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Several extensions of the Plancherel formula to unimodular locally
compact groups have been proposed under some restricted conditions by
R.Godement, F. I. Mautner, I. E.Segal and the Russian mathematicians. "
These of Mautner [7,87] and Segal [12] were established by the use of the
reduction theory of J.von Neumann [10], therefore the separability con-
ditions of groups seem to be essential, and their results are somewhat
measure-theoretic. On the other hand, Godement [3] has obtained a Plancherel
formula by the method analogous to abelian groups, that is,by constructing
the Radon measure on the set of characters. His method seems to be more
elegant. But he assumed that R” (the definition will be stated belcw) is of
the finite class, and this condition is considerabiy strong (cf.[3; Theorem
67).

The object of this paper is to give an extension of the Plancherel
formula to arbitrary unimodular locally compact groups mostly along the
Godement method Our main tool is the 4-operation of arbitrary rings of
operators defined in the previous papers [13,147]. In Godement’s paper [3].
the algebra L of continuous functions with compact supports on the group
played an essential role. We replace this algebra L by the algebra (R{), of
the bounded linear operators definel by the bounded elements with some
properties. But in the case of the abelian groups,our results do not coincide
to the well-known Plancherel formula Therefore,if R¥ is of the finite class,
the Godement method is more natural than ours for this purpose. But it is
interest that, if we assume R® being of the finite class, we obtain the factor
decomposition of R® as shown in the previous paper [15].

This method of the factor decomposition of rings of operators will
give a suggestion for the general one.

As remarked in the previous paper [15],in the double unitary represen-
tation of a group by a central Radon measure of the positive type (the
definitions will be given below, §1), our R is the maximal Hilbert algebra
introduced by H.Nakano®;man can’ easily see that our treatments are also

1> Numbers in brackets refer to the bibliography at the end of the paper. As for
the complete bibliography related to this topic, see Mackey (6]. As the Russian papers
are not yet available in this country, we omit them.

2) For the notions of Hilbert algebras, see [15] or H.Nakano, Hilbert algebras,
Toéhoku Math. Journ., 2(1950),4-23, O. Takenouchi, On the maximal Hilbert algebras, ibid
3(1951),123-131.
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available to the arbitrary maximal Hilbert algebras, but we shall not discuss
them explicitly.

Finally, we are very much indebted to Professor M. Kondo in the Tokyo
Metropolitan University for his many valuable suggestions. The author
extends his hearty thanks to him.

1. Double unitary representations.

Let G be a wunimoduiar locally compact group, which need not be
separable. Following Godement [3],

DEFINITION 1.1. A double unitary representation (abr. d. u. r.) of G is
a structure {9, U;. V., S} satisfying the foliowing conditions;

a) § is a Hilbert space,

b) s>Us, s>V, are two continuous unitary representations of G on ),
such that

UV, = V.U for s,t € G,
c) S is an involution in £® such that
V.= SUS 4, for t € G.

In the sequel we shall discuss only the foilowing case: let » be a central
Radon measure of the positive type on G, that is, p is a Radon measure
satisfying

1.1 ff*g(sm(s) - f Pf(s)du(s) for f,9 € L,

(1.2) f F#f(s)duls) = 0 for fe L,

where L is an algebra of continubus functions with compact supports on G-
?(s) = f(s=1); frg(s) = ff(t')g(t"ls)dt; dt is a Haar measure on G. Then it is

known that we can define a d.u.r. of G by such a measure ([3 ;p.167]). For
the latter use we shall sketch the construction.
Put

(1.3) up) = [ fekrn ;f?*f(s)d,u.(s) =0 ],

then, as u(p) is a two-sided ideal in the algebra L, we obtain a quotient
algebra L(u) = L/u(w). Denote the canonical mapping of I on L/u(w) by
f>f(u). The expression:

1.4) < f(w), g(pm) > =fsﬁ<f(S)dp(S)

is an inner product on L(u), therefore, by completion with this inner
product we obtain a Hilbert space £(u) in which L(x) is dense. If we define
the involution S and unitary operators Uy(u), V(1) by

3) The involution N is such a2 operator on §) that S(x+y)=Sx+Sy, S(ex)=csx
SSx=x, <Sx,8y>=<y,x>.
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(1.5) SE(j1) = £(u) for fe L,
{1.6) Udu)f(p) = Egxf(p), Vi (pif(p) = fx& u) for f€ L,

where Egxf(t) = f(s~'t), fx&-1(t) = f(ts), then it may be clear that the struc-
ture {H(u), Ulp), Viu),S} is a d.u.r. The above obtained d.u.r. will be
called a d.u.r. by px, and hereafter we omit the notation (u). If u = & (that
is,a measure + 1 on the unit ¢ of G), we say the above d.u.r. is regular.
Mautner and Segal discussed only the regular case.

