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§ 0. Introduction.
In the previous paper PJ, we proved that, if the Christoffel symbols of

the second kind in a Riemannian space Vn take the form, for a suitable
coordinate system,

where

(0-2) fV j
Vri is a subprojective space, and that the subprojective space is a con-
formally flat space admitting a concircular transformation.

In this paper, we shall prove some properties of the subprojective
Riemannian space and study problems related to Rachevsky's condition (B).

§ 1. βiemannian space admitting \ \ = <PlιVξ
κ.

In this section, we shall treat of the case when (0.1) becomes

( I D

where ξκ is a torse-forming vector.
If Vn is a subprojective space, the next three conditions are satisfied [3],

that is,

(A) R^vω = Tϊugμ

(1.2) (A') Tλμ;v - T λ v ; μ = 0,
(B ) Tλμ = pgλμ +

where

and

Putting

we have (0.2) and

(1. 3)

(1.4)
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Moreover, we have

(1- 5) aβμ - aμ = (2p + uξ°ξσ) ξμ ,

because of Ricci identities

ζ\',μ» ζK vμ. = ζσR.kμv

Let us consider now differential equations

(1.6) 2 λ ; μ = - <PkμZσξ
σ,

where φhμ. is a symmetric tensor. Substituting (1.6) in Ricci identities

we obtain

(I- 7) Zσ#.V =

where

( 1 . 8 ) 2C7λμ, = ^λμ;, - ΦX

Let us*assume that ^ λ μ satisfies equation

(1. 9) α^ λμ - 2PgKμ + ^fλ?μ = TλfA •+

from which we have by covariant differentiation

Interchanging ^ and ι/ and subtracting the resulting equation from the above,
we have

(fiLvφKμ, - aμφκv) + a{φkμ]v - φKv;μ) = (T λ μ ; ι / - Tλv;μ)

Substituting (1.2) (A') and (1.4), we obtain

(1.10) {μvφkv - aμφkμ)

From (1.5) and (1.9), we have

from which follows aμ = α(/3μ —ξσφ<τμ). Substituting in (1.10), we obtain,
because of (1.8),

(1. ID 2Uλμv = «(f ̂ λ μ - ξtfώ

Making use of (1.2) (A), (1.9) and Q.ll), we can find that (1.7) is satis-
fied identically and consequently (1.6) is completely integrable. Accordingly,
if we represent n linearly independent solutions by

< ( α = 1, 2 , . . . . , Λ ) ,

there exist n independent functions

(1.12) χ«= χ«{xλ\

such that z* = ^ ^ . Considering (1.12) as a transformation of coordinates,

we can easily conclude that the Christoffel symbols of the second kind may
be transformed to the form
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Now we have from (0.2) and (1.6)

from which follows

where dα are constants. Therefore we have

f« = s-g* = α(i- - rf-).
Hence we find the

THEOREM. The Christoffel symbols of the second kind of a subprojective
space can be reducible to the form, by a suitable transformation of coordi-
nates,

\μv) = ^VfN

where ξκ is a concircular vector and φμv a symmetric tensor. In this coordinate
system, ξκ takes the form

ξλ = a(x* - dκ\

where oc is a function of the x's and dκ are constants.

Now if we put uλμ = ccφκμ, (1.6) becomes

whose n independent solutions z* are equal to -^— , x" being the canonical

coordinate system. Since 1^1 = uμvx
κ in the canonical system, we can

easily obtain the above theorem.

§ 2. Fundamental quadratic differential form of subprojective space.

In the first place, we consider the fundamental quadratic differential
form of a space which has constant Riemannian curvature. This funda-
mental form may be written in the form [2Γ\

(2.1) ^ = 2
ί =

where
n

u = 2 χ*> χ*
and a, bι and d are arbitrary constants satisfying the following condition

Putting bi = 0, we have
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Xt = 2
from which follows

If we put K = ± 16a1, we have

from which follows

(2.2) tfa

where the symbol ± takes -f or — according as the scalar curvature is
positive or negative.

