ON SUBPRO.JECTIVE SPACES II

Tyûzi Adati

(Received July 14, 1951)

80 . Introduction.

In the previous paper [1], we proved that, if the Christoffel symbols of the second kind in a Riemannian space V_{n} take the form, for a suitable coordinate system,

$$
\left\{\begin{array}{c}
\lambda \tag{0.1}\\
\mu \nu
\end{array}\right\}=\boldsymbol{\varphi}_{\mu} \delta_{\nu}^{\lambda}+\boldsymbol{\varphi}_{\nu} \delta_{\mu}^{\lambda}+\varphi_{\mu \nu} \xi^{\lambda}
$$

where

$$
\begin{equation*}
\xi_{; \mu}^{\prime}=\alpha \delta_{\mu}^{\lambda}+\beta_{\mu} \xi^{\lambda}, \tag{0.2}
\end{equation*}
$$

V_{n} is a subprojective space, and that the subprojective space is a conformally flat space .admitting a concircular transformation.

In this paper, we shall prove some properties of the subprojective Riemannian space and study problems related to Rachevsky's condition (B).
§1. Riemannian space admitting $\left\{\begin{array}{l}\lambda \\ \mu \nu\end{array}\right\}=\varphi_{\mu \nu} \xi^{\lambda}$.
In this section, we shall treat of the case when (0.1) becomes

$$
\left\{\begin{array}{c}
\lambda \tag{1.1}\\
\mu \nu
\end{array}\right\}=\varphi_{\mu \nu} \xi^{\lambda},
$$

where ξ^{λ} is a torse-forming vector.
If V_{n} is a subprojective space, the next three conditions are satisfied [3], that is,
(A) $R_{\cdot \mu \nu \omega}^{\lambda}=T_{{ }_{\omega}}^{\lambda} g_{\mu \nu}-T_{{ }_{\nu}}^{\lambda} g_{\mu \omega}+\delta_{\omega \omega}^{\lambda} T_{\mu \nu}-\delta_{v}^{\lambda} T_{\mu \omega}$,
(A') $T_{\lambda \mu ; \nu}-T_{\lambda \nu ; \mu}=0$,
(B) $T_{\lambda \mu}=\rho g_{\lambda \mu}+\rho_{\lambda} \sigma_{\mu}$,
where

$$
T_{\lambda \mu}=\frac{1}{n-2}\left(R_{\lambda \mu}-\frac{R}{2(n-1)} g_{\lambda \mu}\right),
$$

and

$$
\rho_{\mu}=\frac{\partial \rho}{\partial x^{\mu}}, \quad \sigma_{\mu}=\frac{\partial \sigma}{\partial x^{\mu}}, \quad \sigma=\sigma(\rho) .
$$

Putting

$$
\xi^{\lambda}=\alpha \sigma^{\lambda}
$$

we have (0.2) and

$$
\begin{gather*}
T_{\lambda \mu}=\rho g_{\lambda \mu}+u \xi_{\lambda} \xi_{\mu}, \tag{1.3}\\
\rho_{\mu}=\alpha u \xi_{\mu}, \quad u_{\mu}+2 u \beta_{\mu}=q \xi_{\mu} . \tag{1.4}
\end{gather*}
$$

Moreover, we have

$$
\begin{equation*}
\alpha \beta_{\mu}-\alpha_{\mu}=\left(2 \rho+u \xi^{\sigma} \xi_{\sigma}\right) \xi_{\mu} \tag{1.5}
\end{equation*}
$$

because of Ricci identities

$$
\xi_{\lambda ; \mu \nu}-\xi_{\lambda ; \eta \mu}=-\xi_{\sigma} R_{\cdot \lambda \mu \nu}^{\sigma} .
$$

Let us consider now differential equations

$$
\begin{equation*}
z_{\lambda_{; ~} \mu}=-\varphi_{\lambda \mu} z_{\sigma} \xi^{\sigma}, \tag{1.6}
\end{equation*}
$$

where $\varphi_{\lambda \mu}$ is a symmetric tensor. Substituting (1.6) in Ricci identities

$$
z_{\lambda ; \mu \nu}-z_{\lambda ; \nu \mu}=-z_{\sigma} R_{\cdot \lambda \mu \nu}^{\sigma},
$$

we obtain

$$
\begin{equation*}
z_{\sigma} R_{\cdot \lambda \mu \nu}^{\sigma}=z_{\sigma}\left\{\alpha\left(\varphi_{\lambda \mu} \delta_{\nu}^{\sigma}-\varphi_{\lambda \nu} \delta_{\mu}^{\sigma}\right)+2 U_{\lambda \mu \nu} \xi^{\sigma}\right\} \tag{1.7}
\end{equation*}
$$

where
(1.8) $\quad 2 U_{\lambda \mu \nu}=\varphi_{\lambda \mu ; \nu}-\varphi_{\lambda \nu_{; ~} \mu}-\xi^{\omega}\left(\varphi_{\lambda \mu} \varphi_{\omega \nu}-\varphi_{\lambda \nu} \varphi_{\omega \mu}\right)+\varphi_{\lambda \mu} \beta_{\nu}-\varphi_{\lambda \nu} \beta_{\mu}$.

Let us'assume that $\varphi_{\lambda \mu}$ satisfies equation

$$
\begin{equation*}
\alpha \varphi_{\lambda \mu}=2 \rho g_{\lambda \mu}+u \xi_{\lambda} \xi_{\mu}=T_{\lambda \mu}+\rho g_{\lambda \mu}, \tag{1.9}
\end{equation*}
$$

from which we have by covariant differentiation

$$
\alpha_{\nu} \varphi_{\lambda \mu}+\alpha \varphi_{\lambda \mu ; \nu}=T_{\lambda \mu ; \nu}+\rho_{\nu} g_{\lambda \mu} .
$$

Interchanging μ and ν and subtracting the resulting equation from the above, we have

$$
\left(\alpha_{\nu} \varphi_{\lambda_{\mu}}-\alpha_{\mu} \varphi_{\lambda \nu}\right)+\alpha\left(\varphi_{\lambda \mu ; \nu}-\varphi_{\lambda v ; \mu}\right)=\left(T_{\lambda_{\mu} ; \nu}-T_{\lambda v ; \mu}\right)+\left(\rho_{\nu} g_{\lambda \mu}-\rho_{\mu} g_{\lambda \nu}\right) .
$$