The d.u.r. by p is studied by Godement in detail, sorefer to [3; Chap
1. §1.7. The principal results® [3; Theorem 17 can be stated as follows:

THEOREM 1.1. In the d. u. r. {9, Us, Vs, S} by p, let R* and R’ be the
W *-algebras® generated in © by Us and Vs, respectively; then we obtain
.(RS)/ — Rd’ (R(Z)I = Rs.

Therefore, denote by R! the set of all bounded linear operators com-
mute with U;, V;, then we obtain R = R$(1R¢, that is, Rf is the cenfer of
R* and R

DEeFINITION 1.2. If we define the U, and V, by

1.7) Ur = st/(s)ds, V,= stf(s‘*)ds, for f€ L,

then it is well-known that these Uy, V; are the bounded linear operators on
$ and that they satisfy the relation:

(1.8) Ug =V,£f=fxg for g(y € L).
‘Therefore we can define the operator U, V, for any x € § by
(1.9) Uf=Vx, V.f=Ug, for f(f< L)

if these operators U, and V, are bounded, then we say that x is a bounded
element.

For the bounded elements of $, the following facts are known (cf. [3;
Chap 1. §17)

LeEMMA 1.1. 1°. If x is bounded, then Sx is also bounded and

{1.10) Ve = Vo*, Use = Us*.
2° U, and V, are related by
{1.11) Vse = SULS, Us: = SVLS.
3° Us,€e R, Vo€ RY if A€ R® (or € R, then AX is also bounded and
(1.12) AUy = Usz, (AVy=Va)
{1.13) UzA = Uswrss, (VoA = Visarsz).

4° L2t R; (RY) be the set of all U, (V) for the bounded X, then R; (Rj)

4) As we use only these fundamental properties in this paper, our treatment is
also available to the maximal Hilbert algebras; see [15).

5) By W*-algebra we shall mean a weakly closed operator algebra in a Hilbert
space, and by C*-algebra a uniformly closed one, in the terminology of Segal (11].
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is a two-sided ideal in R* (R?) and (strongly) dense in R°® (R?).
5° For the bounded x,y, the product:

(1.14) xxy = U,y = VX
1s well-defined and x*y is also a bounded element in 9, satisfying
(1.15) Ua;*y = UzUy, V'oy = Vng-

In this meaning, we shall call this R} or £, the set of corresponding
elements of ), the bounded algebra of the d.u.r.

DEerFINITION 1.3. If e € § is bounded and U, is a projection, we call U,
»a bounded projection in the d.u. r.® As be easily seen, U, is a projection if
and only if Se = e and exe = e. This suggests the following definitions:
an bounded element x is called self-adjoint (abr.s.a.) if Sx =x, and
idempotent if xxx = x,

LemMA 1.2. If P is a non-zero projection in RS, then there exists a non-
zero s.a. bounded element in the range of P.

Proor. As P+0 and L is dense in , there exists an element f< L
such that Pf+0. By 3° and 5° of Lemma 1.1, Pf, SPf and so Pf+SPf are
bounded. PfxSPf is the required one. Because, PfxSPf= UpSPf =
PU,SPf, implies Pfx SPf is in the range of P. By the equation S(Pf xSPf)
= SUp(SS)SPf = Vp Pf = Pfx SPf,it is s.a. 'Finally we shall show that it
is non-zero. If we assume that Pfx SPf be zero, then Vpxspg& =0 for any
g € L, therefore we have

< Vprspr8,8 > = < Vpg, Vg > =0 for g € L;
it is easily seen that this implies Pf= 0, thus we obtain the contradiction.
Then we have the following theorem by the quite similar manner to
[12; Theorem 27; we omit the proof.

THEOREM 1.2. Every projection in R® is the least upper bound of the
bounded projections which it bounds.