Now the fundamental quadratic differential form of a subprojective space
Vn is represented by the equation [4]

(2.3) ds> = fX^M^dxW + (dxny (ij, k = 1,2, . . . . , n - 1),

for a suitable coordinate system. In this case, since the hypersurfaces
xu = const, are of constant curvature, by virtue of (2.2), (2.3) must be
reducible to the form, by a suitable transformation of coordinates,

(2.4) d S ~

where K(xn) = , _ j-ίγ-^^. 9 )- * 0L), 7?(Λ:W) being scalar curvatures of the

hy per s urf aces.
In fact, from (2.4) the Christoffel symbols of the hypersurfaces are

given by

ί Π - _ λ^

•n— 1

where V = χ 2 ^ ^ — * ^ w e r eP resent curvature tensors, Ricci tensors

and scalar curvatures of the hypersurfaces by Rijkl, RPc and R respectively,
we have

_ -I n 2
2j>/ — -p z_ (i φ j\ β., = = -f- ^

1) The case when K~ const, will be treated in the later paper.
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where i is not summed. Thus we have readily R = (n — 1) (n — 2)K. Further-
more, since Rtjji = Kgj5 and all other components of the curvature tensors
are equal to zero, we find

Especially, when the space admits a concurrent vector field [5], we have

where k is a positive constant.

§3. Totally umbilical hypersurface in a conformally flat space.
A subprojective space is conformally flat and admits a family of oo*

totally umbilical hypersurf aces. In this section, we shall consider the case
that there exists a totally umbilical hypersurf ace in a conformally flat space
Cn.

Let us define the totally umbilical hypersurf ace Vn-i by the equations

*λ = xHtf) (λ, /x, - -.. - 1, 2, . . . . n : i, j , . . . . = 1, 2, . . . . , w - 1).
If #λμ and gi5 are the fundamental tensors of CΛ and Vn-i respectively, the
Euler-Schouten's curvature tensor of Vn-1 with respect to Cn takes the form

Hi)κ = guH\
Consequently, if we represent the curvature tensors of Cn and Vn-ι by Rtμvω

and R}m respectively, the Gauss equations become

(3-1) Rι.j» = BJSSΛ^ + H*Hκ(g*δί

where

~Diμvω __ D i

Since
r^λ ŷvv ^τ^\ i ^7^ c^λ

where

μv = ^ — 2 \ μ v ~~ 2(w — 1) ^

i? being the scalar curvature of CM, (3.1) may be reducible to

where S ^ = B^Bf and JB̂ - = B fBy. Contracting for i and fe, we have

(3.3) RΛ = -±=-l B7R^ + {7-ri^2y - ~ l Γ

where β λ is a normal vector of Vn-λ.
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Now let us assume that tangential directions of Vn-ι are Ricci directions.

Then we have equations of the form

(3.4)

from which we have

Therefore (3.2) is reducible to

and consequently Fw_i has constant Riemannian curvature.
Moreover, since all tangential directions of Vn-i are Ricci directions,

we have from (3.4)

"(3.5) Aμ = βtfλμ + ftBλflμ,

where b is a certain scalar. Thus we find that the normals of Vn-\ are
also Ricci directions and consequently Fw-i has constant mean curvature.

Conversely, if a totally umbilical hypersurface Vn-i in Cn has constant
Riemannian curvature and mean curvature, from (3.3) we have

B%vRμv = agJk,

that is,

{Rμ» ~ βfl̂ )B5? = °
Thus we have equations of the form

where t;μ is a certain vector. However, since the normals of Vn-τ are
Ricci directions, Rμv takes the form (3.5). Thus we have the

THEOREM. In a conformal flat space Cn (n > 3), in order that tangential
directions of a totally umbilical hypersurface are all Ricci directions, it is
necessary and sufficient that the hypersurface is of constant Riemannian curva-
ture and mean curvature.

§ 4. Π λ μ = pgkμ + κηκημ and concircular geometry.
In this section and the next, we shall treat of the problems connected

with Rachevsky's condition (B). Using Π λ μ in place of — Tλμ, we put

(4-

We consider now a family of hypersurfaces

η{xλ) = const.

in a Riemannian space Vn and assume that Π λ μ takes the form

(4. 2) Π v = pgKμ + κηκVμ,

where p and K are any scalar functions of the x's. From (4.1) and (4.2)
we have
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V - i n -

Therefore any vector vλ, which is orthogonal to ηλ, is the Ricci direction.
Conversely, if RKμv

κ = avμ for any vector vλ satisfying v^ηx = 0, we
have

(RKμ - agκμ)vλ = 0,

from which we obtain equations of the form

Thus Πλ μ takes the form (4.2) and consequently follows the

THEOREM 4. 1. In order that tangential directions of the hyper surfaces

7] = const, in a Vn are Ricci directions, it is necessary and sufficient that

Π λ μ defined by (4.1) takes the form (4.2).

