space Rn(P0). If we understand con-
travariant vectors X* and covariant vectors Uι in Rn(P0~) as if they were
homogeneous point -and hyperplanecoordinates, the Rn(Po) may be regarded
as an (n — 1) -dimensional projective space Pn-\.

Let us assume that the dimension of the manifold in consideration
is even, and put it 2n for convenience sake. Let SAB be a skew symmetric
covariant tensor at P0 with non vanishing determinant. Then the corres-
pondence

may be regarded as a null-correlation in Pm-ι. On account of this fact
we shall hereafter call such S = (SAB) as a null system at P0 in M2n.

Now, if the holonomy group h of M2n constructed at P0 fixes the
nullsystem S, then we can, as was done in §1, transplant S to each point
of Min by the Euclidean connexion of the Riemannian manifold M2n. Hence,
we get a field of skew symmetric tensor SAB(X) with non vanishing deter-
minant over the whole manifold M2n. We shall call such tensor field as
a null -system which is invariant under the holonomy group h.

On the other hand, the fundamental tensor G = (QAB) of Λf3» at P0

determines a polarity in P2ra-ι We shall call it the fundamental polarity
and denote it by G. It is evident that the polarity G is invariant under
the holonomy group h. When the components of S and G satisfy the
relation
(4.1) G ^ S = ~S-1G ,
then we shall say that the fundamental polarity and null-correlation are
commutative. When the holonomy group h of the Riemannian manifold
fixes a null-system S, two fields of tensors G and S defined over the whole
manifold M2n satisfy also the last relation. In my previous paper7) I
investigated the local structure of Riemannian spaces whose holonomy
groups fix a null system which is commutative with the fundamental
polarity. If the holonomy group h is irreducible in the field of real numb-
ers and reducible in the field of complex numbers, there exists a null
system S having the above stated property. Of course, the components of
the skew symmetric tensor satisfy the following equation
(4.2) Ŝ ,<7 = 0.

THEOREM 7. If the holonomy group h of a closed orientable Riemannian

7) Of. loc. cit. 2).
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manifold MZn fixes a null system which is commutative with the fundamental
polarity of M2«, then even dimensional Betti numbers of M2n are not equal
to zero.

PROOF. Let us put
'4.3) ω = SABdxAdxB

and consider n differential forms
(4.4) ω2ί) = ωω . . ω (.l^p^n).

p

Then. ω.2n can be written also as
(4.5)
where we have put

ΪΓΓ __

* - J

On the other hand, it is well known that
\SAB\ - ψ2.

However, as (4.1) shows us, we have
\9AB\* = \SAB\\

Hence, we get
Φ*=\ffΛB\.

Accordingly, we see that ω2n is the volume element of the Riemannian
manifold in consideration:
(4. 6) ω a n - ^ g dxldχ- . . - .dx*n.
Consequently ωaft does not vanish.

Now, let us fix the index p and suppose that ω21) is a derived form.
Then as ω2ί> is also an invariant differential form of the holonomy group
h, we see, by virtue of Theorem 2, that ω2ϊt is identically zero. Hence, ωm

is identically zero too, which contradicts that ω2» is the volume element
of the Riemannian manifold in consideration. Accordingly, ωalJ is not a
derived form. Consequently, we can conclude, by virtue of Theorem 3,
that B2P > 0. Q. E. D.

In the next place we shall consider an even dimensional submanifold
M 2 m : XA = XA(ul, u2, •-.., uzmϊ, (m < ri),

and put
(4.7)

S\μ =i
where BA means

When the relation
(4.8)
is satisfied at every point of Mzm, we shall say that the M2m in consideration
is a proper submanifold of M ιn.

Let us first consider the geometrical meaning of the "proper" submani-
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fold. The equation (4. 8) can be written also as
SβcBv = gABg^Sμ.vB\,

If we contract an arbitrary vector XB with both sides of the last
equation we get

On the other hand, we see that

Hence, we can conclude that two equations
(4.9)
and
(497
are equivalent to each other.

If we write equation (4. 1) in detail we get
(4.10) g A B S B C g C D S D E = - δ | .
Now, putting
(4.11) B^^gAFg^Bξ

and contracting B^B^ with both sides of (4.10), we get

(4. 12) g^B^Szcg^SvE = - (gAFg
λvB^ B$.

