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§0. Introduction.

In the previous paper [1], we proved that, if the Christoffel symbols of
the second kind in a Riemannian space V, take the form, for a suitable
coordinate system,

0.1) { ;‘v} = P8 + PN+ DLE,
where
0.2) g, =ad + B8,

V. is a subprojective space, and that the subprojective space is a con-
formally flat space admitting a concircular transformation.

In this paper, we shall prove some properties of the subprojective
Riemannian space and study problems related to Rachevsky’s condition (B).

§ 1. Riemannian space admitting { ‘2)} = PuEr

In this section, we shall treat of the case when (0. 1) becomes

a.1) { ;‘,,} = DB,

where £ is a torse-forming vector.
If V, is a subprojective space, the next three conditions are satisfied [3],
that is,
(A) Ry, = Thgu — T2, + T, — &T,,,
(1.2) A) Toagw — T =0,
~ (B) Tre = pgrs + prow,

where

-1 ___RrR

T =g (R = g5 =1y )

and

e} ) .

PM— OJZ" a‘i-“za—xo;;7 U'ZU(P).
Putting
A = qot,

we have (0.2) and
(1 3) T:\,u. = PYgra + uf)\&p- )
1.4) Pu = QuEy,  un+ 2uB,= g&,.
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Moreover, we have
(1~5) aB/l- —a, = (2P+ ME’E.;)EM s
because of Ricci identities

E«\;uv - EMWL = - étfRY)\p.v .
Let us consider now differential equations

(16) zA;y. = - ¢A,¢zﬂfar

where ®,, is a symmetric tensor. Substituting (1.6) in Ricci identities
Zrw — A = — 2R3,

we obtain .

(1 7) zuR?M‘_,, = zo‘{a(q))\uaz - q))\usx) + 2UM4_,EU},

where
(1 8) 2U)\M" = q))m.:v - ¢Av§n - f‘”(?’m‘l’w - (/))wq)w,u.) + ¢AMBV - ¢)\VBM-
Let us'assume that ®,, satisfies equation
(1.9) APy = 2pgz, + uEXE, = Tiw + P9I
from which we have by covariant differentiation
A, Prp + APy = T)\y.;v + Pvgrp-

Interchanging w« and » and subtracting the resulting equation from the above,
we have

(aV¢z\p. - C(,,_?’,\v) + a(¢/\u;v - ¢/\V§}L) = (T)\p;v - T)\VZN-) + (Pvg)\,‘ — P#g)\v)-
Substituting (1.2) (A”) and (1.4), we obtain
(1-10) (au¢)\v - aﬂ,¢)\}1) + a(q),\p;v - ¢)Mf;p.) = au(fvg/\}t - E#g)\v)~
From (1.5) and (1.9), we have
aBM —a, = af“tpw,

from which follows a, = a(B, — £°@,,). Substituting in (1.10), we obtain,
because of (1.8),
(1 11) 2U)\,.|.V = u(Ev.q)\p. - E[J.g/\v)-

Making use of (1.2) (A), (1.9) and (1.11), we can find that (1.7) is satis-

fied identically and consequently (1.6) is completely integrable. Accordingly,
if we represent » linearly independent solutions by

2% (=12 ....,n),
there exist # independent functions
1.12) x* = g2V,
such that 22 = Z‘;ﬁ . Considering (1.12) as a transformation of coordinates,

we can easily conclude that the Christoffel symbols of the second kind may
be transformed to the form

{gv} = PpE”.
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Now we have from (0.2) and (1.6)
1 1
( o z‘,f*’);“ = Fz.,{-"(aB# — A, — APLLEY) + 2, = 2,
from which follows
= Lesge ot e,
where d® are constants. Therefore we have
E’x = ng" = a(iﬂ — d“).

- Hence we find the

THEOREM. The Christoffel symbols of the second kind of a subprojective
space can be reducible to the form, by a suitable transformation of coordi-

nates,
AL .
{,Uov} = Pl

where £ is a concircular vector and P, a symmetric tensor. Inthis coordinate
system, E\ takes the form
Er = a(x — ah,
where & is a function of the x's and d* are constants.
Now if we put wu,. = a®,,, (1.6) becomes

Zyu = — UruRWwO®,

%

* 0 #
whose # independent solutions z¥ are equal to gix , x* being the canonical

*

coordinate system. Since { 7»} = ;i,w;r'* in the canonical system, we can
1734
easily obtain the above theorem.

