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1. Introduction. Let % be a closed subgroup of the proper rotation
group O*(n) in an n dimensional Euclidean space Eu, and »' be a set of
coordinates. Consider an exterior differential form « of rank p
(1.1) © = @iy - i, YAy -odyt» D
with constant coefficients aj,---+i, (@;----;, ’'s are skew symmetric with
respect to their indices). If w is .invariant under every transformation of
the group %, we say that o is invariant under A.

Now, consider an orientable Riemannian manifold M, of class C” with
positive definite fundamental quadratic form. Let O be an arbitrary point
of M, and % be the homogeneous holonomy group® (throughout this paper
we shall call it holonomy group for brevity) referred to the natural
frame ¢; at O with respect to some coordinate neighbourhood of O. Then,
we can easily see that % is a closed subgroup of the proper orthogonal
group O+(#n). Let P be another point of M, and C be a curve which
combine O with P. Then we can transplant the natural frame at O by
Levi-Civita’s parallelism in the tangent space at P. We shall denote the
trame by e, F, C,. 1if we denote the components of the transplanted
vector at P of the infinitesimal vectcr dy’ at O with respect. to an arbitrary
allowable coordinate neighbourhood x* at P by dx', then we have
1.2 dy' = bl dx’ [bi] ==0. -

Of course, the constants p} depend on the curve C. Hence if we put the
last equation into (1.1), we get an exterior form of the type

a.3 Qiy- -, (P, C) dx-- - -dx's,

If we assume that the exterior differential form » is invariant under the

*) The contents of this paper is essentially the first half of the second posthumous
manuscript of late Mr. Iwamoto (Cf. Footnote of the paper 2). Putting the
contents of his manuscript in order, adding proofs and translating in English,
we publish it here, Of all contents of this paper, the translator takes the responsi-
bility. (Translator : S. Sasaki)

1) Throughout this paper, we assume that indices take the following values :

b o § k=1, 2, J 7y
a, by, c=1, 2,00 yp (p<n),
e By=pt L ) 1y
A py v =1, 2,000 ,m (m<n),

£, ﬂ,C:m.{.l, ...... .,
2) Cf. H.Iwamoro, On the structure of Riemannian Spaces whose holonomy groups
fix a null system, this Journal (2)! no.2 (1950) pp. 109—135.
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group 7, then we can easily see that the coefficients of ( 1.3 ) do not depend
on the curve C joining O to P and depend only on P. Hence, if the form
(1.1) is invariant under the homogeneous holonomy group hk, then there
exists an exterior differential form

(1.4 w = Ay i, (X) dxte - dxts

defined over the whole manifold M, Hereafter we shall call such differen-
tial form as exterior differential form of rank p on M, invariant under
the holonomy group % It is evident that the coefficients Aiy,- - <.i,(%) are
of class C’ and satisfy the remarkable relation

(1.5 Apig+ iy = 0,

whare comma denotes covariant derivative.

An exterior differential form o defined over the whole mainfold M, is
called exact or closed if the exterior derivative o’ vanishes identically
and is called derived or a null form if » may be regarded as the exterior
derivative of another differential form II which is of rank p—1. According
to de Rham’s theory® it is well Known that the theory of exact differential
forms on any closed orientable manifold M, is in a close relation with the
homological structure of M, And according to Hodge's theory® of harmonic
integrals, when M, is Riemannian manifold, the same relation holds good
even if we restrict the set of: exact differential forms only to the set of
harmonic differential forms.

In the present paper we shall investigate relations between homological
structure of any closed orientable Riemannian manifold M, and exterior di-
fferential forms on M, invariant under the holonomy group 7.

2. Fuudamental theorems.

THEOREM 1. FEuvery exterior difjerential form which is invariant under
the holonomy group h is exact.

PROOF. Let (1.4) be the differential form in consideration. Then, by
(1.5), we get ‘
2.1 _ Aty - - i) = 0,
whence we can easily deduce the desired relation o’ =

THEOREM 2. If a differential form o which is invariant under the
holonomy group h is derived, then w vanishes identically.

PROOF. Let w defined by (1.4) be a derived form of rank p which is
invariant under the holonomy group %#. We construct from it the dual
form w*, i.e.