LemMmA 1.2. For any bounded element x, U, is approximated wuniformly
by the linear combinations of bounded projections, say Uy, And the same
time, X is approximated (strongly) by the Ilinear combinations of the
corresponbing s.a. idempotent elements.

This lemma was given by Segal in the proof of [12; Theorem 4.

2. f4-operations in W *-algebras.

We consider a general W*-algebra M on a Hilbert space $, and denote
its center by M‘¢. The §-operation in a W*-algebra IM has been introduced
by Dixmier [1] under the condition that M is of the finite class, and this
notion is extended to an arbitrary W *-algebra in the previous papers [13,147].

We say that a projection P< M is finite if a projection Q € M, P~
Q < P implies Q = P, and infinite in the other case. If the unit element

6) This is no others than the finite projection in the termniology of Segal (12].
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I<€ M is finite, M is said to be of the finite class, and otherwise of the
infinite class. As mentioned in the previous paper [13], M is generally a
direct sum of three W+-algebras, IM’, M‘! and M?, say; M” is of the finite
class, M and M?! are of the infinite class; in M, every central projection
is infinite but contains a finite projection in it, and M*’ is the other case.
Especially M?¢ is called of the purely infinite class. Hereafter we assume
that M contains no direct summand of the purely infinite class.

By a central envelope Z of a projection P& M, we mean the least
central projection containing P. Then there exists a system of finite
projections E, such that corresponding central envelopes Z, are mutually.
orthogonal and span the unit 7. Denote E = 5@ E,, then E is also finite
[14; Lemma 1.17; we shall call this E the generalised unit of M. In general,
any projection P € M is decomposed in a following way with respect to
the generalised unit E [14; Lemma 1.27:

@1 P=SQE ® FOSOE O FRO® @D ®E

aed] wedg wedp

where E;‘f~E;’;, E:‘-<E:—<E (v > p), and F.<E?% has no comparable part to
the remainders, If the above expression (2.1) ends up with finite terms and
every A, is finite, we say P is E-finite; if a operator A € M be contained
in some E-finite projection P, that is, AP = PA = A, then we say A is E-
finite. With these definitions the results in the previous paper [14; Theorem
27 can be stated as follows:

THEOREM 2.1. For any E-finite A € M,we can define a mapping A>»A’
€ M satisfying the jollowing properties:

(i) Ae M implies A" = A,

(ii) (@A) =aAt,

(iiiy (A+ By =A" +B',

(ivy (AB) =(BA),

(iv) For any (not necessarily E-finite) C € Mt , (CAy = CA*,

(v) If Aiss.a and A=0, then A’ is s.a. and A" =0,

(v) IfA iss.a, A=0and A" =0, then A= 0,

(vi) (A*)y = (A%)*,

But this 4-operation depends on the choice of the generalised unit of
M; if there exists another finite projection E’ € M, of which central
envelope spans the unit 7, we can define another mapping A->A’’ for any
E'-finite operator A with respect to this E'. Suppose that E' be E-finite,
then any E'-finite operator becomes also E-finite; two operations A! and A’
are related by

(2.2) At = (E"1)TTAY.
We have defined the 4-operation for any finite (not necessarily E-finite)

operators in [147, but we shall not use this generalized notion in this
paper.
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Now return to the case of the d.u.r. of G by u. When R’ is of the
finite class, there exist the interesting relations between the 4-operation of
R* and the elements of Hilbert space or the structure of G; these facts are
discussed in detail by Godement [3; Chap. I1. Finally we shall note an
important

LemMma 2.1. Any bounded projection in R® is finite in the sense of the
W *-algebra.

Proor. Let U, be a bounded projection in R’, and let P be a projection
in R® such that P<U, P~U, Then there exists a partially isometric
operator W& R* such that WW* = P, and W*W = U,. P= WW*U, = Uwws
evidently this implies WW*e+0. As W and W* are partially isometric,
lel=|WW%e|; WW+e is an image of e by the projection WW* = P, sq
that e = WW*e or we have P = U,. This completes the proof.

Thus we can see that R® has no direct summand of the purely infinite
class, by Theorem 1.2, and that the above theorem is available for R".

3. Traces on x-algebras.

By x-algebra we shall mean, as usual, an algebra which has an
operation A* satisfying 1° (¢ A + BB)* = aA* + BB*, 2° (AB)* = B*A¥,
30 A = A.