Substituting (1.2) (A^{\prime}) and (1.4), we obtain

$$
\begin{equation*}
\left(\alpha_{\nu} \varphi_{\lambda \nu}-\alpha_{\mu} \varphi_{\lambda \mu}\right)+\alpha\left(\varphi_{\lambda \mu ; \nu}-\varphi_{\lambda \nu ; \mu}\right)=\alpha u\left(\xi_{\nu} g_{\lambda \mu}-\xi_{\mu} g_{\lambda \nu}\right) \tag{1.10}
\end{equation*}
$$

From (1.5) and (1.9), we have

$$
\alpha \beta_{\mu}-\alpha_{\mu}=\alpha \xi^{\sigma} \mathscr{q}_{\sigma \mu}
$$

from which follows $\alpha_{\mu}=\alpha\left(\beta_{\mu}-\xi^{\sigma} \boldsymbol{\varphi}_{\sigma \mu}\right)$. Substituting in (1.10), we obtain, because of (1.8),

$$
\begin{equation*}
2 U_{\lambda_{\mu \nu}}=u\left(\xi_{\nu} g_{\lambda_{\mu}}-\xi_{\mu} g_{\lambda_{\nu}}\right) \tag{1.11}
\end{equation*}
$$

Making use of (1.2) (A), (1.9) and (1.11), we can find that (1.7) is satisfied identically and consequently (1.6) is completely integrable. Accordingly, if we represent n linearly independent solutions by

$$
z_{\lambda}^{\alpha} \quad(\alpha=1,2, \ldots, n),
$$

there exist n independent functions

$$
\begin{equation*}
x^{\alpha}=x^{\alpha}\left(x^{\wedge}\right), \tag{1.12}
\end{equation*}
$$

such that $z_{\lambda}^{\alpha}=\frac{\partial x^{\alpha}}{\partial x^{\lambda}}$. Considering (1.12) as a transformation of coordinates, we can easily conclude that the Christoffel symbols of the second kind may be transformed to the form

$$
\left\{\begin{array}{|c}
\boldsymbol{\alpha} \\
\boldsymbol{\beta}_{\boldsymbol{\gamma}}
\end{array}\right\}=\overline{\boldsymbol{\varphi}}_{\beta \gamma} \xi^{\boldsymbol{\alpha}} .
$$

Now we have from (0.2) and (1.6)

$$
\left(\begin{array}{l}
1 \\
\alpha \\
z_{\sigma} \xi^{\sigma}
\end{array}\right)_{; \mu}=\frac{1}{\alpha^{2}} z_{\sigma} \xi^{\sigma}\left(\alpha \beta_{\mu}-\alpha_{\mu}-\alpha \varphi_{\omega \mu} \xi^{\omega}\right)+z_{\mu}=z_{\mu}
$$

from which follows

$$
x^{\alpha}=\frac{1}{\alpha} z_{\sigma}^{\alpha} \xi^{\sigma}+d^{\alpha},
$$

where d^{α} are constants. Therefore we have

$$
\xi^{\alpha}=z_{\sigma}^{\alpha} \xi^{\sigma}=\alpha\left(\bar{x}^{\alpha}-\bar{d}^{\alpha}\right) .
$$

Hence we find the
Theorem. The Christoffel symbols of the second kind of a subprojective space can be reducible to the form, by a suitable transformation of coordinates,

$$
\left\{\begin{array}{c}
\lambda \\
\mu \nu
\end{array}\right\}=\varphi_{\mu \nu} \xi^{\lambda}
$$

where ξ^{λ} is a concircular vector and $\mathcal{\varphi}_{\mu \nu}$ a symmetric tensor. In this coordinate system, ξ^{\wedge} takes the form

$$
\xi^{\lambda}=\boldsymbol{\alpha}\left(x^{\lambda}-d^{\lambda}\right),
$$

where α is a function of the x^{\prime} s and d^{λ} are constants.
Now if we put $u_{\lambda \mu}=\alpha \varphi_{\lambda \mu}$, (1.6) becomes

$$
z_{\lambda ; \mu}=-u_{\lambda \mu} z_{\omega} \sigma^{\omega},
$$

whose n independent solutions ${\underset{\sim}{\lambda}}_{x}^{\alpha}$ are equal to $\frac{\partial^{*} x^{\alpha}}{\partial x^{\alpha}}, \dot{x}^{*}$ being the canonical coordinate system. Since $\left\{\begin{array}{c}\lambda_{\mu \nu} \\ \mu \nu\end{array}\right\}=\ddot{u}_{\mu \nu}^{*} \dot{x}^{\lambda}$ in the canonical system, we can easily obtain the above theorem.

§ 2. Fundamental quadratic differential form of subprojective space.

In the first place, we consider the fundamental quadratic differential form of a space which has constant Riemannian curvature. This fundamental form may be written in the form [2]

$$
\begin{equation*}
d s^{2}=\sum_{i=1}^{n} \frac{\left(d x^{i}\right)^{2}}{U^{2}} \tag{2.1}
\end{equation*}
$$

where

$$
U=\sum_{i=1}^{n} X_{i}, \quad X_{i}=a\left(x^{i}\right)^{2}+2 b_{i} x^{i}+c_{i}
$$

and a, b_{i} and c_{i} are arbitrary constants satisfying the following condition

$$
K=4\left(a \sum c_{i}-\sum b_{i}^{u}\right), \quad K=\frac{R}{n(n-1)} .
$$

Putting $b_{i}=0$, we have

$$
X_{i}=a\left(x^{\prime}\right)^{2}+c_{i}, \quad K=4 a \sum c_{i}
$$

from which follows

$$
U=a \sum\left(x^{i}\right)^{2}+\sum c_{i}=4 a\left\{\frac{1}{4} \sum\left(x^{i}\right)^{2}+\frac{K}{16 a^{2}}\right\}
$$

If we put $K= \pm 16 a^{2}, \quad$ we have

$$
U=\sqrt{ \pm K}\left\{\frac{1}{4} \sum\left(x^{i}\right)^{2} \pm 1\right\}
$$

from which follows

$$
\begin{equation*}
d s^{2}=\frac{\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\ldots+\left(d x^{n}\right)^{2}}{ \pm K\left\{\frac{1}{4} \sum_{i=1}^{n}\left(x^{i}\right)^{2} \pm 1\right\}^{2}} \quad(K \neq 0) \tag{2.2}
\end{equation*}
$$

where the symbol \pm takes + or - according as the scalar curvature is positive or negative.

