
GROUP ALGEBRAS IN THE LARGE

IRVING KAPLANSKY

(Received July 25, 1951)

1. Introduction. Let G be a unimodular locally compact group. We
form the Hubert space L, (G), and the left and right regular representations
of G on L2 (G). We shall denote the weakly closed algebras generated
by these representations by W and W. It is known [10] that W and W
are the full commuting algebras of each other.

It is a question of some importance to determine how properties of G
are reflected in properties of W. The pioneering investigations of Murray
and von Neumann in £8] have been followed by several interesting contribu-
tions by Mautner [5], [61, [72- Mautners results are phrased in terms
of von Neumann's decomposition theory [_9J.

In this paper we shall prove several theorems about the structure of
W "in the large'7. There are several advantages in this change of point
of view. Measure-theoretic questions and "almost everywhere" difficulties
disappear; separability becomes irrelevant; and above all, the proofs be-
come simpler.

If the properties of W "in the small" are desired for their own sake,
then, in the author's opinion, these are best obtained by using a dictionary
for translating properties back and forth. Such a dictionary may be ex-
pected in the near future.

2. Definitions. We shall use the terminology introduced in [3], but
we collect the definitions for the reader's convenience.

Let W be a weakly closed self-adjoint algebra of operators on a Hubert
space. A non-zero projection e is abelian if eWe is commutative e is finite
if left and right inverses in eWe coincide. We say that W is finite if its
unit element is finite,- W is of type I if every direct summand contains an
abelian projection; W is of type II if there are no abelian projections and
every direct summand contains a finite projection W is of type III if all
projections are infinite; W is of type IIT if it is finite and of type II. By
L3. Th. 4.6J W is uniquely a direct sum of algebras of types I, II and III.

Suppose W is finite and of type I. The structure of W is implicitly
given in [3] and may be described as follows: W is a direct sum of alge-
bras Wn (n = 1, 2, - -), where Wn is anwbyw total matrix algebra over a
commutative algebra.

We shall now specialize to the case where W, W are the group algebras
of G. There are then two further known facts. (1) W has no part of
type III. (2) W and W decompose in the same manner; more precisely,
if h is any projection in the center of W (which is also the center of W)
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then hW and hW are of the same type (they are even isomorphic).
In this paper we shall mostly be concerned with the still more special

case where G is discrete. Then it is known that W is finite. We write
W as the direct sum of an algebra Wo of type II, and an algebra which is
finite and of type I, and (as above) we split the latter into its summands
WΊ + W-2 4- . As systematic notation we write e, d for the unit elements
of Wo, Wi respectively, and we set /„ = eΎ -f -f en. When it is desirable
to indicate the dependence on the group G, we write eL (G), etc.

Finally we shall make use of the fact, shown in C8j and CUD, that
when G is discrete there exists a certain canonical weight function defined
on all of W. It may be conveniently defined by first noting that W is in
a natural way a subset of Lz (G) for x £ W we set T(x) equal to the value
assumed by x at the unit element of G. We shall take for granted the
elementary properties of this function T.

Special interest is attached to the numbers Tie) = r, T(ei) = r*. These
constitute a sequence of invariants for the group G, with r -f Σ^t = 1-

3. The commutator group. The fact that every discrete group has
such a sequence of invariants suggests the desirability of determinig their
meaning, as far as possible. Now if G is a finite group of order k, it is known
that τ\ — i2Silk, where Si is the number of (inequivalent) irreducible repre-
sentations of degree /. In particular rΛ = sλ\k. But sx, the number of one-
dimensional representations of G, coincides with the number of characters
of the abelian group G/C, where C is the commutator subgroup of G, and
this number is equal to the order of G/C. Hence rL is equal to the recipro-
cal of the order of C. This statement is also valid for infinite groups.

THEOREM 1. Let G be any discrete group and C its commutator subgroup.
Then βi{G) is the average of the elements of C, and rΛ (G) is equal to the
reciprocal of the order of C. In particular, rγ{G) = 0 if C is infinite.

PROOF. We know that eλW is in the center of W. Then for any a, b
in G we have (eτa) (eφ) — (efi) {eYa), whence βιaba"ιb~x = elt It follows that
eλ is constant on the cosets of C. This already proves the last statement
of the theorem.

