NOTE ON CONSERVATIVE ALGEBRAIC FUNCTION FIELDS

K. Masuda
(Received January 10, 1953)

J. Tate's formula of genus reduction in his article "Genus reduction in purely inseparable extension of algebraic function fields", Proc. Amer. Math. Soc. (1952), gives a solution to the problem to characterize conservative algebraic function fields, stated in E. Artin's "Algebraic numbers and algebraic functions I", New York (1951), which we quote as A.N.F. in the following, but we discuss in the present article the problem directly on the base of the Chapter XV of A. N. F., especially on the Theorem 20 there.

Though our results follows also from above Tate's formula without any difficulties, it seems to the writer that our treatment based on a p-adic number theoretical lemma (Lemma 4 in the following) has some interest.

Theorem 1. Let k be an algebraic function field of transcendental degree 1 with coefficient field k_{0} of characteristic $p(\neq 0)$. Suppose that there exists an element x of k, not belonging to k_{0}, such that the rank n of k over $k_{0}(x)$ is not divided by p. Then k is conservative, if and only if every prime ideals of $k_{0}[x]$ generated by folynomials of x^{p} with coefficients in k_{3} does not ramify, that is, any irreducible polynomials of x with coefficients in k_{0} dividing the discriminant of the principal order of k over $k_{1}[x]$ are not polynomials of x^{p} with coefficients in k_{v}.

Proof. To prove the Theorem 1, it is sufficient to show that the Theorem holds when k_{0} is separably algebraically closed (i.e. when every separably algebraic elements over k_{0} are involved in k_{0} itself). Because, when k_{0} is not so, we take the separably algebraic closure \bar{k}_{j}^{j} of k_{0}, the field consisting of every separably algebraic elements over k_{3}, and we extend the coefficient field k_{0} of k to \bar{k}_{0}^{*}, denote $k_{0} k$ by k^{\prime}; then clearly the genus of k^{\prime} is equal to that of k, and k^{\prime} is conservative, if and only if k is conservative; on the other hand, as it holds clearly that

$$
\left[K: \bar{k}_{0}^{\mathrm{s}}(x)\right]=\left[k: k_{v}(x)\right],
$$

the same x in k satisfies the assumption of the Theorem for k^{\prime} with coefficient field \vec{k}_{0}^{s}; and as irreducible polynomials of x in $k_{0}[x]$ which are polynomials of x^{p} with coefficients in k_{0} resolve into products of different linear polynomials of $x^{\prime \prime}$ with coefficients in \bar{k}_{j}, there exists a prime ideal in $\bar{k} ;[x]$ satisfying the conditions of the Theorem for k^{\prime}, if and only if there exists a prime ideal of $k_{0}[x]$ satisfying that for k.

So we suppose from now on that k_{0} is separably algebraically closed. Now we state three trivial lemmas without proof.
Lemma 1. Let S be an arbitrary algebiaic field, S^{*} its alge'raic closure, S_{1} a separably algebraic finite extension field of S in S^{*}, and S_{2} a purely inseparable algebraic, not necessarily finite, extension field of S in S^{*}. Then holds

$$
\left[S_{1} S_{!2}: S_{\because}\right]=\left[S_{1}: S^{-}\right]
$$

Lemma 2. Every finite algebraic extension field of \boldsymbol{k}_{0} is also separably algebraically closed.

Lemma 3^{1}). Let \bar{K}_{0} be an arbitrary inseparable finite algebraic extension field of k_{0}. We denote the principal order of k over $k_{0}[x]$ by \mathfrak{o}_{x}, and that of $K_{0} k$ over $K_{v}[x]$ by \mathfrak{S}_{x}. Let p be an arbitrary prime ideal of \mathfrak{n}_{x}, then the ideal of \mathfrak{D}_{x} generated by p is a power of a prime ideal of \mathfrak{D}_{x}.