§ 2. Fundamental quadratic differential form of subprojective space.

In the first place, we consider the fundamental quadratic differential
form of a space which has constant Riemannian curvature. This funda-
mental form may be written in the form [2]

2.1) ds* = 2”‘7* ,
where

n

U= 22X, Xi=ax)+2bx+c

i=1

and a, b; and ¢; are arbitrary constants satisfying the following condition
_ _ , _ R
K = 4((1267; zbf) R K = m .

Putting b; = 0, we have



ON SUBPROJECTIVE SPACES II 333

X; = a(x') + ¢, K=4a20i,
from which follows

U=a3@r + o= oy 2@+ 1o} -

If we put K = +16a* we have

U=vEK{ gDy =1),
from which follows

@ gt = ORI @RY & @RY (g )

+ K{%Z (af): = 1}-

where the symbol + takes + or — according as the scalar curvature is
positive or negative,

Now the fundamental quadratic differential form of a subprojective space
V. is represented by the equation [4]

(2.3) ds* = fAx")fi(x*)dx'dx’ + (dx*):  (i,5,k=1,2,....,n—1),
for a suitable coordinate system. In this case, since the hypersurfaces

x* = const. are of constant curvature, by virtue of (2.2), (2.3) must be
reducible to the form, by a suitable transformation of coordinates,

1)2 2)2 n—1y2
-~ ds? = (dxY) +(dx)1+n_.1... Jh(dxz roy (@xvy,
+ K(x") {Z’ pNCIES 1}
where K(x*)= R") + 0V, R(x*) being scalar curvatures of the
-1 —2) ’

hypersurfaces.
In fact, from (2.4) the Christoffel symbols of the hypersurfaces are
given by

=== - G, j k=)
{if=-wm  {i}-o
n—1

where V = 4«2 (x')? = 1. If we represent curvature tensors, Ricci tensors
i=1

and scalar curvatures of the hypersurfaces by R/,,, Ry and R respectively,
we have

1> The case when K = const. will be treated in the later paper.
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where i is not summed, Thus we have readily R = (» — 1) (n — 2)K. Further-
more, since R'; = Kg,; and all other components of the curvature tensors
are equal to zero, we find
R.l:]kl = K(:(;MSZ - djlsk)'
Especially, when the space admits a concurrent vector field [5], we have
(2
K(x, ) ( xm)g )

where k is a positive constant,

§3. Totally minbilical hypersurface in a conformally flat space.

A subprojective space is conformally flat and admits a family of oo!
totally umbilical hypersurfaces. In this section, we shall consider the case
that there exists a totally umbilical hypersurface in a conformally flat space
C.,. ,

Let us define the totally umbilical hypersurface V,-, by the equations

A=) Ay =12 mid g =1,2 .. n— 1)
If g,, and g;5 are the fundamental tensors of C, and V,.-1 respectively, the
Euler-Schouten’s curvature tensor of V,_; with respect to C, takes the form
Hii* = gi;H.
Consequently, if we represent the curvature tensors of C, and V,_; by R} o
and R, respectively, the Gauss equations become

(3~ 1) jlch B)\jkh.RAp,vm + H)‘HA( ‘]jl n fhsk);
where
Tuvew i . o w . ax" i . .
B»{;‘m = B-ABj“B}can s B = ox 0 B-)\ = gt'!}mB m,
Since
R{\y.w.u = T:\wg w Ti\vg i + T',_,,Sﬁ, - Tumsﬁ ’
where

T = g (R = g =gy 0m)

R being the scalar curvature of C,, (3.1) may be reducible to

Rl = B{R 95 — BY.R\9m + ByR, 8, — B4R, 8;)

1
n—2 (
+ (958;, — 95n0%) (H AH, — 1 5:1’)’(*;‘:"2')*> )

where Blg = B! B,',“’ and BY = B;*B;*. Contracting for { and %, we have

(3.2)