Now suppose that C has finite order k. Write d for the average of the
elements of C. Then T{d) = k~\ and so the proof of the theorem will be
finished if we show that eλ = d. It is plain that d is a central projection
in W. The fact that eY is constant on cosets of C means that dex = eλ. Again
daba~ιb~ι = d for any a, b in G. From this it follows that dW is commu-
tative. By the definition of eΊ, we have d£ eτW. Hence deL = d, and we
have proved d = eΊ.

It does not seem to be possible to give a correspondingly simple inter-
pretation for the higher invariants r*. However there is a special case
where these higher invariants vanish, and in this case we can give a struc-
ture theorem for W.
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THEOREM 2. Let G be an infinite discrete group and suppose its commu-
tator subgroup C coincides with its center and is cyclic of prime order n. Then
W(G) is the direct sum of n algebras each carrying weight ljn , the first of
these is commutative and the others are factors of type IIx. In particular\

PROOF. Let the elements of C be 1, c, •• , c""1. Let Ψ{ = 1, <P2, ,

ψn be the nth roots of unity. Write nhτ = 1 + ΨiC -f- -4- (<PiC)n-1. T h e n
hi, "", nn are orthogonal idempotents with sum 1, they are central in
W(G), and T(fa) = 1/n. By Theorem 1, h, = β,(G). It therefore only re-
mains to prove that for i > 1, h{W is a factor of type Πj.

Let x be an element in the center of hiW. We claim that x is a scalar
multiple of hi. To prove this, it evidently suffices to show .that it is a
linear combination of 1, c} • , cn~ι. Suppose on the contrary that x
contains a term involving a group element 5 not in C. Since C is the center
of G, there exists an element t in G which does not commute with 5. Then
t~ st is a conjugate of s not equal to s, hence of the form crs with cr Φ 1.
Now, since x8hλW, the coefficients of x at crs and s are in the ratio φf
at any rate they are unequal. This contradicts the equation xt = tx.

We have thus proved that the center of hiW is just the complex num-
bers. It is moreover true that h{W is infinite-dimensional in fact, if we
choose elements aΛ, a,, lying in distinct cosets of G mod C, then hiax,
hia.,, - - are linearly independent elements of faW. Hence h{W is a factor
of type IIL.

4. Locally finite groups. A group G is said to be locally finite if
every finitely generated subgroup is finite. Let {#,} be a defining set of
finite subgroups, that is, every finite subset of G is contained in some H5.
(Of course we might in particular take all finite subgroups, but it often
pays to be more economical). Theorem 3 shows how the invariants of a
locally finite group are determined in a simple way by those of a defining
set of subgroups. We remind the reader that ft(G) = eΛ{G) + ••••• + e^G),
as defined in 2.

THEOREM 3. Let G be a discrete locally finite group and {Hj} a defining
set of finite subgroups. Then, for i = 1, 2, -

/ ί(G)=inf/ι(fli).

REMARK. If we apply the weight function 7\ and take account of the
weak continuity of T, we deduce

r , ( G ) + - • • • + rlG) = i n f ΐ r ^ H j ) + • • • • + rι(Hj)3.

Then by subtracting off successive components we find that rι{G) is the
limit of the directed set Ti(H3). In case G is countable, this limit over a
directed set can be replaced by an ordinary sequential limit.

The proof of Theorem 3 rests in part on the following lemma.
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L E M M A 1. Let G be a discrete group and H a subgroup. Then fm(H)

^fm(G) for m = 1,2, • --.-

PROOF. Let n be any integer greater than m. In the algebra W(Ή) we
know that en{H) is the sum of n equivalent orthogonal projections ki} ,
kn. The elements fm(G)kh , fm(G)kn are likewise equivalent orthogonal
projections (it is to be noted that W{H) is a subalgebra of W(G), and fm(G)
is central in W(G)). By [3, Lemma 4.1CΓ), the presence of n such projections
is impossible in the algebra fm(G)W(G), unless all fm(G)kt are 0, whence
fm(G)en(H) = 0. Since this is true for all n>m,we find /m(G)[l - fm(H)l = 0,
that is, fJH)^UG).

PROOF OF THEOREM 3. Let us provisionally write pi for the inf over
j of fi(Hj). By Lemma l,fi(G) ^fi(Hj) and hence /,(G) ̂  pt.

Next we claim that pL is central in W(G). For /(#;) is central in W(Hj);
hence f%(Hk) commutes elementwise with W(Hj) if Hk n> HJ. NOW pi is a
weak limit of the projections f(Hk). Hence pi commutes elementwise with
W(Hj), hence with their union, and finally with the weak closure of their
union, which is all of W(G).