The submanif old M£m has 2 (n — m) mutually orthogonal normal vectors
at each point of it. If we denote these vectors by NA (ξ = 1, 2, • .••,

CD

2 (n — m}), we can write g°D in the following form:

(4. 13) gCD = g?σBc

pB» + ^ N° N"'
If we put the last relation in (4.12) and notice that (4.9) and (4.9)' are
equivalent to each other, we get the relation
(4. 14) g^Svpgp'Sw = - δ*
which is analogous to (4. 10). Accordingly, the null-system Sλμ defined over
the whole manifold M2W is CDmmutative with the polarity defined by the
fundamental tensor g\μ.

The Euler-Schouten's tensor B^ is perpendicular to B*. Hence, by
virtue of the fact that (4.9) and (4.9)' are equivalent, we get
(4.15) 5 ^ 5 ^ = 0..
Accordingly, we see that the following relation holds good :
(4. 16) SAμ,. ^ (SAnBίBfJ,* = 0.
Consequently, the holonomy group of the proper submanifold M>m also fixes a
null-system Sλμ which is commutative with the fundamental polarity #λμ.

We derived the relation (4.14) from (4.8). But, conversely, we can
derive the relation (4.8) from (4.14). To show this, we put first (4.13)
into (4. 12) and making use of (4. 14), we get

Cf)

The last equation can be written also
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~ >) = 0,

hence we get

vφ J *Φ
If we consider the special case such that v = μ, the last equation becomes

whence we get

(4.17)

If we notice the last relation, we can easily see that the equation

gABSBGB
c

v ± (g^BiBl 4- NAN3) SBCB
C

V

Φ Φ
reduces to (4.8). Q. E. D.

In my previous paper, I proved the following facts : If the holonomy
group h of a Riemannian manifold M 2n fixes a null-system S which is
commutative with the fundamental polarity G, then the differential equations

admits n functionally independent solutions φ\ From the last equation we

see that SβcgCJ}~^—^'s are gradient vectors of n functions. We denote these
OJv

functions by ψ»* and call them the conjugate functions of φ\ On account of
(4.1) we can easily see that φ* are conjugate functions of ^ . In my pre-
vious paper mentioned above; we also proved that, if we put

(4.19) Z1^ φ'-H v ^ ^ T ^

the fundamental quadradic form of the Riemannian manifold in conside-
ration can be written in Kahler's form

(4.20) d!? = JϊW j£
l J '

where z> is conjugate complex of zj .
Now, let us consider the generalized Cauchy-Riemann's equation

(4.21) -^V ^S,Bg
BC^r.

ox ox
If we contract Bί with both sides of the last equation we get

which reduces, by virtue of (4.17), to the following equation:

_
Accordingly, if we take m sets of independent solutions φχ + */ — 1 ψ λ of
the generalized Cauchy-Riemann's equations (4. 21) of Mm, then they are
also those of the generalized Cauchy-Riemann's equations (4.22) of M?.™.
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Hence, if we put zκ = φ -f J ~ 1 Ψ λ , then zκ' s are complex coordinates

of M2m and the induced metric on M>>m from M2n can be written as

32V
(4.23) Ar« = / - dzχdz*.

If we denote the (n — m) sets of remaining solutions of (4.19) which are

independent to each other and to φλ 4- v ^ - T Ψ λ bY & + \ / " - 1 ***, the

manifold M2m can be represented by

Z% = φ% 4- Λ/ — f" ψ£ = const.,

consequently, we can conclude the following theorem:

THEOREM 8. // a submanifold M2m in an orientable Riemannian mani-

fold M2n whose homogeneous holonomy group fixes a null system S which is

commutative with the fundamental polarity is proper, then M2m is an analytic

subvariety in Λf2» with respect to complex coordinate systems of M2n. The

converse is also true.

We shall now prove the following theorem:

THEOREM 9. Suppose that the holonomy group h of a closed orientable

Riemannian manifold M2n fixes a null-system S which is commutative with

the fundamental polarity of M2n. If M2n admits a closed orientable proper

submanifold M2m such that # λ μ and Sλμ are regular over the whole manifold

M2m, then the manifold M2m can not be homologous to zero.

PROOF. Take the differential form ω2m defined by (4.4) on the sub-

manifold M2m. Then, by virtue of the relation

dxA = B^duλ,

ω»m can be written as

(4. 24) ω2m = ωω - ω
m

where we have put

( 4 . <ώθ) co = \5^μjdu au^.