DermNiTION 3.1. A linear functional & on a x-algebra A is called a
state if o(A*A)=0 for A € A, and a frace if it is a state and satisfies
o(AB) = o(BA) for A,B € A. A trace (or state) is said to be bounded if
there exists a constant M such that
(3.1) |o(A)| < Mo(A*A), for A € A.

The double unitry representations of a *-a'gzbra by the trace (for the
definition of the d.u.r.”™ of a x-algebra, see [15; Definition 3.17) have been
already discussed by Nakamura [9]. He treated only a C*algebra with the
unit element, but most part of his results holds true in the case of a
k-algebra with a trace. (cf. also [2; Chap.II]).

Next we shall prove the following generalization of Lemma 15 of [3],
which is also interest in the theory of the W *-algebras.

THEOREM 3.1. L2t M bea W*-algebra without a part of the purely
ininite class, and let Mr bz a *x-algebra generated by the E-finite operators
in MI. Then there exists a maximal two-sided ideal in M r; moreover, there
exists a one-to-one correspondence between the maximal two-sided ideals and
the maximal ideals in M’ .

First, we shall prove some lemmas.

LeMMma 3.1. Let m be a two-sided ideal in My, and let m' be the image
of m by the L-operation, then m' is an ideal in M/ .

7)_ It must be noted here that in this case, U4 is not necessarily a unitary operator,
but it satisfies only the relation Usqx=Ua4*.
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Proor. If A, B&m', then A+ Be€m’, ¢A €m' are evident. Let
TeM', Acm. then TA' = (TAY by Theorem 2.1. (ivR), and TA
€ My, so TA! € m!. Thus itis sufficient to prove that m/ =+ M. Suppose

$ = M, then it implies that the unit 7 € m/ , or it implies that there exists
a projection E’ € m such that E'~E, by the definition of the 4-operation. But,
generally, if a projection P is contained in a two-sided ideal m, and if a
projection Q~P, then @ € m. Indeed, denote by W the partially isometric
operator which gives the equivalence Q~P, then W and its adjoint W*
are contained in Mr because W and W* are contained in an E-finitep rojection
PUQ. Thus we obtain Q = QQ=WW*WW* = WPW* € m. By this fact, any
E-finite projection is contained in m and we obtain m = M ; this is a con-
tradiction.

LEMMA 3.2. Let n be an ideal in M', then
3.2) m={A&€My; (AT)Y €n for all T € My}
is a two-sided ideal in M.

Proor. If A,B € m, then A+ B, aA €m are evident. Let A€ m,
S € My, then we obtain AS, SA € m; because, for any T € My, (AST)
€n and (SAT) =(ATS) €n. m = My is as follows: the unit /¢ n, so
that for the generalized unit E, I = E* = (EE) ¢ n, therefore we obtain
E & m.

PROOF OF THE THEOREM. Let n be a maximal ideal in M‘, then m,
given by (3.2) is a two-sided ideal in M, Let there exists a two-sided
ideal m’ containing m, then (M’) is an ideal in IM’ by Lemma 3.1. Sup-
pose a maximal ideal n, in M* containing (m’), and denote by m, the
two-sided ideal in My given by (3.2) for n,. Then m&Em’'Sm, is clear,
so that n=n; and we have n = n; as n is maximal. Therefore we obtain
m = m’, that is, m is maximal. Thus we see that there is a maximal two-
sided ideal in My, and it corresponds to the maximal ideal in IM‘.

Conversely, let m be a maximal ideal in My, and suppose that the cor-
responding m’ is not maximal in IM/. Then there is a maximal ideal n
containing m’ properly. Consider the two-sided ideals m’ and m; in My,
given by (3.2) for m’! and n, respectively, then clearly m, =2m'=2m. But
there exists a A€M such that A’ € n —m¢’, therefore there exists a B
€ M! such that BA’ & m?’, this implies A € m, — m’; this fact contradicts
the maximality of :m. Thus we obtained the proof.

. By the above argument, we see that A is contained in the maximal m
if and only if (AT)Y € m' for all T € M.

As we have defined the 4-operation for the x-algebra Mr in §2, put
(3.3) f(A) = f(A) for A € My,
where f’ is a trace on IM‘, then we obtain a trace on Mj.