— e v R __1_._ w —_—
(B.3) Ru= 1y~ 5 By R+ { otyn—s) — 7z BB Rt =D Ha,

where B* is a normal vector of V,_;.
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Now let us assume that tangential directions of V-, are Ricci directions.
Then we have equations of the form

3.4 R,.B}* = ag,,B;}*,
from which we have

BiR: = ad}, B%R,, = ags.
Therefore (3.2) is reducible to

R. — < 2a R
Sk n—2 (n—1)n-
and consequently V,_; has constant Riemannian curvature.
Moreover, since all tangential directions of V,_, are Ricci directions,
we have from (3.4)
(3 5) R)\y, = QYru + bB)\B;u
where b is a certain scalar. Thus we find that the normals of V,-, are
also Ricci directions and consequently V., has constant mean curvature.
Conversely, if a totally umbilical hypersurface Vy-, in C, has constant
Riemannian curvature and mean curvature, from (3.3) we have

5y + H'\H)\> (918;, — 9mbL),

B}‘,:RW = ag g,
that is,
(Ru — aguw)Bty = 0.
Thus we have equations of the form
R, = a9y + v.B, + v,B,,
where v, is a certain vector. However, since the normals of V-, are
Ricci directions, R,, takes the form (3.5). Thus we have the

THEOREM. In a conformal flat space C, (n > 3), in order that tangential
directions of a totally umbilical hypersurface are all Ricci divections, it is
necessary and sufficient that the hypersurface is of constant Riemannian curva-
ture and mean curvalure.

§4. II,. = pgan + k. and coneircular geometry.

In this section and the next, we shall treat of the problems connected
with Rachevsky’s condition (B). Using II,, in place of — 7,,, we put

_ 1 ( _ R
4.1) II,. = 7—2 R, _2@—:—1—)‘%\”) .
We consider now a family of hypersurfaces
n(x") = const.
in a Riemannian space V, and assume that II,, takes the form
4.2) I, = pgas + K\,
where p and « are any scalar functions of the x’s. From (4.1) and (4.2)
we have
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R
B ={ g 1y = 0= D} g0 — (1 = 2uemane

Therefore any vector «*, which is orthogonal to #*, is the Ricci direction.
Conversely, if R\w* = av, for any vector »* satisfying v =0, we
have
(Rye — agru)v* =0,
from which we obtain equations of the form
R\, = agr. + by,
Thus II,, takes the form (4.2) and consequently follows the

THEOREM 4. 1. In order that tangential divections of the hypersurfaces
n = const. in a 'V, are Ricci directions, it is necessary and sufficient that
II,,. defined by (4.1) takes the form (4.2).

In the subprojective space, we notice that p and « are functions of 7.
Let us assume now that »* is a concircular vector. Then the funda-
mental quadratic differential form of V,, may be written in the form

ds* = fAx")f(x)dxdx® + (dx™)?

for a suitable coordinate system. In this case the above-mentioned hyper-
surfaces are defined by

X" = const.,
which are totally umbilical. If we represent Ricci tensors and scalar

curvatures of the hypersurfaces by R;; and R respectively, we can derive
the next relations [1]

1 Rij;= Ry — 71-:{(71 — 2" + I Y945

4.3) Rnn:_(n—l)}’
Rln = 0,

(4.4) R=R~(n—D{n— 20"+ 2"
and

| _ 1 R 1/ o

| 0=~ ez (B = g1y o) + g e
(4.5) ; . R 11 " grm

Hi-n = 0.
Since

(4.6) R =f12 R,

where f7f; = 8¢ and Rj, are functions of x' alone, we have



ON SUBPROJECTIVE SPACES II 337

o9R _ 2

“7 T TF R.
Now, because of
7 = g;,); = &, ™= gaut = 87,
(4.1) reduces to
4.8) Iy, = pga. + "BI\LSZ,
from which we have
4.9) ILi; = pgujy, Mun=p+x, 1u=0.

Comparing (4.9) with (4.5), we find that R;; are proportional to g;; and,
when # >3, from (4.6) we have
f*Rs =c= const, R= f;f.

I

Thus we have the

THEOREM 4.2 [1]. In order that a tensor Il,, of a space admitting a con-
circular vector field . satisfies a equation of the form (4.2), it is necessary
and sufficient that the hypersurfaces n = const. are all Einstein spaces.