Now the fundamental quadratic differential form of a subprojective space V_{n} is represented by the equation [4]

$$
\begin{equation*}
d s^{2}=f^{2}\left(x^{n}\right) f_{i j}\left(x^{k i}\right) d x^{i} d x^{j}+\left(d x^{n}\right)^{2} \quad(i, j, k=1,2, \ldots, n-1) \tag{2.3}
\end{equation*}
$$

for a suitable coordinate system. In this case, since the hypersurfaces $x^{\prime \prime}=$ const. are of constant curvature, by virtue of (2.2), (2.3) must be reducible to the form, by a suitable transformation of coordinates,

$$
\begin{equation*}
d s^{2}=\frac{\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\ldots+\left(d x^{n-1}\right)^{2}}{ \pm K\left(x^{n}\right)\left\{\frac{1}{4} \sum_{i=1}^{n-1}\left(x^{i}\right)^{2} \pm 1\right\}^{2}}+\left(d x^{n}\right)^{2} \tag{2.4}
\end{equation*}
$$

where $K\left(x^{n}\right)=\frac{R\left(x^{n}\right)}{(n-1)(n-2)} \neq 0^{1)}, \quad R\left(x^{n}\right)$ being scalar curvatures of the hypersurfaces.

In fact, from (2.4) the Christoffel symbols of the hypersurfaces are given by

$$
\begin{aligned}
& \left\{\begin{array}{l}
i \\
i i
\end{array}\right\}=-\frac{1}{2 V} x^{i}, \quad \overline{\left\{\begin{array}{l}
i \\
j j
\end{array}\right\}}=\frac{1}{2 V} x^{i}, \\
& \{\bar{j}\}=-\frac{1}{2 V} x^{i}, \quad\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}=0
\end{aligned}
$$

where $V=\frac{1}{4} \sum_{i=1}^{n-1}\left(x^{i}\right)^{2} \pm 1$. If we represent curvature tensors, Ricci tensors and scalar curvatures of the hypersurfaces by $R_{. j k l}^{i}, R_{j \pi_{i}}$ and R respectively, we have

$$
\bar{R}_{\cdot i j i}^{i}= \pm \frac{1}{V^{2}}(i \neq j) . \quad R_{j j}= \pm \frac{n-2}{V^{2}}
$$

[^0]where i is not summed. Thus we have readily $R=(n-1)(n-2) K$. Furthermore, since $\bar{R}_{\cdot j j i}^{i}=\boldsymbol{K}_{g_{j j}}$ and all other components of the curvature tensors are equal to zero, we find
$$
\bar{R}_{\cdot j k l}^{i}=K\left(\bar{g}_{j k} \delta_{l}^{i}-\bar{g}_{j l} \delta_{k}^{i}\right)
$$

Especially, when the space admits a concurrent vector field [5], we have

$$
K\left(x^{n}\right)= \pm \frac{k}{\left(x^{n}\right)^{2}},
$$

where k is a positive constant.
83. Totally umbilical hypersurface in a conformally flat space.

A subprojective space is conformally flat and admits a family of ∞^{1} totally umbilical hypersurfaces. In this section, we shall consider the case that there exists a totally umbilical hypersurface in a conformally flat space \boldsymbol{C}_{n}.

Let us define the totally umbilical hypersurface V_{n-1} by the equations

$$
x^{\lambda}=x^{\lambda}\left(x^{i}\right) \quad(\lambda, \mu, \ldots=1,2, \ldots n ; i, j, \ldots=\mathbf{i}, \dot{2}, \ldots, n-\dot{i}) .
$$

If $g_{\lambda \mu}$ and $g_{i j}$ are the fundamental tensors of C_{n} and V_{n-1} respectively, the Euler-Schouten's curvature tensor of V_{n-1} with respect to C_{n} takes the form

$$
H_{i j}^{i \cdot \lambda}=g_{i j} H^{\lambda}
$$

Consequently, if we represent the curvature tensors of C_{n} and V_{n-1} by $R_{\mu \mu \nu \omega}^{\lambda}$ and $R_{\cdot f j k h}^{l}$ respectively, the Gauss equations become

$$
\begin{equation*}
R_{\cdot j k h}^{i}=B_{\lambda j k k h}^{i \mu \mu \omega} R_{\mu \mu \omega}^{\lambda}+H^{\wedge} H_{\lambda}\left(g_{j k} \delta_{h}^{i}-g_{j h} \delta_{k}^{i}\right), \tag{3.1}
\end{equation*}
$$

where

$$
B_{\lambda j k h}^{i \mu \nu u}=B_{\cdot \lambda}^{i} B_{j}^{\cdot \mu} B_{k}^{\cdot \nu} B_{l}^{\cdot \omega}, \quad B_{i}^{\cdot \lambda}=\frac{\partial x^{\lambda}}{\partial x^{i}}, \quad B_{\cdot \lambda}^{i}=g^{i j} g_{\lambda \mu} B^{\cdot \mu} .
$$

Since
where

$$
T_{\mu \nu}=\frac{1}{n-2}\left(R_{\mu \nu}-\frac{R}{2(n-1)} g_{\mu \nu}\right) .
$$

R being the scalar curvature of C_{n}, (3.1) may be reducible to

$$
\begin{align*}
R_{. j k h}^{i}= & \frac{1}{n-2}\left(B_{\lambda h}^{i \omega} R_{{ }_{* \omega}}^{\lambda} g_{j k}-B_{\lambda k}^{i \nu} R_{\cdot \nu}^{\lambda} g_{j h}+B_{j k}^{\mu \nu} R_{\mu \nu} \delta_{h}^{i}-B_{j h}^{\mu \omega} R_{\mu \omega} \delta_{k}^{i}\right) \tag{3.2}\\
& +\left(g_{j k} \delta_{h}^{i}-g_{j h} \delta_{k}^{i}\right)\left(H^{\lambda} H_{\lambda}-\frac{R}{(n-1)(n-2)}\right),
\end{align*}
$$

where $B_{\lambda h}^{i \omega}=B_{\cdot \lambda}^{i} B_{h b}^{\omega \omega}$ and $B_{j k}^{\mu \nu}=B_{j}^{\mu}{ }^{\mu} B_{k}^{\cdot \nu}$. Contracting for i and h, we have

$$
\begin{equation*}
R_{j k}=\frac{n-3}{n-2} B_{j k}^{\mu \nu} R_{\mu \nu}+\left\{\frac{R}{(n-1)(n-2)}-\frac{1}{n-2} B^{\lambda} B^{\omega} R_{\lambda \omega}+(n-2) H^{\lambda} H_{\lambda}\right\} g_{j k} \tag{3.3}
\end{equation*}
$$

where B^{λ} is a normal vector of V_{n-1}.