We know now that pi and f(G) are both central projections, and we have
fι(G) <; pi. The desired equality of pt and/(G) can now most easily be obtained
by appealing to the theory of polynomial identities, for which we refer the
reader to [ID and the references given there. In fact, suppose we succeed in
proving that p{W(G) satisfies the identity that characterizes matrix algebras
of degree i or less then pL S/(G) necessarily follows and we have pi = /?(G).
Now to verify this identity in piW{G) it is enough to verify it in each
pιW(Hj), for W(G) is the weak closure of the union of W(Hj). But the
identity is valid in pfW(Hj), since pi<if;(Hj). This concludes the proof of
Theorem 3.

We shall need the following lemma on finite groups.

LEMMA 2. Let Gbe the direct product of 2k finite non-commutative groups.
Then rm{G) < 1/2A for m ^ 2\

PROOF. We know that rm(G) = Sm M2/n, where n is the order of G and
Sm is the number of w-dimensional irreducible representations of G. Now
any irreducible representation of G is a Kronecker product of irreducible
representations of its factors. In factoring thus a representation of degree
m ^ 2fc, it must be the case that at least k of the factors are one-dimensio-
nal. Further, the number of one-dimensional representations of a non-
commutative group is at most half the order of the group, From these
facts we get the estimate given in the lemma.

On putting together Lemma 2 and Theorem 3 (or Lemma 1 would do
in place of Theorem 3) one obtains immediately the theorem proved by
Mautner in [7].

THEOREM 4. Let G be the {discrete) direct product of an infinite number
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of non-commutative finite groups. Then W(G) is of Type IIλ.

In concluding this section we give an example which serves to illustrate
Theorems 1-3. (This example is due to B. H. Neumann, and was communi-
cated to me by K. A. Hirsch). Let H be a finite group whose center coincides
with its commutator subgroup and is of order 2 , for example, H may be
the quaternion group or the dihedral group of order 8. Let G be direct
product of an infinite number of copies of H, with amalgamated centers.
Then G again has a center=commutator subgroup of order 2. By Theorem
2, W(G) is the direct sum of a commutative algebra and a factor of type
Hi, each carrying weight 1/2. Again G is a locally finite group; if we
let Hj be the product of j copies of H with amalgamated centers, we get
a set of defining subgroups. We find rι(Hj) = r2j(Hj) = 1/2, and in the limit
the invariants of G are obtained: rx(G) = ro(G) = 1/2.

5- Infinite conjugate classes. The following is the theorem proved
by Mautner in [6].

THEOREM 5. Let G be a discrete group, G{) its subgroup of finite conjugate
classes, and suppose G/Go is infinite. Then W(G) is of type IIλ.

PROOF. We follow the same idea as that used by Mautner. Let Z
denote the common center of W and W\ and Z' the commuting algebra of
Z. Now if W has a direct summand, say of type I,Λ. then the corresponding
direct summand of W is likewise of type I/ft, and the corresponding direct
summand of Z' is of type I?Λa. The existence of such a summand will be
ruled out by proving that Z' contains an infinite set of equivalent orthogonal
non-zero projections.

Let Gj denote a typical coset of G mod Go, and let Ej be the operator
which projects G on G.7 that is, Ej is the identity on Gj and annihilates
elements not in Gj. Then Ej £ Zr. For we have merely to prove that Ej
commutes with characteristic functions of finite conjugate classes, and this
follows from a simple computation. Again let U be the (unitary) operator
of left multiplication by any element in G.,. Then U~ιEjU = Eo. Moreover
U is in Z since it is even in W. Thus the projections Ej are the desired
set of equivalent orthogonal non-zero projections in Z'.

6. CCR-groups. Our objective is to extend Theorem 7.3 of [4] to
arbitrary ^-representations, and we adopt the terminology of that paper
without further discussion. We need a preliminary lemma.

LEMMA 3. Any GCR-algebra A contains a non-zero self-adjoint element
x such thai xAx is commutative.

PROOF. Before launching the proof, we collect three remarks for which
we shall have repeated use.

1. If A has a non-zero projection e, then the lemma need only be proved
in eAe. FovxβeAe implies xAx = x{eAe)x and by [4, Th. 7.4], eAe is
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again a GCR-algebra.
2. Suppose / is a closed ideal in A. Then the problem can be reduced

from A to I; in fact, if x is a self-adjoint non-zero element in / with xlx
commutative, then x'ιAxι is commutative, and x2 =*= 0.