(2.2) w* = Ail....in_pdxil.. ..dx"/n—P’
where we have put
(2.3) Ana- - tnep = /g AVE 050 pinta e iy

3) G. pE Ruav, Sur lanalysis situs des variétés 4 »n dimension, J. Math. Pures
et Appl. 10 (1931) pp. 115--200.
4y W. V. D. Honge, The theory and applications of harmonic integrals. (1940).
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We can easily see that o* is also an invariant differential form of the
group k. Hence by Theorem 1, w* is also an exact differential form. Conse-
quently, we know that o is a harmonic differential form in the sense of
Hodge.

Now, consider the differential form of rank »
2.4 O = we* = ,\/?Atl...fp(?jl...jpkl.. kn_pAfl“"pdx‘h -dxedx*t. . dxFr-p,
We can easily verify that  is reducible to the following form

(2.5) 0 = A%/ gdvdx-. . .dx»,
where we have put
(2.6) A2 = Ay Alvin,

As the tensor Aj..., saisfies (1.5) by hypothesis, we see that A is constant
over the whole manifold M,. It is not zero unless o vanishes identically,

for A* is the square of the tensor Aj...,. Accordingly, f Q is a harmonic
a1,

integral and its value does not vanish. Whence, we can deduce that Q can

never be a derived form, for if Q) = II’, we see

fo- [n
M’Il

a‘ull
which contradicts to the fact stated above.

Now, by hypothesis, w is a derived form. Hence, if we put
w = wi,
then we have
(0,0%) = w0t = vo* = (),

which shows that ) is a derived-form. Hence o can not be a derived
form unless w vanishes identically. _ Q.E.D.

Now, consider the totality of exact differential forms of rank p and
denote it by Z,. We can divide elements of Z, into classes (we shall call
them homology classes for brevity) each of which is constituted of forms
of rank p» which are homologous to each other. Then, according to de
Rham’s theory, the maximum number of linearly independent homology
classes in Z, is equal to the p-th Betti number of the manifold M,. On
the other hand, a homology class of Z, may not contain differential forms
which are invariant under the holonomy group %. But, if the homology
class contains a differential form o which is invariant under £/, then we
can easily see, in virtue of Theorem 2, that any other invariant differential
forms under % which belong to the homology class in consideration are
necessarily constant multiples of w. Hence we obtain the following
theorem :

THEOREM 3. Let B, be the p-th Beiti number of a closed orientable
Riemannian mainfold M. and B, the maximum number cf linecrly independ-
ent (in the sense of algebra) differential forms of rank p which are invariant
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under the holonomy group h, ihen the following relation holds good :
2.7) B,=B,.»

It is well known that the direct sum of Z,/s (p=0,1,...., n) con-
stitutes a ring R and the direct sum of the set of null forms N, constitutes
a ideal I of R. The residue class ring R/7I is a topological invariant of
the given manifold M, On the other hand we can easily recognize that
the direct sum of the set of exact differential forms H, which are invariant
under the holonomy group /% constitutes also a subring of R. It will be
easily seen that the last subring can be regarded as a subring of R/IL
Hence we can restate Theorem 3 in the following way:

THEOREM 4. In order that we can metrize a given closed orientzble
manifold of class C" (r =3) so that its hoionomy group is an arbitrary
preassigned group h (subgroup of the proper orthogonal group O*+(n)), it
is necessary that the residue class ring R|I contains a ring isomorphic to the
ring Ry which is the set of exterior forms of E. invariant under the given
orthogonal group h as a subring.

1)
3. Homological structure of closed orientable Riemannian mani-
folds whose holonomy groups fix an oriented p dimensional plane.

THEOREM 5. Assume that the holonomy group h of a closed orientable
Riemannian wmanifold M, be reducible (in the field of real numbers) and
fixes an oriented p-dimensional plane E,. Then both Betti numbers B, and
Ba_, do not vanish.

PROOF. When the holonomy gronp % fixes an oriented plane E,, we
can choose orthogonal frames at each point of M, so that the equations
which define the Euclidean connexion of the space take the following form :®

(dP = wala T ©Wala,
(3. D) ‘\‘dea = Wav€y,
(dew = wypep.