Now let us assume that tangential directions of V_{n-1} are Ricci directions. Then we have equations of the form

$$
\begin{equation*}
R_{\lambda \mu} B_{i}^{\cdot \lambda}=a g_{\lambda \mu} B_{i}^{\cdot \lambda} \tag{3.4}
\end{equation*}
$$

from which we have

$$
B_{\lambda h}^{i \omega} R_{. \omega}^{\lambda}=a \delta_{h}^{i}, \quad B_{j k}^{\mu \nu} R_{\mu \nu}=a g_{j k} .
$$

Therefore (3.2) is reducible to

$$
R_{\cdot, j k h}^{i}=\left(\frac{2 a}{n-2}-\frac{R}{(n-1)(n-2)}+H^{\lambda} H_{\lambda}\right)\left(g_{j_{k}} \delta_{h}^{i}-g_{j_{h}} \delta_{k}^{i}\right),
$$

and consequently V_{n-1} has constant Riemannian curvature.
Moreover, since all tangential directions of V_{n-1} are Ricci directions, we have from (3.4)

$$
\begin{equation*}
R_{\lambda \mu}=a g_{\lambda \mu}+b B_{\lambda} B_{\mu}, \tag{3.5}
\end{equation*}
$$

where b is a certain scalar. Thus we find that the normals of V_{n-1} are also Ricci directions and consequently V_{n-1} has constant mean curvature.

Conversely, if a totally umbilical hypersurface V_{n-1} in C_{n} has constant Riemannian curvature and mean curvature, from (3.3) we have

$$
B_{j k}^{\mu \nu} R_{\mu \nu}=a g_{j k},
$$

that is,

$$
\left(R_{\mu \nu}-a g_{\mu \nu}\right) B_{j k}^{\mu \nu}=0 .
$$

Thus we have equations of the form

$$
R_{\mu \nu}=a g_{\mu \nu}+v_{\mu} B_{v}+v_{\nu} B_{\mu},
$$

where v_{μ} is a certain vector. However, since the normals of V_{n-1} are Ricci directions, $R_{\mu \nu}$ takes the form (3.5). Thus we have the

Theorem. In a conformal flat space $C_{n}(n>3)$, in order that tangential directions of a totally umbilical hypersurface are all Ricci directions, it is necessary and sufficient that the hypersurface is of constant Riemannian curvature and mean curvature.
§ 4. $\Pi_{\lambda \mu}=\rho g_{\lambda \mu}+\kappa \eta_{\lambda} \eta_{\mu}$ and concircular geometry.
In this section and the next, we shall treat of the problems connected with Rachevsky's condition (B). Using $\Pi_{\lambda \mu}$ in place of $-T_{\lambda \mu}$, we put

$$
\begin{equation*}
\Pi_{\lambda \mu}=-\frac{1}{n-2}\left(R_{\lambda \mu}-\frac{R}{2(n-1)} g_{\lambda \mu}\right) . \tag{4.1}
\end{equation*}
$$

We consider now a family of hypersurfaces

$$
\eta\left(x^{\lambda}\right)=\text { const. }
$$

in a Riemannian space V_{n} and assume that $\Pi_{\lambda \mu}$ takes the form

$$
\begin{equation*}
\Pi_{\lambda_{\mu}}=\rho g_{\lambda \mu}+\kappa \eta_{\lambda} \eta_{\mu}, \tag{4.2}
\end{equation*}
$$

where ρ and κ are any scalar functions of the x 's. From (4.1) and (4.2) we have

$$
R_{\lambda \mu}=\left\{\frac{R}{2(n-1)}-(n-2) \rho\right\} g_{\lambda \mu}-(n-2) \kappa \eta_{\lambda} \eta_{\mu} .
$$

Therefore any vector v^{λ}, which is orthogonal to η^{λ}, is the Ricci direction.
Conversely, if $R_{\lambda \mu} v^{\lambda}=a v_{\mu}$ for any vector v^{λ} satisfying $v^{\lambda} \eta_{\lambda}=0$, we have

$$
\left(R_{\lambda \mu}-a g_{\lambda \mu}\right) v^{\lambda}=0
$$

from which we obtain equations of the form

$$
R_{\lambda \mu}=a g_{\lambda \mu}+b \eta_{\lambda} \eta_{\mu}
$$

Thus $\Pi_{\lambda \mu}$ takes the form (4.2) and consequently follows the
Theorem 4. 1. In order that tangential directions of the hypersurfaces $\eta=$ const. in a V_{n} are Ricci directions, it is necessary and sufficient that $\Pi_{\lambda \mu}$ defined by (4.1) takes the form (4.2).

