NOTE ON CONSERVATIVE ALGEBRAIC FUNCTION FIELDS
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J. Tate’s formula of genus reduction in his article “Genus reduction
in purely inséparable extension of algebraic function fields”, Proc. Amer.
Math. Soc.(1952), gives a solution to the problem to characterize conser-
vative algebraic function fields, stated in E. Artin’s ‘“Algebraic numbers
and algebraic functions I”, New York (1951), which we quote as A.N.F.
in the following, but we discuss in the present article the problem directly
on the base of the Chapter XV of A.N.F. especially on the Theorem 20
there.

Though our results follows also from above Tate’s formula without
any difficulties, it seems to the writer that our treatment based on a p-adic
number theoretical lemma (Lemma 4 in the following) has some interest.

THEOREM 1. Let k be an algebraic function field of transcendental degree 1
with coefficient field k, of characteristic p (£0). Suppose that there exists an element
x of k, not belonging to k,, such that the rank n of k over ky(x) is not divided
by p. Thon k is conservative, if and only if every prime ideals of ki x]
generaled by tolynomials of x? with coefficients in k, does mot ramify, that
is, any irreducible polynomials of x with coefficients in k, dividing the
discriminant of the principal order of k over R\ x] are not polynomials of x*
with coefficients in k.

Proor. To prove the Theorem 1, it is sufficient to show that the
Theorem holds when &, is separably algebraically closed (i.e. when every
separably algebraic elements over %, are involved in £k, itself). Because,
when k; is not so, we take the separably algebraic closure Ej of k,, the
field consisting of every separably algebraic elements over k, and we
extend the coefficient field &, of & to 735, denote kyk by £ ; then clearly the
genus of & is equal to that of %2, and # is conservative, if and only if %2
is conservative; on the other hand, as it holds clearly that

[K: kfx)] = [k: k(x)],
the same x in % satisfies the assumption of the Theorem for £ with
coefficient field k;, and .as irreducible polynomials of x in A, x] which are
polynomials of x? with coefficients in %, resolve into products of different
linear polynomials of x? with coefficients in E‘;, there exists a prime ideal

in &[] satisfying the conditions of the Theorem for %, if and only if
there exists a prime ideal of k[ x7] satisfying that for k.
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So we suppose from now on that &, is separably algebraically closed.
Now we state three trivial lemmas without proof.

LemMA 1. L2t S be an arbitrary algebiaic field, S* its alge’raic closure, S\ ¢
separably algebraic finite extension field of S in S*, and S: a purely inseparable
algebraic, not necessarily finite, extension field of S in S*. Then holds

[S]Sqt S‘:] = [Snf S-_I

LeMMA 2. Every finite algebraic exlension field of k, is also separably
algebraically closed.

LEMMA 3. Let K, be an arbitrary inseparable finite algebraic extension
field of ky. We denote the principal order of k over Rk x] by v.,, and that of
K, k2 over K, [x] by C,.. Let p be an arbitrary prime ideal of 0., then the
ideal of T, generated by ) is a power of a prime ideal of Os.

The following Lemma 4 is fundamental to our proof of the Theorem.

LeEMMA 4. Let S’ be a field with a discrete non-archimedean valuation
ll, S be a subficld of S, and S, and S. be finite extension fields of S
involved in S'. Let Sy, denote the field generated by S, and S, in S'; 3, 3,
S, and 3, respectively the rings of wtegers of S, Si, S, and S,, with
reference to {ip; D, 1, D., and Dy, respectively their prime idecls; 3, 3, 3,
and 3., respectively the residue clais fz'eldsg/p, g/pl, 3./0., and S5,/ Eﬂe
identify the natural images of 3, 3, and 3, in 3., respectively with 3, 3,
and 3, themselves, to obtain
And let e, and e, denole respectively the ramification degrees of S, and S,
over S. Suppose that

@ ez1, enx21,

@ (1. e)=1,

and that 5, and i are linearly disjoint over E to each other. Then holds
3 S22 3,

where 3, 3, denotes the subring of 3., generated by 3, and 3.