In the subprojective space, we notice that p and /c are functions of η.
Let us assume now that <ηκ is a concircular vector. Then the funda-

mental quadratic differential form of Vn may be written in the form

for a suitable coordinate system. In this case the above-mentioned hyper-
surfaces are defined by

χn = const.,

which are totally umbilical. If we represent Ricci tensors and scalar

curvatures of the hypersurfaces by Rij and R respectively, we can derive
the next relations [1]

(4.3)
\)f"f ,

Rίn = 0,

(4.4) R = R-{n- 1){(«- 2)/'a + 2ff"Jjr

and

5)

1 f"z

f F <Jih

2)
Uln = 0.

2 P KW J >'

Since

(4.6) R=^β«RΛ,

where flh'fjh = §\ and RJk are functions of Λ? alone, we have
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(4.7)

Now, because of

(4.1) reduces to

(4.8) Π λ μ =

from which we have

(4. 9) IL, = pgth Πnn = P + K, Uin = 0.

Comparing (4.9) with (4.5), we find that RtJ are proportional to gi5 and,
when n > 3, from (4.6) we have

s

f'RjTc = c = const., R = -ψϊ.

Thus we have the

THEOREM 4.2 [1]. In order that a tensor Π λ μ of a space admitting a con-
circular vector field η\ satisfies a equation of the form {4.2), it is necessary
and sufficient that the hypersurfaces η = const, are all Einstein spaces.

If we put

R

from (4.5) we have

72{n —\){n — 2) 2 fι

Πnn = { - γ(n _ ! ) ( „ _ 2) + 2 J^J ̂  (n- l)(n-2)

Comparing with (4.9), we obtain

M 2(w - 1) (w — 2) ^ 2/2 2(w — 1) (» - 2) n-2 f '
(4.10)

Λ = (w - 1)(» - 2) ~ 7^ + 7 " = (w - 1)(¥- 2) + "rfi" T"
/? VI f"

= ( Λ - 1 ) ( Λ - 2 ) " + ~n~^2~J *

Thus we have the

THEOREM 4.3. 7/" α tensor Π λ μ <?/* « 5^«c^ admitting a concircular vector

field ηλ, where τjκ= ^=uk> satisfies a equation of the form (4.2), then p, K

and R are functions of η alone {n > 3).

From (4.10) we have
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= Bp 1 3R^ f _d_ f
p n ~ 3xn 2{n — l){n — 2) 'dxtι f dxn f '

Substituting (4.7), we have by virtue of (4.10)

?n fK,

from which follows

(4.11) Pn=y *SJ (» > 3)

However because of

(4.12) VKμ = δ ,, = - {^} = f'f- (9κμ - 8»δJ),

we have from (4.8)

Since K is a function of xn, we obtain

(4.13) Πχμw - Π λ v ; μ = 0.

Conversely, in the previous paper [I] we proved that, when the above
equation holds, the hypersurfaces xn = const, are Einstein Spaces. Thus
we have the

THEOREM 4.4 C4]. In order that a tensor Uλμ of a space admitting a con-
circular vector field η\ satisfies a equation (4.2), it is necessary and sufficient
that

Tίλμ> - Πλ,;μ = 0 (n> 3).

If Π λ μ satisfies (4.2) and yλ is a concircular vector satisfying

we have a relation, by virtue of (4.11) and (4.12),

(4.14) ρμ = ctκημ (n > 3).

Especially when n = 3, if p (or A;) is a function of 77, then R and /e (or p)
also are functions of η and consequently (4.14) and (4.13) hold. Therefore
in a three dimensional space V3, if a gradient vector ηk is a concircular
vector and a tensor ΠλfX satisfies (4.2), where p or /e is a function of ?;, then
V-i is a subprojective space.

Finally, we assume that Π λ μ satisfies (4.2) and (4.13), and that p and K
are functions of η alone. Then

Multiplying by ?7̂  and summing for μ, we have
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from which we have relations of the form

Since we have from it

VκVλ, a + βvκV\ a n ( * vμPn are functions of 77 alone. Therefore a and β are
also functions of v alone and consequently ηλ is a concircular vector. Hence
we have the

THEOREM 4. 5. // Πλμ = pfoW + "tvhw* a n d I W - ΓW = 0, then
τ]\ is a concircular vector field.

§ 5. Conformal transformation of Π λ μ = pgλμ + κηλr)μ.
We shall seek a conformal transformation such that the form of the

equation (4.2) remains invariant. In the first place, we treat of the case
when p and K are functions of η, that is to say,

Multiplying (5.1) by gλ^ and contracting for λ and μ, we have

(5 2) - ^

Differentiating with respect to xμ, we have

(5.3) - 2 ( w ^ 3 ) - nPμ

where Λμ = | £ and

On the other hand, from (5.1) we have

(5-4) Π.λ

μ = pδ£ + tfϊ V •

Because of Π^.λ = — ~2(n^ϊ)Rμ' f r o m ^'^ w e h a v e

1
(5 5) ~ 2{n - i) R* = ^ + ( ^ ^ + ^!λ) Vn + 2

Comparing (5.5) with (5.3), we find that ηκηκ and R are functions of η.
Thus we have the

THEOREM 5.1. If a tensor Π λ μ of a space satisfies

where ηκ = - ^ - , £/te« ?;λ?7λ α«ύf i? are functions of η alone.