In the subprojective space, we notice that ρ and κ are functions of η.
Let us assume now that η^{λ} is a concircular vector. Then the fundamental quadratic differential form of V_{n} may be written in the form

$$
d s^{2}=f^{2}\left(x^{n}\right) f_{j_{k}}\left(x^{l}\right) d x^{j} d x^{i+}+\left(d x^{n}\right)^{2}
$$

for a suitable coordinate system. In this case the above-mentioned hypersurfaces are defined by

$$
x^{n}=\text { const. }
$$

which are totally umbilical. If we represent Ricci tensors and scalar curvatures of the hypersurfaces by $R_{i j}$ and R respectively, we can derive the next relations [1]

$$
\begin{align*}
& \left\{\begin{array}{l}
R_{i j}=R_{i j}-\frac{1}{f^{2}}\left\{(n-2) f^{\prime 2}+f f^{\prime \prime}\right\} g_{i j}, \\
R_{n n}=-(n-1)^{\prime \prime} \\
R_{i n}=0,
\end{array}\right. \tag{4.3}\\
& R=R-(n-1)\left\{(n-2) f^{\prime 2}+2 f f^{\prime \prime}\right\} \frac{1}{f^{2}} \tag{4.4}
\end{align*}
$$

and

$$
\left\{\begin{array}{l}
\Pi_{i j}=-\frac{1}{n-2}\left(R_{i j}-\frac{R}{2(n-1)} g_{i j}\right)+\frac{1}{2} \frac{f^{\prime 2}}{f^{2}} g_{i j} \tag{4.5}\\
\Pi_{n n}=\frac{R}{2(n-1)(n-2)}+\frac{1}{2} \frac{1}{f^{2}}\left(2 f f^{\prime \prime}-f^{\prime \prime 2}\right) \\
\Pi_{i n}=0 .
\end{array}\right.
$$

Since

$$
\begin{equation*}
R=\underset{f^{2}}{1} f^{j k} \bar{R}_{j k}, \tag{4.6}
\end{equation*}
$$

where $f^{j k f_{j, k}}=\delta_{l}^{k}$ and $R_{j_{k}}$ are functions of x^{i} alone, we have

$$
\begin{equation*}
\frac{\partial R}{\partial x^{n}}=-\frac{2 f^{\prime}}{f} R \tag{4.7}
\end{equation*}
$$

Now, because of

$$
\eta^{\lambda}=\frac{\partial x^{\lambda}}{\partial x^{n}}=\delta_{n}^{\lambda}, \quad \eta_{\lambda}=g_{\lambda \mu} \eta^{\mu}=\delta_{\lambda}^{n},
$$

(4.1) reduces to

$$
\begin{equation*}
\Pi_{\lambda \mu}=\rho g_{\lambda \mu}+\kappa \delta_{\lambda}^{n} \delta_{\mu}^{n} \tag{4.8}
\end{equation*}
$$

from which we have

$$
\begin{equation*}
\Pi_{i j}=\rho g_{i j}, \quad \Pi_{n n}=\rho+\kappa, \quad \Pi_{i n}=0 . \tag{4.9}
\end{equation*}
$$

Comparing (4.9) with (4.5), we find that $R_{i j}$ are proportional to $g_{i j}$ and, when $n>3$, from (4.6) we have

$$
f^{\prime l} \bar{R}_{j k}=c=\text { const. }, \quad R=\frac{c}{f^{2}} .
$$

Thus we have the
Theorem 4.2 [1]. In order that a tensor $\Pi_{\lambda \mu}$ of a space admitting a concircular vector field η_{λ} satisfies a equation of the form (4.2), it is necessary and sufficient that the hypersurfaces $\eta=$ const. are all Einstein spaces.

If we put

$$
R_{i j}=\frac{R}{n-1} g_{i j},
$$

from (4.5) we have

$$
\begin{aligned}
& \Pi_{i j}=\left(-\frac{R}{2(n-1)(n-2)}+{ }_{2}^{1} \frac{f^{\prime 2}}{f^{2}}\right) g_{i j}, \\
& \Pi_{n n}=\left(-\frac{R}{2(n-1)(n-2)}+\frac{1}{2} \frac{f^{\prime 2}}{f^{2}}\right)+\frac{R}{(n-1)(n-2)}-\frac{f^{\prime 2}}{f^{2}}+\frac{f^{\prime \prime}}{f} .
\end{aligned}
$$

Comparing with (4.9), we obtain

$$
\begin{align*}
\rho=-\frac{R}{2(n-1)(n-2)}+\frac{f^{\prime 2}}{2 f^{2}} & =-\frac{R}{2(n-1)(n-2)}-\frac{1}{n-2} \frac{f^{\prime \prime}}{f}, \tag{4.10}\\
\kappa=\frac{R}{(n-1)(n-2)}-\frac{f^{\prime 2}}{f^{2}}+\frac{f^{\prime \prime}}{f} & =\frac{R}{(n-1)(n-2)}+\frac{d}{d x^{\prime \prime}} \frac{f^{\prime}}{f} \\
& =\frac{R}{(n-1)(n-2)}+\frac{n}{n-2} \frac{f^{\prime \prime}}{f} .
\end{align*}
$$

Thus we have the
Theorem 4.3. If a tensor $\Pi_{\lambda \mu}$ of a space admitting a concircular vector field η_{λ}, where $\eta_{\lambda}=\frac{\partial \eta}{\partial x^{\lambda}}$, satisfies a equation of the form (4.2), then ρ, κ and R are functions of η alone $(n>3)$.

From (4.10) we have

$$
\rho_{n} \equiv \frac{\partial \rho}{\partial x^{n}}=-\frac{1}{2(n-1)(n-2)} \frac{\partial R}{\partial x^{n}}+\frac{f^{\prime}}{f} \frac{d}{d x^{n}} \frac{f^{\prime}}{f} .
$$

Substituting (4.7), we have by virtue of (4.10)

$$
\rho_{n}=\frac{f^{\prime}}{f^{\prime}} \kappa
$$

from which follows

$$
\begin{equation*}
\rho_{\mu}={\underset{f}{f}}_{f^{\prime}}^{\kappa \delta_{\mu}^{n} \quad(n>3) . . ~} \tag{4.11}
\end{equation*}
$$

However because of

$$
\eta_{\lambda ; \mu}=\delta_{\lambda ; \mu}^{n}=-\left\{\begin{array}{c}
n \tag{4.12}\\
\lambda \mu
\end{array}\right\}=\frac{f^{\prime}}{f^{\prime}}\left(g_{\lambda \mu}-\delta_{\lambda}^{n} \delta_{\mu}^{n}\right),
$$

we have from (4.8)

$$
\begin{aligned}
\Pi_{\lambda \mu ; \nu}-\Pi_{\lambda ; ; \mu} & =\left(\rho_{\nu}-\frac{f^{\prime}}{f} \kappa \delta_{\nu}^{n}\right) g_{\lambda \mu}-\left(\rho_{\mu}-\frac{f^{\prime}}{f^{\prime}} \kappa \delta_{\mu}^{n}\right) g_{\lambda \nu}+\kappa_{\nu} \delta_{\lambda}^{n} \delta_{\mu}^{n}-\kappa_{\mu} \delta_{\lambda}^{n} \delta_{\nu}^{n} \\
& =\kappa_{\nu} \delta_{\lambda}^{n} \delta_{\mu}^{n}-\kappa_{\mu} \delta_{\lambda}^{n} \delta_{\nu .}^{n} .
\end{aligned}
$$