Now let m be a maximal two-sided ideal in IMr, then m’ is a maximal
ideal in M* - it is well-known that in IM’ there exists the one-to-one cor-
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respondence between the maximal ideals and the characters, and they
are related by the condition: A € m’ if and only if X'(A) = 0, for a character
X'. Therefore, by the above remark, we obtain that A € m if and onlyif
X((AT) )= 0 for all T € My; by (3.3), A € m is equivalent to X(AT)=0
for all T € M. That is, A € m is equivalent to X(A*A) = 0, by the Schwarz
inequality. Thus, the maximal two-sided ideal in M, is characterised by
the trace, introduced by the character of M. In this sense, we shall call
such a trace a character of M. Then the following theorem is
obtained:

THEOREM 3.2. There exists a one-to-one correspondence between the
characters X of M, and the characters X' of M, and they are related by
(3.4) - X(A) = X'(A"),

4. An extension of the Plancherel formula.

Consider again the d.u.r. of G by the central Radon measure of the
positive type u. Because R has no part of the purely infinite class, as
remarked in §2, R’ is a direct sum of two W *-algebras: of the finite class
(R)" and of the infinite class (R°Y. As the generalized unit E of R’ we
take £ = I'® S @ U,,, where I’ = Z, is the unit element of (RY, and U.*
are the bounded projection defined by e,; the possibility of this choice is
due to Theorem 1.2. Let the corresponding central envelopes be Z,, then
the unit element 7‘ of (R*)! is spanned by Z,. This system {Z; Us,, Zs} will
be called the defining system of the 4 operation. In (R°Y, we can also take
some system of bounded projections Us; such that S® U:;s @ =@ Ue, = E,
and define a 4-operation with respect to this system, then we can discuss
the both parts by the unified method. But such 4-operation has some patho-
logical properties as shown in [14; §3], so it is preferable to treat as heer.

As be well-known. the set of all characters of R’ is a compact (totally-
disconnected) space Q in the weak topology; by the above partition 7”and I’ of
the unit 7 the space () is decomposed into the direct sum of two compact spaces
O and O, say. By Theorem 3.2, there is the one-to-one correspondences
between the characters of R}, generated by the E-finite operators in R,
and the characters of R’. If we introduce the weak topology in the set of
the characters of Rj, then by (3.3), we obtain a homeomorphism between
them, because ) is compact; denote by X the set of characters of RS, then
X becomes compact and X = X’@® X', each of which corresponds to &’
and Q, respectively. In each R, = Z,R’ (@ = 0), any E-finite operator is
defined by a bounded element in £, but this is not the case in (R). Ther-
efore it is convenient to introduce the x-algebra (R))r generated by the E-
finite operators in R;, (see, §1); we shail denote by () the set of the
corresponding element of ) to the operators in (Ryr. It is clear that (Rg)”

= (Ryf and (R*) = (R}),. Now let us contract the character X in X to (Rj),
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and consider this as a trace oy on (R{)r; if we introduce also the weak
topology in the set of the traces on (R;)r, then the mapping X->o, is con-

tinuous, and X is compact, so that the image X of X is also compact;
omit the trace =0 on (R})r, then we obtain a locally compact space X.

Clearly, X = X’® X!, and X' = X} thus we obtain a locally compact space,
which plays a role of the dual object of the Plancherel formula,

As o € X is a trace on the x-algebra (R})r, we obtain a d.u.r. as stated
in §3. That is, u(o) = {Us o(Us*Us) = 0} is a two-sided ideal in (R})r,
therefore we obtain a canonical mapping U,>x(s) to the quotient algebra.
Put
4.1) < X(g), y(o) > =a(Uy*Us),
this is an inner product on the quotient algebra; by completion with this
inner product we obtain a Hilbert space (o). To construct the d.u.r., it
is sufficient to put
4.2) Usa)y(a) = xxy(c), Vaia)y(c) = y*x(c),

{4.3) S(x(c)) = (Sx)(o).

These reasons are quite analogous to the one sketched in §1 for the d.u.r.
of the group; for detail, see Nakamura [97]. Thus we can correspond to each
o € X a Hilbert space (o). Since we have introduced in X the weak topology,
for each U: € (Ry)r o(Us) is a continuous function with respect to o: the
vector-function x(o), defined on X to £(o), is continuous; by the construction
mentioned above, the set of x(s) is dense in each (o), so that the vector-
functions x(o) form a fundamental family of the continuous vector-functions
A in the sense of Godement [2; Chap. III].