Proor. We take a primitive element = of p in S and determine the
orders of elements of S’ with reference to | |» such that that of » is equal
to 1. From (2) there exists in 3. an element A of order 1/ee, (we denote

it by A ~ z'12), We show that every element in S); with order 1/e;e, does
not belong to X, 3,. The denial of this fact leads to a contradiction as
follows. Suppose that there exists an element A of 3; 3, with order 1/ee..
A can be written as

1>. We need not the supposition that Zy is separably algebraically closed in the
Lemma 3.
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13
A = Ealb;

i=1
with
4) GEZ, bES, (i=1,2,....1).
Then holds clearly

t
(5) Sabi=0
i=1

where we denote by ::; and b; the elements of E]Z naturally determined
respectively by a; and b;. As from the supposition holds

(6) min. (1/e,, 1/e,) 5z 1/eie,

follows that all of a;b; for i =1,2,....¢ are not divided by §,,, We sum up
among ab; (= 1,2,....¢1) all of such ones which are not divided by %,,,

and denote the sum by
13

A, = 2 ’a,bl,

i=1
then holds clearly

i 1

(7) 2 ‘ab; ~ am ,

t=1

as our valuation is non-archimedean. Then, changing the suffixes suitably,
if necessary, we obtain a natural number # <¢ such that

(8) a:b =0 fori=1,2,....t
a;b =0 fori=¢t+1, t'+2,....1
Now

)] 2, ab; = 2 a; b,

and so clearly

.
(10) > abi=0 b0 for i=1,2,----t.

i=1-
As, from the supposition, 51 and 27, are linearly disjoint over S to each
other, there exists ¢; € 3, (i = 1,2, -...#’) such that for not all of them hold

C; = 0
and
t' I~~~
(11) Daic=0.
i=1

So we can suppose that
c +0.
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Then there exists clearly c;€ 3 for 7 =2, ....# such that

”
(12) a, = Ea,- ¢; mod P,.
i=2
Then from (6) holds clearly
v 1 1
(13) Sabi+b >ac, ~x .
=2 =2
As
(14) bi+be,€S, (=23, ....2),
denoting them respectively by b; for i = 2,3, -...#, we obtain that
1
1
(15) A= Daib,~ o
i=2
with

a; €3, b €3,
Now we consider A, as A, repeat the above process, obtain A;, A, and
repeat it to A, again, obtain A;, A; and so on. Then we obtain ¢ € 3, and
b € 3, such that

1
(16) ab ~ =z ™",
which contradicts to (6), as easily seen, and we obtain the Lemma.
From the above proof we obtain also

COROLLARY. If one replace the condition
(e,e)=1
in the Lemma 4 with the condition that there exists an element in 3, with
order smaller than min (1/e,, 1/e,). it holds also
S22 33,
Now we prove the Theorem (for separably algebraically closed k).
NECESSITY. Suppose that (x*" —«) is a prime ideal of kJ[x] and it
ramifies in k/ky(x), where r is a natural number and a € k. We take
k(") and denote it by K, Let k(x), k, Ky(x), and Kk denote respectively
the completion fields of kyx), k, Kyx), and K,k with reference to the
valuation determined by a prime divisor of Ky dividing x*" — «. Then,
applying Lemma 1,2, and 3, we see easily that we can apply Lemma 4 to
kyfx), h, K\x), and Kyk, instead of S,S;, S,, and S,, respectively. So
follows from A.N.F. Theorem 20, Chap. XV, 5
g(k) Z g(Kok),
where we denote by g(k) and g(K,k) the genera of k and Kk, and the
necessity is proved.
SUFFICIENCY. Now suppose that every prime ideal of k[ x] written as
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(" — a) with natural number 7 and « € k), does not ramify in k/ky(x).
We take an arbitrary purely inseparable algebraic simple extension field

k("/B) of k, denote it by K,, and K,k by K and prove
g(k) = g(K),
from which results easily the sufficiency.