Hence, as in the proof of Theorem 7, we can see that ω2TO is the volume

element of the submanifold M2m. Accordingly, by virtue of the fact that

M2m is closed orientable, it is evident that

(4.26)

The last inequality shows that M2m in consideration can not be the boun-

dary of a (2m 4-1) dimensional region in M2n. For, if we assume that

M >m is the boundary of a (2m 4-1) dimensional region D, then we get

I ω2m = I ωzm = I ft^m

•"̂ z/re, u+s -^

However, as ω2m is invariant under the holonomy group h, ω>ίm is a closed

form. Hence we get



HOMOLOGICAL STRUCTURE OF RIEMANNIAN SPACES g9

m = 0,

which contradicts to (4.26). Consequently, the submanifold M £m in consi-
deration can not be homologous to zero. Q. E. D.

5. An application of Theorem 7-

THEOREM 10. Any complex m dimensional algebraic variety in an n
dimensional complex protective space can not be homologous to zero.

PROOF. Let Pti be a complex projective space of n dimensions and
(20,*ι, ---- ,Zn) be a set of homogeneous coordinates of it. We shall call
the group of all projective transformations of Pn which fixes the Hermitian
form £0ϊo + ZiZi + + ZnZn the unitary group U(n + 1). Let us denote the
point (1,0, ---- ,0) by O. Then the subgroup u of the unitary group U(n + 1)
which fixes the point O is constituted from transformations of the type

provided that the coefficients satisfy the following conditions :
«oo#oo = 1, Σ aijaiK = δ^.

The group u contains transformations which does not operate Ptl effectively.
They are transformations of the type

z'0 - eiθz0, 4 = eίθzk)

and constitute an invariant subgroup N of U(.n + l). The residue class
group G — U (.n + V) IN operate effectively on PΛ and the transformations
of g ~ u/N are given by the following equation :
(5.1) 20 = 2o, 2*ί = *ίΛ,
provided that the coefficients satisfy the following conditions :

(5.2) 2*jil; = Sjfc.

As G is a transitive group which operates on P^and g is a closed subgroup
of G, the set of groups G and g determines a homogeneous space on the
manifold Pn. G and g are called the group of structure and the group of
isotropy of the homogeneous space.

Now, we can easily verify that the transformation σ0 in Ptl defined by
σ0 : Z'Q — z 0 , z'f — r-zt

is an involutive automorphism of G and O is an isolated invariant point of
CTO? and g is the set of all transformations of G which are invariant under
σ0. Hence the homogeneous space in consideration is a symmetric space.
Moreover, as g is a linear group which is defined by algebraic relations
between their coefficients, it is evident that g is compact. Consequently,
the symmetric space in consideration is a symmetric Riemamπan space.

We can easily calculate the linear group of isotropy g* of the symmetric
Riemannian space. It is the unitary group U{n\ The metric of the
symmetric Riemannian space is easily seen to be
(5. 3) ds* =
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where ωoi is the components of the infinitesimal transformation δp σ 4- ωσp

of G. It is clear that the line element of the Riemannian space in consi-
deration is invariant under the linear group of isotropy g*.

If we consider the real representation of the linear group of isotropy g*,
all the transformations of the group g* fixes a positive definite quadratic
from G which is the real representation of the Hermitian form. Moreover,
as #* is t/(ft),'the real representation of #* fixes the collineation

(5.4) - / =

and hence the null system
(5.5) . S = GI = IG.

On the other hand, in symmetric Riemannian space, the linear group
of isotropy g* coincides with the holonomy group h of the space in considera-
tion. Hence, we can conclude that the holonomy group h of the symmetric
Riemannian space in consideration fixes a null system S which is commutative
with the fundamental polarity G.

We must also prove the orientability of the symmetric Riemannian
space in consideration i. e. the orientability of the complex projective space
Pn. If we call points in Pn such that zn = 0 as points at infinity, then the
set of all points at infinity is homeomorphic to Pn-ι and the set of all finite
points is homeomorphic to real 2n dimensional Euclidean space Em. As the
dimension of the former is 2n~2 it does not effect on the orientability of Pn.
Hence Pn is orientable as well as E2n.

The above results admit us to apply Theorem 9, for the real repre-
sentation of algebraic varieties are proper submanifolds of the symmetric
Riemannian space in consideration. Consequently the proof is completed.

Q. E. D.

(TRANSLATOR: MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY, SENDAI).