If 0 € X approches to the infinity, then evidently X(o)->0; thus the
vector-function x(¢) has an analogous property with the ordinary Fourier
transform. Now our object is to generalize the Plancherel theorem in the
following form:

THEOREM 4.1. Let G be a unimodular locally compact group, and let a
dur. {9,U;,,Vs, S} be constructed by a central Radon measure of the positive
type u on G. Then there exist a locally compact space X and a measure ,u on
X, possessing the following properties:

a) for any X,¥ € (Do)r,
4.4) <Xy>= f < %(0), (o) > dpilo),

X

b) 9 is isomorphic to L3.

Here we shall freely use the notion of the continuous sums of the Hilbert
spaces proposed by Godement [27% but some generalizations are necessary.

8) The notion of the continuous sum of Banach spaces was already discussed by

Kondo (4.5) and his results are stronger than Godement’s in some points, but the latters
seems to be more suited to our purposes.
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DEFINITION 4.1. We call the fundamental family of the coniinuous vector-
functions (la famille fondamentale de champs de vecteurs continus) the set 4
of the vector-functions on X, satisfying the following axioms: (4,): 4 is a li-
mear subspace of the space of all the vector-functions defined on X; (4.): for any
X € 4, the scalar function [ %x(s)| is continuous on X; (4;); for any o € X,
‘the X(s) (x € 4) are dense in $(c). And we say that a vector-function x on
X is continuous in a point o, if for any € >0, there exist a neighborhood
V of oo and a y € 4 such that || X(c) — y(o)| < &€ for any ¢ € V.

DEFINITION 4.2.9 We say that a vector-function x is squarely-summable

{with respect to 4 and ,fx,), iff < X(¢), %x(c) > dﬂ(a) < +o0 and for any & >0,
X

#there exists a continuous y such that ( f | x(c) — y(o)|? d /w (rr))”2 < &.
X

"The set of these vector-functions, modulo the null-set, and defined the
norm by

(4.5) [x= (f < xX(o), X(a)> d,&(a))““‘,

X

will be denoted by L%. Then we can easily see that Lj forms a Hilbert
space with the above norm.

5. Proof of Theorem 4.1.

The aim of our proof is to construct a Radon measure s, on each
-«compact (or locally compact) set I';, which gives the required formula with
respect to the elements of (£),)r; and then to extend these measures te to a
Jmeasure /u, on the whole space X and to all elements of §). Here [y, denotes
the subset of X, which corresponds to the defining system Z,. In the part
of the finite class, this problem is reduced to the theorem 3.1 of [15],
because Z,9), is a maximal Hilbert algebra of the finite class. Therefore 1t
is sufficient to consider only the part of the infinite class. We will reduce
the proof to the case of the finite class: this is an analogous procedure to
the construction of the §-operation in a W*-algebra of the infinite class,
discussed in [147.

Let F(o) be a continuous function on X! then it corresponds to an
operator Ur € R’, because X' is isomorphic to the Boolean space of (R’ );
moreover we can take a U, € (R})r such that F(o) = o(U:) on ['s» by the
definition of the 4-operation. As shown in Lemma 1 of [13], Z, R’ is
isomorphic to the R{,, ;’), where Ry, , is the all A € R’ such that AU,, = Us,-
A = A, and this is a W*-algebra of the finite class on the Hilbert space
U, 9. Now we shall show

9) Godement coasidered only the Radon measure ;: on X, but our measure ,uA is not
necessarily a Radon measure. So we need this formally generalized definition.
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LemMAa 5.1. A necessary and sufficient condition that a U, should be in
R (v, is that x should be in U.,V.,9.

PrOOF. Assume that x € U, V.9, then U, V.,x = X, or Ue,V,,Ue, =Us,
this implies Uem U,z = UI, and Ufoer = UngerVcwx = UL’“UIE = L,:tv, that iS, (]zu
€ Re,. Conversely if U, € R¥w,, then clearly we obtain U,X =X,
and V,,x = x; this complete the proof.