Let us consider now a conformal transformation

(5. 6) gμv = σzgμv .

If ΠλM is transformed by (5.6) to Π λ μ, we have
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where σ-λ — — i ^ σ . Consequently, when Πλμ satisfies (5.1), we have

where

Cλμ — crλ;/ut — σ λO-μ, -f- 2 0 p<Γa<rβ9\μ

Let us assume that

where p and Λ: are functions of 77. Then we have

(5.7) σ λ μ = (per2 — p)gKμ -f (* — κ)rjκv^

However, according to the Theorem 5.1, we know that g^η^riμ is a
function of ?; alone and consequently σ also a function of η alone, because
of g^Mμ = σ-2gλ^VκVμ.

Therefore from (5.7) we have equations of the form

where a and /β are functions of η. Thus we have the

THEOREM 5.2. In order that the form of equations

Πλμ = p(v)9Jψ + ΦihλVμ t

where η\ = ^ ^ ' remains invariant by a conformed transformation gμV = erJ#μ,,,

it is necessary and sufficient that ηκ is a concircular vector field and σ is a
function of η alone.

THEOREM 5. 3. In order that a siώprojectiυe space admitting a concircular

vector field ηx, where η\ = ~^γ, may be transformed to a subprojective space

by a conformal transformation gμv = σzgμv, it is necessary and sufficient that
σ is a function of η.

Finally the case when p alone is a function of η, that is, equation

<5. 8) Π λ μ =

liolds? will be treated. If we put

(5. 3) and (5.5) become respectively

(5.9) — φn— 1) ̂  = nPμ +

<5. 10) - T ^ ^ y #μ = Pμ.

from which we find that i? and /c are functions of 77 and θ- Let us assume
that (5.8) reduces to the same form

(5.11) Π λ μ = p(y)g\fx +
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by the conformal transformation (5.6). Then we find that K and R, which

is a scalar curvature with respect to gkμ, are functions of η, θ and σ.

From (5.7) we have

{5.12) σχ μ. = ί pσΛ ~ P ~ 2 aV

from which we have

(5.13) (crλcrλ);μ = 2σVλ;μ = 2 {(per3 - p + * σ V^σ-μ + (A: - tf

Therefore σkσλ is a function of σ and 77.

In the first place, let us assume that σ is a function of η. Then from

(5.13) σλσλ is a function of η and consequently we find that η\ is a concircular

vector, because coefficient of </λμ in (5.12) is a function of ?;.

Moreover, by virture of <τλσλ = C^f) 0, θ is a function of η. Thus we

have the

THEOREM 5.4. When the form of the equation {5.8) remains invariant

by a conformal transformation gλfJL = σ(τ))2g\μ, ηκ is a concircular vector field

and fc, R and Ύjκηκ are functions of η alone.

In the next place, we consider the case that θ is a function of η. Equa-

tions (5.12) may be written in the form

(5. 14) σλ:μ = pgλμ -f qη\ημ. -f σkσμy

where p = pσι — p — ~ σvσv, q = K — /c. Accordingly p is a function of σ

and η, and q is a function of cr, 77 and θ.

From (5.14) we have

+ σ\;vσμ -f

Substituting (5.14) and subtracting from it the equation obtained by inter-

changing μ and v, we obtain

σ-λ μ* — σk;vμ = — σ JR?λμv

= (/V — Pvv)gχu, — ( ^ — pcrμ)gKv

Multiplying by //^ and contracting for λ and //, we have

— <rω#;ί = (w — 1) (pv —

However, according to (5.8), the left-hand member of the above equation

is a linear combination of σv and ηv, and in the right-hand member ηkr)κ;v

is equal to 2 θv. Thus (5.15) reduces to a linear combination of σv, ηv and

Λ, that is to say, cr is a function of η and β.

Consequenty if 0 is a function of ??, then cr is also a function of η.
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Thus we find the

THEOREM 5.5. When -ηκ<η\ is a function of <η, where η\ = ^5r> if

form of the equation (5.8) remains invariant by a conformal transformation

g\μ = <rzgκμ, then rjλ is a concircular vector field and K, R and σ are functions

of η alone.
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