Since κ is a function of x^{n}, we obtain

$$
\begin{equation*}
\Pi_{\lambda \mu ; \nu}-\Pi_{\lambda ; ; \mu}=0 \tag{4.13}
\end{equation*}
$$

Conversely, in the previous paper [1] we proved that, when the above equation holds, the hypersurfaces $x^{n}=$ const. are Einstein Spaces. Thus we have the

Theorem 4.4[4]. In order that a tensor $\Pi_{\lambda \mu}$ of a space admitting a concircular vector field η_{λ} satisfies a equation (4.2), it is necessary and sufficient that

$$
\dot{\Pi}_{\lambda \mu ; \nu}-\Pi_{\lambda ; ; \mu}=0 \quad(n>3)
$$

If $\Pi_{\lambda \mu}$ satisfies (4.2) and η_{λ} is a concircular vector satisfying

$$
\eta_{\lambda ; \mu}=\alpha g_{\lambda \mu}+\beta \eta_{\lambda} \eta_{\mu}
$$

we have a relation, by virtue of (4.11) and (4.12),

$$
\begin{equation*}
\rho_{\mu}=\alpha_{\kappa \eta_{\mu}} \quad(n>3) \tag{4.14}
\end{equation*}
$$

Especially when $n=3$, if ρ (or κ) is a function of η, then R and κ (or ρ) also are functions of η and consequently (4.14) and (4.13) hold. Therefore in a three dimensional space V_{3}, if a gradient vector η_{λ} is a concircular vector and a tensor $\Pi_{\lambda \mu}$ satisfies (4.2), where ρ or κ is a function of η, then V_{3} is a subprojective space.

Finally, we assume that $\Pi_{\lambda \mu}$ satisfies (4.2) and (4.13), and that ρ and κ are functions of η alone. Then

$$
\Pi_{\lambda \mu ; \nu}-\Pi_{\lambda \nu ; \mu}=\left(\rho_{\nu} g_{\lambda \mu}-\rho_{\mu} g_{\lambda \nu}\right)+\kappa\left(\eta_{\lambda ; \nu} \eta_{\mu}-\eta_{\lambda ; \mu} \eta_{\nu}\right)=0 .
$$

Multiplying by η^{μ} and summing for μ, we have

$$
\rho_{\nu} \eta_{\lambda}-\eta^{\mu} \rho_{\mu} g_{\lambda \nu}+\kappa\left(\eta^{\mu} \eta_{\mu} \eta_{\lambda ; \nu}-\eta^{\mu} \eta_{\lambda ; \mu} \eta_{v}\right)=0,
$$

from which we have relations of the form

$$
\boldsymbol{\eta}_{\lambda ; \nu}=\alpha g_{\lambda \nu}+\beta_{\eta_{\lambda}} \boldsymbol{\eta}_{\nu}
$$

Since we have from it

$$
\left(\eta^{\lambda} \eta_{\lambda}\right)_{; \nu}=2 \eta^{\lambda} \eta_{\lambda ; \nu}=2\left(\alpha+\beta_{\eta}^{\lambda} \eta_{\lambda}\right) \eta_{\nu}
$$

$\eta^{\lambda} \eta_{\lambda}, \alpha+\beta \eta^{\lambda} \eta_{\lambda}$ and $\eta^{\mu} \rho_{\mu}$ are functions of η alone. Therefore α and β are also functions of η alone and consequently η_{λ} is a concircular vector. Hence we have the

THEOREM 4. 5. If $\Pi_{\lambda \mu}=\rho(\eta) g_{\lambda \mu}+\kappa(\eta) \eta_{\lambda} \eta_{\mu}$ and $\Pi_{\lambda \mu ; \nu}-\Pi_{\lambda \nu ; \mu}=0$, then η_{λ} is a concircular vector field.
§亏. Conformal transformation of $\quad \Pi_{\lambda \mu}=\rho g_{\lambda \mu}+\kappa \eta_{\lambda} \eta_{\mu}$.
We shall seek a conformal transformation such that the form of the equation (4.2) remains invariant. In the first place, we treat of the case when ρ and κ are functions of η, that is to say,

$$
\begin{equation*}
\Pi_{\lambda \mu}=\rho(\eta) g_{\lambda \mu}+\kappa(\eta) \eta_{\lambda} \eta_{\mu} \tag{5.1}
\end{equation*}
$$

Multiplying (5.1) by $g^{\lambda \mu}$ and contracting for λ and μ, we have

$$
\begin{equation*}
-\frac{R}{2(n-1)}=n \rho+\kappa g^{\lambda \mu} \eta_{\lambda} \eta_{\mu} \tag{5.2}
\end{equation*}
$$

Differentiating with respect to x^{μ}, we have

$$
\begin{equation*}
-\frac{R_{\mu}}{2(n-1)}=n \rho_{\mu}+\kappa_{\mu} \eta^{\lambda} \eta_{\lambda}+\kappa\left(\eta^{\lambda} \eta_{\lambda}\right)_{; \mu} \tag{5.3}
\end{equation*}
$$

where $\quad R_{\mu}=\frac{\partial R}{\partial x^{\mu}}$ and $\left(\eta^{\lambda} \eta_{\lambda}\right)_{; \mu}=\frac{\partial}{\partial x^{\mu}}\left(\eta^{\lambda} \eta_{\lambda}\right)$.
On the other hand, from (5.1) we have

$$
\begin{equation*}
\Pi_{\cdot \mu}^{\lambda}=\rho \delta_{\mu}^{\lambda}+\kappa \eta^{\lambda} \eta_{\mu} \tag{5.4}
\end{equation*}
$$