A part of the equations of structure of the space, i.e. the equations
which express the condition that the Euclidean connexion in consideration
is torsionless are given by
[(0g)" = wgwy,

{(wg) = Wy3We.
Now the p vectors e, span the invariant plane E) of the holonomy

3.2

5) Mr. Iwamoto states without any indication of the proof that “If the Riemannian
manifold in consideration is symmetric in the sense of Cartan, then Bp is equal
to B‘,’,”. I shall prove it in my paper “On a theorem concerning the homological
structure and the holonomy groups of closed orientable symmetric spaces”, which
will be shortly published For the method of proof is quite different from that
of this paper. (Translator)

6) M. ABr. Sur la réductibilité du groupe d’holonomie II. Les espaces de Riemann,
Proc. Tmrp. Acad. Tokyo, 20. pp. 177—182.
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group 2 and (n —p) vectors ¢, span the plane E,_, which is completely
orthogonal to E,. From the assumption that the group % fixes the oriented
plane E, we can conclude that the group 7z also fixes the oriented plane
E._p. Hence the induced group of orthogonal transformations k(p) on E,
and 2(n —p) on E._, by h are subgroups of O+(p) and O*(n —P) res-

pectively.
In the next place, consider a set of Pfaffian equations
(3.3 wp+|:""=wn:0.

We can easily see that the last equations are completely integrable. Hence
there exists a set of variables y* such that

Wy = Aug(x)AYE.
It is well known that oo”~? p-dimensional varieties V,'s defined by y* =
const. are totally geodesic. Through every point of M, there passes one and
only one such variety V, and p vectors e, are tangent to it. The same

is true for the set of Pfaffian equations w, =--=w, =0 and (# — p) vectors
es. On the other hand, the volume element

(3.4 Q =/ gdxds*-. ..ds"

of the given Riemannian manifold M, cah be written as

(3.5 Q = 0wy -0

It is evident that  is invariant under the group of orthogonal transfor-
mations O*(»n) and hence under 2. We can also see that
(3.6) @ = W@y - - Wy,
5 = Dpp1@Wpin-- - Wy

are volume elements of V, and V,_, stated above and invariant differential
forms of the group h(p) and h(n — p) respectively and hence of 2.

Now, as () is the volume element of M,, Q == 0, hence ® =0 and » = 0.
Accordingly, we see, in virtue of Theorem 2, that both » and ® are not
derived forms. Consequently, we can conclude that B, >0 and B._, > 0.

THEOREM 6. When there exist a closed orientable manifold S in the
set of totally geodesic varieties Vp defined in the proof of Theorem 5, then the
manifold S can not be homologous to zero.

PROOF. Assume that S be the boundary of a (p + 1) dimensional
region D, then we can orient D and S so that 3D = S. By Stokes’ theorem,

we obtain
fm’ = fw,
D S

On the other hand, as w is a differential form invariant under the holonomy
group &, o is exact. Hence we get

=0

N
However, as o is volume element of the closed orientable manifold S,
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f o can not vanish. Hence we meet a contradiction. Consequently, there

does not exist any region D such that oD = S. Q.E.D.

4. Homological structure of closed orientable Riemannian mani-
folds whose holonomy groups fix a null system which is commutative
with the fundamental polarity. At an arbitrary point P, of an orientable
Riemannian mainfold M,, vectors in the tangent Euclidean space E,(P,)
constitute an #n-dimensional vector space Rn.(P,). If we understand con-
travariant vectors X’ and covariant vectors U; in Ru.(P,) as if they were
homogeneous point - and hyperplanecoordinates, the R.(P,) may be regarded
as an (# — 1)-dimensional projective space P,_;.

Let us assume that the dimension of the manifold in consideration
is even, and put it 2z for convenience sdke. Let S4p be a skew symmetric
covariant tensor at P, with non vanishing determinant. Then the corres-
pondence :

. X4 > SpXE
may be regarded as a null-correlation in P,-;. On account of this fact
we shall hereafter call such S = (S4s) as a null system at P, in M.

Now, if the holonomy group 2 of M,, constructed at P, fixes the
nullsystem S, then we can, as was done in §1, transplant S to each point
of M., by the Euclidean connexion of the Riemannian manifold M,.. Hence,
we get a field of skew symmetric tensor S.z(x) with non vanishing deter-
minant over the whole manifold M,,. We shall call such tensor field as
a null-system which is invariant under the holonomy group #.