Now let R te an arbitrary prime divisor of the algebraic function field K
with coefficient field K;; ||, denote the valuation of K determined by P;
ko(x), k, Kix), and K respectively the completion fields of ky(x), %, Ki(x)
and K; I;(,(\f), Z,m), and K the residue class fields of ko(x), k, Ky(x), and
K; e, e, and ¢ respectively the ramification degrees of %/k(x), Ky(x)/ k%),

—_——— ~ NS ~~ A~
and K/Ky(x); fi, f2, and f’ respectively the ranks [k: k(x)], [Ky(%x): ko(x)],
and'[%:l?’]. Then, as

17 e filn, (n,p)=1,
follows from Lemma 1 and 2 that

(18) efi=¢ef, hH=S.

On the other hand, from(e,, e,) = 1 it follows clearly
(19) e =xc¢.

Thus we obtain

(20) e =ée, =71,

and so

(21) €,6; = €yg,

where we denote by e, the ramification degree of K/k(x). Now we
distinguish the case when P divides 1/x, from when not. If P divides 1/x,
then clearly e, is 1, while, if { does not divide 1/x, then follows from the
assumption that any prime ideal of the form (x*" — &) with natural number
7 and a € k,, that either of e, or e, is equal to 1. Thus for each divisor
of K holds always either

(22) e, = e, Or e, = e..

Then there exists clearly an integer in Ky, divided just by P, not by P2,
where we denote by o, the ring of integers of % On the other hand, from
f =1
follows that we can take representatives of the residue classes of K within
Ky,. So we can approximate each element of Op by elements of K, in
the sense of the metric defined by ||r, where we denote by Op the ring of
integers of K. As K,9, is, as easily seen, a closed subset of K in the sense.

of that topology®, we obtain
(23) 'DP = I{DOp

2), Cf.A.N.F. Chap. IIL
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which satifies
(24) g(k) = 9(K)

from A.N.F. Theorem 20, Chap. XV, 5. From Lemma 3 no prime ideal
of Ky x] writter as (x*" — a’) with natural number 7 and «’ € K, ramifies
in K/K,(x). So repeating the above considerations as to K, we conclude that
K is also genus-conservative for purely inseparable algebraic simple exten-
sions of the coefficient field K,. Thus k is genus-conservative for purely
inseparable algebraic finite extensions of the coefficient field %,, and the
sufficiency is proved. q.e.d.

As to the necessary condition for the conservativity holds moreover

THEOREM 2. Let k be an arbitrary algebraic function field of one variable
with coefficient field ky. If k is conservative, then for each element x of k
not involved in k,, the prime ideal of ky [x] written as (x*" — o) with natural
number r and o € ky can not be divided by 2nd power of any prime ideal of
the ring of integers of k.

This can be proved without any essential difficulties in a similar way as
in the first part of the above proof of the Theorem 1, applying Corollary of
Lemma 4 in place of Lemma 4,

Finally we add the following remark due to Prof. T. Tannaka.

If we presuppose the Tate’s formula and a proposition on p.405 of his
paper quoted above, and also the book “Introduction to the Itheory of
algebraic functions of one variable, (1951)” of C.Chevalley, then we have
immediately the following generalization of our Theorem 1.

THEOREM. Let k be a separably generated algebraic function field, and x
be a separating variable. Then the theorem 1 remains true.

We confine ourselves by indicating the facts:

(i) By separable constant extension, the genus is invariant (Chevalley,
l.c. p.99).

(ii) If k2 is a separably generated algebraic function field, and L an
extension of constant field, then the constant field of the constant extension
k(L) coincides with L (Chevalley 1. c. p.91).

(iii) If 2 is a separably generated algebraic function field, then none of
the prime divisors of % is ramfied by constant extension (Chevalley, 1.c.p. 92).

As the genus change occurs already in a finite constant extension, and
so by (i) already by finite purely inseparable constant extension we can
restrict ourselves, to the case of such constant extension. From (iii) it
suffices to investigate the case of prime degree p, where p is the characte-
ristic of k. The fact (ii) is used when we apply the formula of Tate.
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