Because of $\Pi_{\cdot \mu ; \lambda}^{\lambda}=-\frac{1}{2(n-1)} R_{\mu}, \quad$ from (5.4) we have

$$
\begin{equation*}
-\frac{1}{2(n-1)} R_{\mu}=\rho_{\mu}+\left(\kappa_{\lambda} \eta^{\lambda}+\kappa \eta_{; \lambda}^{\lambda}\right) \eta_{\mu}+\frac{\kappa}{2}\left(\eta^{\lambda} \eta_{\lambda}\right)_{; \mu} \tag{5.5}
\end{equation*}
$$

Comparing (5.5) with (5.3), we find that $\eta^{\lambda} \eta_{\lambda}$ and R are functions of η. Thus we have the

ThEOREM 5.1. If a tensor $\Pi_{\lambda \mu}$ of a space satisfies

$$
\Pi_{\lambda \mu}=\rho(\eta) g_{\lambda \mu}+\kappa(\eta) \eta_{\lambda} \eta_{\mu}
$$

where $\eta_{\lambda}=\frac{\partial \eta}{\partial x^{\lambda}}$, then $\eta^{\lambda} \eta_{\lambda}$ and R are functions of η alone.
Let us consider now a conformal transformation

$$
\begin{equation*}
\bar{g}_{\mu \nu}=\sigma^{2} g_{\mu \nu} \tag{5.6}
\end{equation*}
$$

If $\Pi_{\lambda \mu}$ is transformed by (5.6) to $\Pi_{\lambda \mu}$, we have

$$
\Pi_{\lambda \mu}=\Pi_{\lambda \mu}+\sigma_{\lambda ; \mu}-\sigma_{\lambda} \sigma_{\mu}+\frac{1}{2} g^{\omega \beta} \sigma_{\omega} \sigma_{\beta} g_{\lambda \mu}
$$

where $\sigma_{\lambda}=\frac{\partial \log \sigma}{\partial x^{\lambda}}$. Consequently, when $\Pi_{\lambda \mu}$ satisfies (5.1), we have

$$
\Pi_{\lambda \mu}=\rho(\eta) g_{\lambda \mu}+\kappa(\eta) \eta_{\lambda} \eta_{\mu}+\sigma_{\lambda \mu},
$$

where

$$
\sigma_{\lambda \mu}=\sigma_{\lambda ; \mu}-\sigma_{\lambda} \sigma_{\mu}+\frac{1}{2} g^{\alpha \beta} \sigma_{\alpha} \sigma_{\beta} g_{\lambda \mu} .
$$

Let us assume that

$$
\Pi_{\lambda \mu}=\rho(\eta) g_{\lambda \mu}+\bar{\kappa}(\eta) \eta_{\lambda} \eta_{\mu}
$$

where ρ and $\bar{\kappa}$ are functions of η. Then we have

$$
\begin{equation*}
\sigma_{\lambda \mu}=\left(\rho \sigma^{2}-\rho\right) g_{\lambda \mu}+(\kappa-\kappa) \eta_{\lambda} \eta_{\mu} . \tag{5.7}
\end{equation*}
$$

However, according to the Theorem 5.1, we know that $g^{\lambda \mu} \eta_{\lambda} \eta_{\mu}$ is a function of η alone and consequently σ also a function of η alone, because of $g^{\lambda \mu} \eta_{\lambda} \eta_{\mu}=\sigma^{-2} g^{\lambda \mu} \eta_{\lambda} \eta_{\mu}$.

Therefore from (5.7) we have equations of the form

$$
\eta_{\lambda: \mu}=\alpha g_{\lambda_{\mu}}+\beta \eta_{\lambda \lambda} \eta_{\mu},
$$

where α and β are functions of η. Thus we have the
Theorem 5.2. In order that the form of equations

$$
\Pi_{\lambda \mu}=\rho(\eta) g_{\lambda \mu}+\kappa(\eta) \eta_{\lambda} \eta_{\mu},
$$

where $\eta_{\lambda}=\frac{\partial \eta}{\partial x^{\lambda}}$, remains invariant by a conformal transforination $g_{\mu \nu}=\sigma^{2} g_{\mu \nu}$, it is necessary and sufficient that η^{\wedge} is a concircular vector field and σ is a function of η alone.

Theorem 5.3. In order that a subprojective space admitting a concircular vector field η_{λ}, where $\eta_{\lambda}=\frac{\partial \eta}{\partial x^{\lambda}}$, may be transformed to a subprojective space by a conformal transformation $g_{\mu \nu}=\sigma^{2} g_{\mu \nu}$, it is necessary and sufficient that σ is a function of η.

Finally the case when ρ alone is a function of η, that is, equation

$$
\begin{equation*}
\Pi_{\lambda \mu}=\rho(\eta) g_{\lambda \mu}+\kappa \eta_{\lambda} \eta_{\mu} \tag{5.8}
\end{equation*}
$$

holds, will be treated. If we put

$$
g^{\lambda \mu} \eta_{\lambda} \eta_{\mu}=\theta,
$$

(5.3) and (5.5) become respectively

$$
\begin{align*}
& -\frac{1}{(2 n-1)} R_{\mu}=n \rho_{\mu}+\theta \kappa_{\mu}+\kappa \theta_{\mu} \tag{5.9}\\
& -\frac{1}{2(n-1)} R_{\mu}=\rho_{\mu}+\left(\kappa \lambda \eta^{\lambda}+\kappa \eta_{; \lambda}^{\lambda}\right) \eta_{\mu}+{ }_{2}^{\kappa} \theta_{\mu} \tag{5.10}
\end{align*}
$$

from which we find that R and κ are functions of η and θ. Let us assume that (5.8) reduces to the same form

$$
\begin{equation*}
\Pi_{\lambda \mu}=\bar{\rho}(\eta)_{y \lambda \mu}+\kappa \eta_{\lambda} \eta_{\mu} \tag{5.11}
\end{equation*}
$$

by the conformal transformation (5.6). Then we find that κ and \bar{R}, which is a scalar curvature with respect to $g_{\lambda \mu}$, are functions of η, θ and σ.