If we put

from (4.5) we have

1, = R L1
s = (= g =iz * 27 )%
1
2

(L kR I R o
o =~ ==z + >+ m—Dm—2 7t

Comparing with (4.9), we obtain

_ R f/z _ R f'/
P Bm—1n—2 T 27 T T Zm=Dw—-2  n—2 f °
(4.10) ‘
_ R R da [
T Dm—2 T T m-Dm-2 T s

Ry
T n—1Dn—2) n—2 f °

Thus we have the

THEOREM 4.3. If a tensor Il\. of a space admitting a concircular vector
field n\, where 3, = g—%, satisfies a equation of the form (4.2), then p,x
and R are functions of n alone (n > 3).

From (4.10) we have
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po= 2P o 1 °R . f _d
» = oxn 2m—1j(n—2) ox° ' f dx

Substituting (4.7), we have by virtue of (4.10)

4

Sy

Pn = f K,
from which follows
4.11) P = ’} k8 (n>3).

However because of

*.12 e = 8= — ) = 77 (one — 338D

we have from (4.8)

H}\M;I’ - H)\v;',, = (PV - ;— ICS):;)gM/. - (PM - ff-j’ ICS:’:) Jaw + ICpSKSﬁ - IC,LSXSIf
= kO}8] — K38,
Since « is a function of x*, we obtain
4.13) I — My = 0.
Conversely, in the previous paper [1] we proved that, when the above
equation holds, the hypersurfaces x™ = const. are Einstein Spaces. Thus
we have the

THEOREM 4.4 [4]. In order that a tensor 1I,, of a space admitting a con-
circular vector field n, satisfies a equation (4.2), it is necessary and sufficient
that

My — My =0 (7> 3).

If II,. satisfies (4.2) and 7, is a concircular vector satisfying
77)\;,11. = ag)\y. + B”:\n;u
we have a relation, by virtue of (4.11) and (4. 12),
4.14) Pu = Qxmy, (n > 3).

Especially when z = 3, if p (or «) is a function of 7, then R and « (or p)
also are functions of » and consequently (4.14) and (4.13) hold. Therefore
in a three dimensional space V; if a gradient vector %, is a concircular
vector and a tensor II,, satisfies (4.2), where p or « is a function of #, then
V., is a subprojective space. '

Finally, we assume that II,, satisfies (4.2) and (4.13), and that p and «
are functions of » alone. Then

Mapw — My = (Pugan — Pugdn) + lgrwmu — maum) = 0.
Multiplying by »* and summing for g, we have

Pn — 7*Pudre + k(0 e — NPaum) = 0,
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from which we have relations of the form
My = Agn + B’,’){']w
Since we have from it
P = 2Py = 2(@ + Byndms,
', @+ Bn’y, and n*p. are functions of  alone. Therefore @ and B are

also functions of 5 alone and consequently 7, is a concircular vector. Hence
we have the

THEOREM 4. 5. If IL.. = p(n)ga + wlp)pn. and I, — ;. =0, then
na IS a concivcular vector field.

§ 5. Conformal transformation of II,. = pgi. + x99

We shall seek a conformal transformation such that the form of the
equation (4.2) remains invariant. In the first place, we treat of the case
when p and « are functions of 7, that is to say,

(5.1) e = pmgae + w(m)nam,.
Multiplying (5.1) by ¢™ and contracting for A and u, we have

R
(5.2) - m = np + /cg""mn”.
Differentiating with respect to x*, we have
. R
6.3 = B 1) = Pt R+ e

oR 2
where R, = ey and (p*p\). = a—x“(n"m).

On the other hand, from (5.1) we have

(5.4) =08+ xntny .
1
Because of I, = — mR”’ from (5.4) we have
1
(5.5) ~ % =1) R, = pu+ (exn® + km) mu + g D) -

Comparing (5.5) with (5.3), we find that 2 and R are functions of ».
Thus we have the

THEOREM 5.1. If a tensor II\. of a space satisfies
e = p(mgae + e(n)man,,

where n = % then 7’y and R are functions of n alone.
Let us consider now a conformal transformation
®. 6) g;,.w = U'zguv .