On the other hand, the fundamental tensor G = (gup) of M at P,
determines a polarity in P.,—.. We shall call it the fundamental polarity
and denote it by G. It is evident that the polarity G is invariant under
the holonomy group %. When the components of S and G satisfy the
relation
“4.1) GS=—-S"G ,
then we shall say that the fundamental polarity and null-correlation are
commutative. When the holonomy group % of the Riemannian manifold
fixes a null-system S, two fields of tensors G and S defined over the whole
manifold M,, satisfy also tne last relation. In my previous paper” I
investigated the local structure of Riemannian spaces whose holonomy
groups fix a null system which is commutative with the fundamental
polarity. If the holonomy group % is irreducible in the field of real numb-
ers and reducible in the field of complex numbers, there exists a null
system S having the above stated property. Of course, the components of
the skew symmetric tensor satisfy the following equation
4.2) Sas,c = 0.

THEOREM 7. If the holonomy group h of a closed orientable Riemannian

7) Cf. loc. cit. 2).
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manifoid My fixes a null system which is commutative with the fundamental
polarily of M, then even dimensional Betti numbers of M. are not equal
to zero.

PROOF. Let us put

4.3) w = Supdxidx®
and consider # differential forms
4.4 Wyp =00---.0 (1=Zp<n).

»
Then. ., can be written also as
4.5) ' Wy = Ydxtdx?. . - .dx*,
where we have put
P = Zsign (flllxg_’ x‘zlzn) S.14:S g+ Sty _145e

On the other hand, it is well known that

[Sas| = P2
However, as (4.1) shows us, we have
lgABl2 = !SABIz.
Hence, we get
Y2 = ,gABl-

Accordingly, we see that w,, is the volume element of the Riemannian
manifold in consideration:

4.6) O = A/ g dx'dx*-...dx"".

Consequently ,, does not vanish.

Now, let us fix the index p and suppose that w,, is a derived form.
Then as w;, is also an invariant differential form of the holonomy group
h, we see, by virtue of Theorem 2, that w,, is identically zero. Hence, @,
is identically zero too, which contradicts that ,, is the volume element
of the Riemannian manifold in consideration. Accordingly, ., is not a
derived form. Consequently, we can conclude, by virtue of Theorem 3,

that B,, > 0. Q.E.D.
In the next place we shall consider an even dimensional submanifold
Mo : x4 = x4yt ud ., ut™), (m < n),

and put -
4.7 Irp = gBiB;

{ S,\;L = SABB;f f
where B{ means

ard
B = G

When the relation
4.8 gABSBch = g“‘S,ijf
is satisfied at every point of M,,, we shall say that the M,, in consideration
is a proper submanifold of M.
Let us first consider the geometrical meaning of the “‘proper” submani-
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fold. The equation (4.8) can be written also as
SBcBg = ,f/ABg\“SWB‘i.
If we contract an arbitrary vector X? with both sides of the last

equation we get

SpcXEBS = g™S,,(g4sBLXP).
On the other hand, we see that

Sl = 19| |Sw| = 0.
Hence, we can conclude that two equations

4.9 Sp:XEBS =0
and
(4,9 98cXBBC =0

are equivalent to each other.
If we write equation (4.1) in detail we get

(4.10) 918Spcg’PSpr = — &4

Now, putting

(4.11) B) = garg™BF

and contracting BY BY with both sides of (4.10), we get
(4.12) gVBEBESpeg™Spe = — (garg™BE) B,

The submanifold M., has 2 (n — m) mutually orthogonal normal vectors
at each point of it. If we denote these vectors by 1(}/')“(5 =1, 2, ....
2(n—m)), we can write ¢”? in the following form:

0D — 400 BCBD ¢ ND
(4.13) g —-gPBPBc,—i—;Z(\g’) N®.
If we put the last relation in (4.12) and notice that (4.9) and (4.9)" are
equivalent to each other, we get the relation
(4.14) gVS,p9P°Son = — BI’;
which is analogous to (4.10). Accordingly, the null-system S,, defined over
the whole manifold M., is commutative with the polarity defined by the
fundamental tensor g,.