The above lemma shows that the elements x corresponding to U, €
R®(rv,, form the maximal Hilbert algebra (U.,,V.,9), in U.,V.9. So that we
can apply the results of [15] to the part of U, V., 9; as the 4-operation is
defined in (U,,V.,9), for each o(U.' ), x & (U,,V.D), if we take a real
a(Uy), ¥ € (Us, Ve ®), such that o(U?,) = o(U!, o (U and put
(5.1) LUy = <x,y >,
where x/ is the projection of x to (U,V,,9)' ([15; Theorem 2.1]), we obtain.

a Radon measure ;2, on I'y such that

5.2) oW1 = [o@dinta) = <x'y >,
Fa’«

or by the same reasons to [15], we obtain
LemMA 5.2, For x, y € (U, Vo, D0 and Ur € ZJRY,

(5.3) <X Uy > = f < x(0), Y(o) > F@) dj(o).
Lo

But there exists an x* not necessarily in U, Ve, 9, but o(U), =o(U!,) on:
I's. Therefore we will assume that if U, € R%», PSU,, then a U, re-
quired in (5.1), should be taken in the same R%pr. In this assumption, we
have

LemMA 5.3. The positive linear functional I, on the space of the con-
tinuous functions of 'y is well-defined by the relation (5.1).

Proor. First, let E-finite projections P and P, be equivalent with the
partially isometric operator W; let U, and U, be contained in P and P
respectively, and assume U/ = U’ . Then, if we denote the X’ and x| the
images of the 4-operation defined in PSPS$ and P,SP,S$ resp., we have
x! = W*SW*Sx{. In fact by [13; Lemma 1], we have Uy = PU! and
Uy = PU}, = PU!. Therefore, W*Usy W = W*PWUzs = PUs = Uss .
Evidently, this implies x! = W*SW*Sx:". As W*SW*S is partially iso-
metric, and as it is sufficient to consider the above case by the definition
of the 4-operation [14; § 2], we obtain the proof.

Summarizing the mentioned above, we see

Lemuma 5.4. Let X,y € ($o)r, and let F be a continuous function on X,
then we have a unique Radon measure py on Uy such that
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(5.4) < Zs, Usy > =f < xX(a), Y(o) > Flo)dj(o).
Vg R
Now we shall extend the Radon measure w, constructed above on each
I', to a regular measure ,u on the whole space X. But this will be done by
the well-known extension theorem of measures'?”; let S be a ring, generated
by the compact sets contain?d in some I',, that is, S € S if and only if S

is the following form: S = pl Sa i, Sa &I’ and compact; if we put

(5.5) wS) = Epa(sm,),
v=1
‘then becomes ao-finite measure on S, so that we have a zmzque o-finite
measure ,u on the o-finite ring S, generated by S.
Let x be a bounded element in ¥, then it is evident that the set of

.« € A such that Z,x=+ 0 is at most countable, say a;; X:ZZ%X. Further-
t=1
more, let U, be E-finite, and denote ®1,(c) the characteristic function of

I',, then we can easily see that ?r(c)o(Us) = o(Z.Us) = 6(Uz), so that
a € A such that @rc)o(Us) #=0 are at most countable. Hence o(U,)

becomes measurable for the above ;L, and

(5.6) f (U, Us) Floydua) = 2 | o(UUn)Fo)dpta o)
t=1
X

=2 <Zx, Uiy >=<x Uy >.

=1
Thus we obtain

LemMA 5.5. For bounded X,y € 9, which give the E-finite operators U,
and Uy, we have

(5.7) < x, Ury > = f < X(g), ylo) > F(;)d,ll(:r).
X

But there exist bounded elements of £, which give the not necessarily
E-finite operators. First we note

LEMMA 5.6. Any s.a. idempotent element e € ) is the (strong) limit of
the elements of (Do)r

Proor. It is sufficient to consider in the part of the infinite class. As
U. is a bounded projection, it is finite in the sense of W*-algebras (Lemma
2.1); U, is decomposed in the following form by [14; Theorem 17:

10) See Halmos, Measure Theory (1950) Especially Theorem A of p. 54.
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(5.8) U.= 2QU.= XU,
i=1 =1

where Q; are the central projections such that [ = 2@ Q:, and every U,

t=1

is E-finite. The (5.8) means that e = ZQie, because e = U,e = EQgUge

i=1 i=1

= ZQie, and the fact that U, is E-finite, implies Q:e €($,)r Thus the proof

i=1
is completed.

Combining the above lemma and Lemma 1.3, we see that every bounded
element x is the (strong) limit of some elements y, € () that is, (Do)r
is dense in 9.