The following Lemma 4 is fundamental to our proof of the Theorem.
Lemma 4. Let S^{\prime} be a field with a discrete non-archimedean valuation $\|_{P}, S$ be a subfield of S^{\prime}, and S_{1} and S_{2} be finite extension fields of S involved in S^{\prime}. Let S_{12} denote the field generated by S_{1} and S_{2} in in $S^{\prime} ; \Sigma, \Sigma_{1}$, Σ_{12}, and Σ_{12} respectively the rings of integers of S, S_{1}, S_{2}, and S_{12} with reference to $\|_{p} ; \mathfrak{p}, \mathfrak{p}_{1}, p_{2}$, and p_{12} respectively their prime ideals; $\widetilde{\Sigma}, \widetilde{\Sigma}_{1}, \widetilde{\Sigma}_{2}$, and $\widetilde{\Sigma}_{12}$ respectively the residue class fields $\Sigma / \mathfrak{p}, \Sigma_{1} / \mathfrak{p}_{1}, \Sigma_{2} / p_{y}$, and $\Sigma_{12} / p_{12}\lceil w e$ identify the natural images of $\widetilde{\Sigma}, \widetilde{\Sigma}_{1}$, and $\widetilde{\Sigma_{2}}$ in $\widetilde{\Sigma}_{12}$ respectively with $\widetilde{\Sigma}, \widetilde{\Sigma_{1}}$, and $\widetilde{\Sigma}_{2}$ themselves, to obtain

$$
\left.\widetilde{\Sigma}_{12} \supseteq \widetilde{\Sigma_{i}} \supseteq \widetilde{\Sigma} \quad(i=1,2)\right] .
$$

And let e_{1} and e_{2} denote respectively the ramification degrees of S_{1} and S_{2} over S. Suppose that

$$
\begin{gather*}
e_{1} ¥ 1, \tag{1}\\
\left(e_{2} \geqq 1,\right. \tag{2}\\
\left(e_{1}, e_{2}\right)=1,
\end{gather*}
$$

and that $\widetilde{\Sigma_{1}}$ and $\widetilde{\Sigma_{-1}}$ are linearly disjoint over $\widetilde{\Sigma}$ to each other. Then holds

$$
\begin{equation*}
\Sigma_{12} \supsetneq \Sigma_{1} \Sigma_{2} \tag{3}
\end{equation*}
$$

where $\Sigma_{1} \Sigma_{:}$denotes the subring of Σ_{12} generated by Σ_{1} and Σ_{2}.
Proof. We take a primitive element π of p in S and determine the orders of elements of S^{\prime} with reference to $\|_{P}$ such that that of π is equal to 1 . From (2) there exists in $\Sigma_{1:}$ an element A of order $1 / e_{1} e_{2}$ (we denote it by $A \sim \pi^{1 / \rho_{1} \rho_{2}}$. We show that every element in S_{12} with order $1 / e_{1} e_{2}$ does not belong to $\Sigma_{1} \Sigma_{2}$. The denial of this fact leads to a contradiction as follows. Suppose that there exists an element A of $\Sigma_{1} \Sigma_{2}$ with order $1 / e_{1} e_{2}$. A can be written as

[^0]$$
A=\sum_{i=1}^{t} a_{i} b_{i}
$$
with
$$
a_{i} \in \Sigma_{1}, b_{i} \in \Sigma_{i} \quad(i=1,2, \ldots t)
$$

Then holds clearly

$$
\begin{equation*}
\sum_{i=1}^{t} \widetilde{a_{i} b_{i}}=0 \tag{5}
\end{equation*}
$$

where we denote by \widetilde{a}_{i} and \widetilde{b}_{i} the elements of $\widetilde{\Sigma}_{12}$ naturally determined respectively by a_{i} and b_{i}. As from the supposition holds

$$
\begin{equation*}
\min .\left(1 / e_{1}, 1 / e_{2}\right) \gtreqless 1 / e_{1} e_{2} \tag{6}
\end{equation*}
$$

follows that all of $a_{i} b_{i}$ for $i=1,2, \ldots t$ are not divided by \Re_{12}. We sum up among $a_{i} b_{i}(i=1,2, \ldots t)$ all of such ones which are not divided by \mathfrak{P}_{12}, and denote the sum by

$$
A^{\prime}=\sum_{i=1}^{t}{ }^{\prime} a_{i} b_{i},
$$

then holds clearly

$$
\begin{equation*}
\sum_{t=1}^{i} a_{i}^{\prime} b_{i} \sim \pi^{\frac{1}{e_{1} \varepsilon_{2}}} \tag{7}
\end{equation*}
$$

as our valuation is non-archimedean. Then, changing the suffixes suitably, if necessary, we obtain a natural number $t^{\prime} \leqq t$ such that

$$
\begin{array}{lr}
\widetilde{a_{i} \widetilde{b}_{i}} \neq 0 & \text { for } i=1,2, \ldots t^{\prime} \tag{8}\\
\widetilde{a_{i}} \widetilde{b_{i}}=0 & \text { for } i=t^{\prime}+1, t^{\prime}+2, \ldots t .
\end{array}
$$