From (5.7) we have

$$
\begin{equation*}
\sigma_{\lambda ; \mu}=\left(\rho \sigma^{2}-\rho-{ }_{2}^{1} \sigma^{\nu} \sigma_{\nu}\right) g_{\lambda_{\mu}}+(\bar{\kappa}-\kappa) \eta_{\lambda} \eta_{\mu}+\sigma_{\lambda} \sigma_{\mu}, \tag{5.12}
\end{equation*}
$$

from which we have

$$
\begin{equation*}
\left(\sigma^{\lambda} \sigma_{\lambda}\right)_{; \mu}=2 \sigma^{\lambda} \sigma_{\lambda ; \mu}=2\left\{\left(\rho \sigma^{2}-\rho+{ }_{2}^{1} \sigma^{\nu} \sigma_{\nu}\right) \sigma_{\mu}+(\kappa-\kappa) \sigma^{\nu} \eta_{\nu} \eta_{\mu}\right\} . \tag{5.13}
\end{equation*}
$$

Therefore $\sigma^{\lambda} \sigma_{\lambda}$ is a function of σ and η.
In the first place, let us assume that σ is a function of η. Then from (5.13) $\sigma^{\lambda} \sigma_{\lambda}$ is a function of η and consequently we find that η_{λ} is a concircular vector, because coefficient of $g_{\lambda \mu}$ in (5.12) is a function of η.

Moreover, by virture of $\sigma^{\lambda} \sigma_{\lambda}=\binom{a \sigma}{d \eta}^{2} \theta, \theta$ is a function of η. Thus we have the

Theorem 5.4. When the form of the equation (5.8) remains invariant by a conformal transformation $g_{\lambda \mu}=\sigma(\eta)^{2} g_{\lambda \mu}, \eta_{\lambda}$ is a concircular vector field and κ, R and $\eta^{\lambda} \eta_{\lambda}$ are functions of η alone.

In the next place, we consider the case that θ is a function of η. Equations (5.12) may be written in the form

$$
\begin{equation*}
\sigma_{\lambda: \mu}=p g_{\lambda_{\mu}}+q_{\eta_{\lambda} \eta_{\mu}}+\sigma_{\lambda} \sigma_{\mu}, \tag{5.14}
\end{equation*}
$$

where $p=\rho \sigma^{2}-\rho-\frac{1}{2} \sigma^{\nu} \sigma_{\imath}, q=\bar{\kappa}-\kappa$. Accordingly p is a function of σ and η, and q is a function of σ, η and θ.

From (5.14) we have

$$
\begin{aligned}
\sigma_{\lambda ; \mu \nu}= & p_{v} g_{\lambda \mu}+q_{\nu} \eta_{\lambda} \eta_{\mu}+q\left(\eta_{\lambda ;} \eta_{\mu}+\eta_{\lambda} \eta_{\mu ; \nu}\right) \\
& +\sigma_{\lambda ; j} \sigma_{\mu}+\sigma_{\lambda} \sigma_{\mu ; \nu}
\end{aligned}
$$

Substituting (5.14) and subtracting from it the equation obtained by interchanging μ and ν, we obtain

$$
\begin{aligned}
\sigma_{\lambda ; \mu \nu}-\sigma_{\lambda ; i \mu}= & -\sigma_{\omega} R_{\lambda \mu \nu}^{\omega} \\
= & \left(p_{\nu}-p_{\nu}\right) g_{\lambda \mu}-\left(p_{\mu}-p \sigma_{\mu}\right) g_{\lambda_{\nu}} \\
& +q_{\eta_{\lambda}}\left(\sigma_{\mu} \eta_{\nu}-\sigma_{\nu} \eta_{\mu}\right)+\eta_{\lambda}\left(q_{\nu} \eta_{\mu}-q_{\mu} \eta_{\nu}\right)+q\left(\eta_{\lambda ; p} \eta_{\mu}-\eta_{\lambda ; \mu} \eta_{\nu}\right) .
\end{aligned}
$$

Multiplying by $g^{\grave{\mu}}$ and contracting for λ and μ, we have

$$
\begin{align*}
-\sigma_{\omega} R_{: \nu}^{\omega \nu}= & (n-1)\left(p_{\nu}-p \sigma_{v}\right)+q\left(\eta^{\lambda} \sigma_{\lambda} \eta_{\nu}-\eta^{\lambda} \eta_{\lambda} \sigma_{\nu}\right) \\
& +\left(\eta^{\lambda} \eta_{\lambda} q_{\nu}-\eta^{\wedge} q_{\lambda} \eta_{\nu}\right)+q\left(\eta^{\lambda} \eta_{\lambda ; \nu}-\eta_{: \lambda}^{\lambda} \eta_{\nu}\right) . \tag{5.15}
\end{align*}
$$

However, according to (5.8), the left-hand member of the above equation is a linear combination of σ_{ν} and η_{ν}, and in the right-hand member $\eta^{\lambda} \eta_{\lambda ; \nu}$ is equal to ${ }_{2}^{1} \theta_{\nu}$. Thus (5.15) reduces to a linear combination of σ_{ν}, η_{ν} and θ_{v}, that is to say, σ is a function of η and θ.

Consequenty if θ is a function of η, then σ is also a function of η.

Thus we find the
Theorem 5.5. When $\eta^{\lambda} \eta_{\lambda}$ is a function of η, where $\eta_{\lambda}=\frac{\partial \eta}{\partial x^{\lambda}}$, if the form of the equation (5.8) remains invariant by a conformal transformation $g_{\lambda \mu}=\sigma^{2} g_{\lambda \mu}$, then η^{λ} is a concircular vector field and κ, R and σ are functions of η alone.

References

[1] T. Adati, On Subprojective Spaces I, Tôhoku Math. Journ. (2), 3(1951), 159-173.
$[2]$ L. P. Eisenhart, Riemannian Geometry, (1926), 85-86.
[3] P. Rachevsky, Caractères tensoriels de l'espace sous-projectif, Abh. des Seminars. für Vektor und Tensoranalysis, Moskau, 1 (1933), 126-140.
[4] K. Yano, Concircular Geometry V, Proc. Imp. Acad. Tokyo, 18 (1942), 446-451.
[5] K. YaNo, Sur le parallélisme et la concourance dans l'espace de Riemann, Ibid. 19 (1943), 189-197.

Mathematical Institute, Tokyo College of Science.

[^0]: 1) The case when $K=$ const. will be treated in the later paper.