The Euler-Schouten’s tensor By, is perpendicular to Bj. Hence, by
virtue of the fact that (4.9) and (4.9)" are equivalent, we get

(4.15) SABB;:VB}I: = (.
Accordingly, we see that the following relation holds good :
(4.16) Samr = (3asBB2) , = 0.

Consequently, the holonomy group of the proper submanifold M also fixes a
null-system S,. which is commutative with the fundamental polarity giu.

We derived the relation (4.14) from (4.8). But, conversely, we can
derive the relation (4.8) from (4.14). To show this, we put first (4.13)
into (4.12) and making use of (4.14), we get

> g™ BE BESsc N°N” Spi = 0.
& & &

The last equatipn can be written also
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> g™ (Spo BEN®) 1 Spr BENP) = 0,
. ‘g"g (Sse v TP e
hence we get
(SBUB:;N/") (SDEBSND) = 0.
(€3] €3}
If we consider the special case such that » = u, the last equation becomes
> (Spo B” N =0
4 i
whence we get
4.17) S/:ch(]VC:-O.
J3)

If we notice the last relation, we can easily see that the equation
g8 Sec By £ (g By Bg + ]EV“ EZ,;)IB) SscBy
®
reduces to (4.8). Q.E.D.
In my previous paper, I proved the following facts: If the holonomy
group % of a Riemannian manifold M,, fixes a null-system S which is
commutative with the fundamental polarity G, then the differential equations
L) ;o
(4.18) (SBchDdeB> =0
admits » functionally independent solutions ¢’. From the last equation we
p 0P,
see that Spcg™ =D
functions by Y and call them the conjugate functions of ¢’. On sccount of
(4.1) we can easily see that ¢’ are conjugate functions of Y. In my pre-
vious paper mentioned above, we also proved that, if we put
4.19) Zi= ¢+ /=1 ¥,
the fundamental quadradic form of the Riemannian manifold in conside-
ration can be written in Kihler’s form

s are gradient vectors of » functions. We denote these

(4.20) ast = 22U pugm

. oziozd
where z/ is conjugate complex of z’.
Now, let us consider the generalized Cauchy-Riemann’s equation

oW 57}
4.21) ';}T = Sung™ 5
If we contract Bj with both sides of the last equation we get
o¥ - \ 20
¥ Bt = SuwBi (y=BIB; + >Hg N°) S

which reduces, by virtue of (4.17), to the following equation:
, . A 2 o0
4.22) E7 Saugh S C

Accordingly, if we take m sets of independent solutions @\ + ./ —1 ¥* of
the generalized Cauchy-Riemann’'s equations (4.21) of M., then they are
also those of the generalized Cauchy-Riemann’s equations (4.22) of Mom.
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Hence, if we put 22 =@+ ./ —1 V?* then zs are complex coordinates
of M,, and the induced metric on M.n from M,, can be written as

2
(4.23) do? = =2V gz,

oz ozm
If we denote the (# — m) sets of remaining solutions of (4.19) which are
independent to each other and to @+ ./ —1 Wby @'+ .,/ —1 V¥, the
manifold M,, can be represented by

Zt = pt 4 \/ —1V¢ = const,
consequently, we can conclude the following theorem:

THEOREM 8. If a submanifold M,n in an orientable Riemannian mani-
fold M., whose homogeneous holonomy group fixes a null system S which is
commutative with the fundamental polarity is proper, then M is an analytic
subvariety in M., with respect to complex coordinaie sysiems of M. The
converse is also lrue.

We shall now prove the following theorem:

THEOREM 9. Suppose that the holonomy group h of a closed orientable
Riemannian manifold M., fixes a null-system S which is commutative with
the fundamental polarity of M. If My admits a closed orientable proper
submanifold My such that g\, and S, are regular over the whole manifold
Mym, then the manifold M. can not be homologous to zero.