3. Let B be a CCR-algebra with a Hausdorff structure space X; let U
be a non-void open subset of X with closure Y; and let / be the intersection
of the primitive ideals comprising Y. We shall show how the problem of
proving the lemma can be reduced from B to B/J. Suppose then that we
have a non-zero self-adjoint element y in B ]J such that y(B/J)y is commuta-
tive. Let z be any self-adjoint element in B mapping on y. Suppose for
def initeness that z does not vanish at the point P of U. Select a real-valued
continuous function / on X which satisfies fiP) = 1 and vanishes outside a
tiny neighborhood of P. By [4, Th. 3. 3], the element x = fz is a well defined
element of B. It satisfies the condition that xBx is commutative, since
it does so modulo every primitive ideal. Finally x is non-zero since it is
non-zero at P.

The proof of Lemma 3 will now be carried out in several successive
steps.

Case I. A satisfies a polynomial identity, say the one for n by n
matrices. By [4, p. 237], A contains a non-zero closed ideal which is homoge-
neous of degree n. By remark 2, we may therefore assume that A itself
is homogeneous of degree n. We note that by [4, Th. 4. 2Ί, A has a Haus-
dorff structure space X. Take any P in X, and let t £ A be a self-adjoint
element mapping into a projection of rank one in A/P. Let / be any
continuous real-valued function of a real variable, which vanishes in a
neighborhood of 0, and takes the value 1 in a neighborhood of 1. Then the
element s = fit) maps into a projection in an entire neighborhood of P.
There must be a .suitable smaller neighborhood U where s maps into a
projection Φ 1, for otherwise s{P) would be 1. Let Y be the closure of U,
let J be the intersection of the primitive ideals comprising Y, let C = A/J,
and let e be the image of s mod /. By remarks 1 and 3, our problem can
be reduced to the algebra eCe. Since the latter satisfies a polynomial
identity for matrices of degree less than n, we may cite an induction on n.

Case II. A is a CCR-algebra with a non-zero projection e. By remark
1, we reduce the problem to the algebra eAe, which by £4, Th. 7. 4] is again
CCR. Now by [4, Th. 6. 1], the algebra eAe. has a non-zero ideal satisfying
a polynomial identity. By remark 2, this returns us to Case I.

Case III. A is a CCR-algebra with a Hausdorff structure space X. The
construction in Case I may be repeated verbatim, and leads us to a suitable
homomorphic image containing a projection. To this we apply Case II.

Case IV. A is any GCR-algebra. By [4, Th. 6. 2] there is a non-zero
ideal which is a CCR-algebra with a Hausdorff structure space. We apply
Case III. This concludes the proof of Lemma 3.

We now prove the desired generalization of [4, Th. 7. 3].
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THEOREM 6. Any ^-representation of a GCR-algebra is of type I.

PROOF. We may suppse that we have a faithful ^-representation of the

GCR-algebra A. In other words, A is a GCR-algebra of operators, and we

have to prove that the weak closure Aλ is of type I. It is enough to prove

that Ax contains a single abelian projection, for then transfinite induction will

complete the proof. By Lemma 3, A contains a non-zero self-adjoint element

x such that xAx is commutative; xAλx is likewise commutative. Now Aγ

contains a non-zero projection which is a multiple of x. This is the desired

abelian projection.

As suggested in [4Γ}} we define a CCR-group to be a locally compact

group G with the property that for any irreducible unitary representation,

the extension to the £ ralgebra of G consists of completely continuous

operators. The importance of this class of groups has increased since

Harish-Chandra [2] has proved that any connected semi-simple Lie group is

a CCR-group.

THEOREM 7. Any unitary representation of a CCR-group is of type I

{that is, the weakly closed algebra generated by the representing operators is

of type 1). In particular, any unitary representation of a connected semi-simple

Lie group is of type I.

PROOF. Theorem 7 follows from Theorem s6 and some known facts

which we sketch. Let G be a locally compact group, A its Zralgebra, B the

result of re-norming A by assigning to every element the sup of its norms

in all possible ^-representations, and C the completion of B in this new

norm. Then C is a O-algebra, and it is known that there is a 1-1 corres-

pondence between ^-representations of C and (strongly continuous) unitary

representations of G. The statement that G is a CCR-group is precisely

equivalent to saying that C is a CCR-algebra. We now apply Theorem 6.
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