Consider now the linear subspace I of O, constructed by the elements
of the form:

(5. 9) X = U}«‘,X] +..... -+ U[«ann, X, € (230)1-', F; € L(X),
then by (5.7), we can associate to such an x a vector-function
(5.10) X(o) = Fi(o)Xi (o) + ... + Filo)Xu(o).

Evidently, this vector-function is continuous and has a compact support on.
X; by the formula (5.7) and the fact that the correspondence F->Ur is.
multiplicative, we have

(5.11) <X,y > :f < x(a), y(5) > dpo)
X
for any x,y € M.

On the other hand, any continuous vector-function on X is the uniform:
limit of the vector-functions of the form (5.10) on every compact set of
X. 1) Therefore the vector-functions (5.10) are dense in L?%; so that we have.
the isomorphism between the closure of M in §) and the space L%. It remains.
to prove that 2 is dense in § and that this isomorphism gives the transfor-
mation x to X(¢) for x € (§))r, defined previously in §4.

If F(s) € L(X) converges to 1 uniformly on every compact set, then

lim < Usx, y > =lim j < X(a), Y(o) > Flo)du(o)
X

= f < X(o),y(o) > dﬁ(a)= < X,y > for X, y&(Do)r.
X
Therefore, x&($y)r is the weak limit of the elements of the forms U.x;
($o)r is dense in & (Lemma 5.6) and ) is the linear subspace of &, so we-
obtain the first part of the above statesments. So that the vector-function.

11y See (2;Chap. III prop.6). This proposition does not depend on the measure.
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F(o)x(c) converges uniformly to x(o) on X, therefore the above isomorphism
transforms X to X(¢). Thus the proof is completed.

6. Some remarks.

Firstly, as mentioned in §2, our 4-operation depends on the choice of
the generalised unit element, or the defining system of the 4-operation. We
discuss here these circumstances.

Let E’ be such another, and assume that E’ be E-finite. Then any E’-
finite operator A is also E-finite ; we obtain by (2.2)

(6.1) cul(A) = au(E')ap(A),

where oz and oz is the one, defined by the same character of R/, as
described in § §3 and 4. It should be noted that oz(E’)~! may be infinite
for some o, but ox(E’)"'cx(A) is well-defined, because A is contained in
some E’-finite projection (see [14; §3]); and it is clear that the dual space
X is uniquely determined for any generalized unit element (§4). By the
relation (6.1) and the uniqueness of the Radon measure and the extension
of the o-finite measure, we obtain the following formula for any x,y, which
define the E’-finite operators U, and U,, respectively:

(6.2) <X,y > =f < x(g),y(c) > a(E')d,ZL(a).

X
But this formula gives the isomorphism of & and L2 for the measure o(E’)
d;b(a), thus we obtain

THEOREM 6.1. If w2z take a fixed gzneralized unit element E of R® as
the basis, then for any another generalized unit element, which is E-finite,
our Plancherel formula becomes in the following form:

(6.3) < Xy > =f < x(o), ¥(o) > alo)dpla),

X
where a(c) is a (generalized) continuous function on X, which depends only
on the generalized unit element; the dual locally compact space X and the
measure ,Zu are unique.

But arbitrary two generalized unit elements are not necessarily com-
parable; in this case we do not know the unicity of the measure p, in the
above sense.

Next, let us assume that R® be of tie finite class, then the decomposition
obtained in Theorem 4.1 gives the irreducible one of the W*-algebras R®
or R¢ proved in [15]. Because U; € RY, V;&€ R, we obtain the unitary
operators Uy(c) and V(o). We can easily verify that the system {§(s), Us
(¢),V{o),S} becomes the d.u.r. of the given group G. Moreover, if we
assume that G is separable, then the Hilbert space § becomes separable,
and R° is also separable in the weak topology. Denote the W *-algebras
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generated by Uyc) and Vi(c), by R¥(c) and R%q), respectively,and consider
a decomposable operator A~T4(c), permutable with R%(cs), then A € R,

that is, Ua(o) = Tu(c), a.e. and Uai(s) € RYc), where R%c) denotes the
W*-algebra generated by the image of the elements in R® This fact implies

R(s)Y = R%s), a.e. Similarly Rc) = R¥(s), a.e. By these facts and the
Theorem 5.2 of [157, we obtain

THEOREM 6.2. Assume that R°® bz of the finite class, and G be separable.
Then the double unitary representations, obtained by the decomposition in
Theorem 4.1, is irreducible a.e.
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