If II,, is transformed by (5.6) to II,,, we have

1
l—[)‘,,L = H,\p. + O\~ ONO + 2 g"’ﬁo'ﬁa'pg;\“,
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dlog o

where o) = S0 Consequently, when II,, satisfies (5.1), we have

Maw = P(Iru + w(mImmu + T
where
Oxe = Oap — OOy + ; 9%Pouo e -
Let us assume that
Iae = p(Mg,, + wl)mnu
where p and x are functions of 5. Then we have
(5.7 o = (Pa? — P)au + (K — &)y
However, according to the Theorem 5.1, we know that g¢™#n, is a
function of 7 alone and consequently o also a function of # alone, because

of Py = o2,
Therefore from (5.7) we have equations of the form

M = Agay + B”P\’?M:
where « and B are functions of . Thus we have the

THEOREM 5.2. In order that the form of equations
e = p(m)gre + £)mnu
where n) = ~ad—xA7L, remains invariant by a conformal transformation g, = oy,

it is necessary and sufficient that »n" is a concircular vector field and o is a
Sfunction of 5 alone.

THEOREM 5.3. In order that a subprojective space admitting a concircular
vector field n\, where n\ = 7%%, may be transformed to a subprojective space

by a conformal transformation ¢., = c*q.., it is necessary and sufficient that
o s a function of 1.

Finally the case when p alone is a function of 7, that is, equation
(5.8) IT\. = p(n)gan + £Nagp
holds, will be treated. If we put

'(])\}Ln)\n”' = 6 ,
(5.3) and (5.5) become respectively
1
(5.9) @n — 1 R, = np,.+ Or, + €6y,
1
15.10) - W;l)Rp. = p. + (an* + Kr]';\,\)np. + ge,“

from which we find that R and « are functions of » and 4. Let us assume
that (5. 8) reduces to the same form

(5.11) - Iae = pMyre + £mDu
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by the conformal transformation (5.6). Then we find that « and R, which
is a scalar curvature with respect to g, are functions of 5, 4 and o.
From (5.7) we have

{5.12) Oap = (pa'z —p— ; 0'”0',,) Ia + (K — KT + TATy,

from which we have
3 A — A _— 2 1
6139 (o) = 200w =2{(po? = p + 500 o+ (e — ,c).,v,,v,m}.

Therefore o*o, is a function of ¢ and 4.

In the first place, let us assume that ¢ is a function of . Then from
(5.13) o*o) is a function of 5 and consequently we find that 7, is a concircular
vector, because coefficient of g, in (5.12) is a function of 7.

2
Moreover, by virture of oo\ = (a¢‘> g, #is a function of . Thus we

dn
have the

THEOREM 5.4. When the form of the equation (5.8) remains invariant
by a conformal transformation g, = o(n)?gr., mn &S @ concircular vector field
and «, R and n'nyx are functions of n alone.

In the next place, we consider the case that 4 is a function of ». Equa-
tions (5.12) may be written in the form

(5. 14) Tap = IJg;\,,, —+ gnanu + oaoy,

where p = po*—p — ;a"o,,, q =« — x. Accordingly p is a function of o

and 5, and ¢ is a function of o, » and @.
From (5.14) we have
Orw = Dotlrs + @i+ Agasme + 93750
+ onvo t+ oao .
Substituting (5.14) and subtracting from it the equation obtained by inter-
changing u and », we obtain
T — Onap = — G l0S,
= (B, — Po)Iru — (Pu — Po)In
+ aq\(oun, — o) + n@me — qu) + dmaane — M-
Multiplying by ¢** and contracting for A and u, we have
—ouRY = (n—1)(p, — pa,) + an’orn, — n'nia,)
+ (*mage — n'@am) + A e — ).
However, according to (5.8), the left-hand member of the above equation
is a linear combination of ¢, and #»,, and in the right-hand member »*;,

(5.15)

is equal to ; @,. Thus (5.15) reduces to a linear combination of o,, n, and

8., that is to say, o is a function of » and 6.
Consequenty if @ is a function of », then o is also a function of .



342 T. ADATI

Thus we find the

THEOREM 5.5. When »’y is a function of »n. where n\ = %’x, if the

form of the equation (5.8) remains invariant by a conformal transformation
Irne = O%an, thenm oM is a concircular vector field and x, R and o are functions

of 7 alone.
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