PROOF. Take the differential form ., defined by (4.4> on the sub-
manifold M,n. Then, by virtue of the relation

dx* = Bildu,
w., can be written as
“4.24) Oy, = DD -« @

—_—

m
where we have put

(4.25) ® = Sydurdur,
Hence, as in the proof of Theorem 7, we can see that w,, is the volume
element of the submanifold M,n. Accordingly, by virtue of the fact that
M. is closed orientable, it is evident that

(4.26) fwzm =+ 0.
Maom
The last inequality shows that M,, in consideration can not be the boun-

dary of a (2m + 1) dimensional region in M,. For, if we assume that
M., is the boundary of a (2m + 1) dimensional region D, then we get

f‘”zm = fwzm = fwzlzm'
Mom, oD D

However, as w,n is invariant under the holonomy group %, w., is a closed
form. Hence we get
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f“’zm = 0:

Mrm
which contradicts to (4.26). Consequently, the submanifold M, in consi-
deration can not be homologous to zero. Q.E.D.

5. An application of Theorem 7.

THEOREM 10. Any complex m dimensional algebraic variety in an n
dimensional complex projective space can not be homologous to zero.

PROOF. Let P, be a complex projective space of » dimensions and
(20,21, -~ -+,2s) be a set of homogeneous coordinates of it. We shall call
the group of all projective transformations of P, which fixes the Hermitian
form zyzy + 2121 + -+ -+ 2u2n the unitary group U(z + 1). Let us denote the
point (1,0, ----,0) by O. Then the subgroup # of the unitary group U(z + 1)
which fixes the point O is constituted from transformations of the type

2y = 2o, 2 = 3 Qis2;

provided that the coefficients satisfy the following conditions :

aooaoa =1, Eaijairc = Qe
The group « contains transformations which does not operate P, effectively.
They are transformations of the type

z, = e'%,, 2z, = 0z,
and constitute an invariant subgroup N of U (# + 1). The residue class
group G = U (n + 1) /N operate effectively on P, and the transformations
of g = u/N are given by the following equation :

(5.1) Zy =2y, 2= Qi
provided that the coefficients satisfy the following conditions:
(5.2) s Clijd}]c = 8}1,;.

As G is a transitive group which operates on P,and ¢ is a closed subgroup
of G, the set of groups G and g determines a homogeneous space on the
manifold P,. G and g are called the group of structure and the group of
isotropy of the homogeneous space.

Now, we can easily verify that the transformation o, in P, defined by

gyt 2y = 2, z2; = —2;

is an involutive automorphism of G and O is an isolated invariant point of
oy, and g is the set of all transformations of G which are invariant under
oy. Hence the hom»ogeneous space in consideration is a symmetric space.
Moreover, as g is a linear group which is defined by algebraic relations
between their coefficients, it is evident that g is compact. Consequently,
the symmetric space in consideration is a symmetric Riemannian space.

We can easily calculate the linear group of isotropy ¢* of the symmetric
Riemannian space. It is the unitary group U(n'. The metric of the
symmetric Riemannian space is easily seen to be

5.3 ds® = Ewot&;Oi;
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where oy is the components of the infinitesimal transformation §,; + ®sp
of G. It is clear that the line element of the Riemannian space in consi-
deration is invariant under the linear group of isotropy g*.

If we consider the real representation of the linear group of isotropy g%,
all - the transformations of the group g¢* fixes a positive definite quadratic
from G which is the real representation of the Hermitian form. Moreover,
as g* is U(n),'the real representation of g* fixes the collineation

.4 . I=

5.4 (E 0/
and hence the null system

(5.5) S = GI = IG.

On the other hand in symmetric Riemannian space, the linear group
of isotropy ¢* coincides with the holonomy group % of the space in considera-
tion. Hence, we can conclude that the holonomy group % of the symmetric
Riemannian space in consideration fixes a null system S which is commutative
with the fundamental polarity G.

We must also prove the orientability of the symmetr1c Riemannian
space in consideration i.e. the orientability of the complex projective space
P,. If we call points in P, such that z, = 0 as points at infinity, then the
set of all points at infinity is homeomorphic to P,., and the set of all finite
points is homeomorphic to real 2z dimensional Euclidean space Ez. As the
dimension of the former is 2n#-2 it does not effect on the orientability of Pn.
Hence P, is orientable as well as E.,.

The above results admit us to apply Theorem 9, for the real repre-
sentation of algebraic varieties are proper submanifolds of the symmetric
Riemannian space in consideration. Consequently the proof is completed.

Q. E. D.

(TrANSLATOR: MATHEMATICAL INSTITUTE, TOHORU UNIVERSITY, SENDAI).