Now

$$
\begin{equation*}
\sum_{i=1}^{t} a_{i}^{\prime} b_{i}=\sum_{i=1}^{t^{\prime}} a_{i} b_{i} \tag{9}
\end{equation*}
$$

and so clearly

$$
\begin{equation*}
\sum_{i=1}^{t^{\prime}} \widetilde{a_{i}} \widetilde{b}_{i}=0, \quad \widetilde{b_{i}} \neq 0 \quad \text { for } i=1,2, \cdots \cdot t^{\prime} \tag{10}
\end{equation*}
$$

As, from the supposition, $\widetilde{\Sigma_{1}}$ and $\widetilde{\Sigma_{2}}$ are linearly disjoint over $\widetilde{\Sigma}$ to each other, there exists $c_{i} \in \Sigma\left(i=1,2, \cdots t^{\prime}\right)$ such that for not all of them hold $\widetilde{c_{i}}=0$
and

$$
\begin{equation*}
\sum_{i=1}^{t^{\prime}} \tilde{a_{i}} \tilde{c}_{i}=0 . \tag{11}
\end{equation*}
$$

So we can suppose that

$$
\widetilde{c,} \neq 0 .
$$

Then there exists clearly $c_{i}^{\prime} \in \Sigma \quad$ for $i=2, \cdots t^{\prime}$ such that

$$
\begin{equation*}
a_{1} \equiv \sum_{i=2}^{t} a_{i} c_{i}^{\prime} \quad \bmod \mathfrak{\Re}_{1} . \tag{12}
\end{equation*}
$$

Then from (6) holds clearly

$$
\begin{equation*}
\sum_{i=2}^{t \prime} a_{i} b_{b}+b_{1} \sum_{i=2}^{\prime \prime} a_{i} c_{i}^{\prime} \sim \pi^{\frac{1}{e_{1} a_{2}}} \tag{13}
\end{equation*}
$$

As

$$
\begin{equation*}
b_{i}+b_{1} c_{i}^{\prime} \in \Sigma_{2} \quad\left(i=2,3, \cdots t^{\prime}\right), \tag{14}
\end{equation*}
$$

denoting them respectively by b_{i}^{\prime} for $i=2,3, \cdots t^{\prime}$, we obtain that

$$
\begin{equation*}
A_{:}=\sum_{i=2}^{\prime \prime} a_{i} b_{i}^{\prime} \sim \pi^{\frac{1}{\rho_{1} a_{2}}} \tag{15}
\end{equation*}
$$

with

$$
a_{i} \in \Sigma_{1}, \quad b_{i} \in \Sigma_{i 2} .
$$

Now we consider A_{1} as A, repeat the above process, obtain A_{1}, A_{2}, and repeat it to A_{2} again, obtain A_{2}^{\prime}, A_{3} and so on. Then we obtain $a \in \Sigma_{1}$ and $b \in \Sigma_{2}$ such that

$$
\begin{equation*}
a b \sim \pi^{\frac{1}{e_{1} \rho_{2}}} . \tag{16}
\end{equation*}
$$

which contradicts to (6), as easily seen, and we obtain the Lemma.
From the above proof we obtain also
Corollary. If one replace the condition

$$
\left(e_{1}, e_{2}\right)=1
$$

in the Lemma 4 with the condition that there exists an element in Σ_{12} with order smaller than $\min \left(1 / e_{1}, 1 / e_{2}\right)$, it holds also

$$
\Sigma_{12} \supsetneq \Sigma_{1} \Sigma_{2}
$$

Now we prove the Theorem (for separably algebraically closed k_{0}).
Necessity. Suppose that $\left(x^{p r}-\alpha\right)$ is a prime ideal of $k_{0}[x]$ and it ramifies in $k / k_{0}(x)$, where r is a natural number and $\alpha \in k_{0}$. We take $k_{0}\left(\sqrt[p r]{\alpha)}\right.$ and denote it by K_{0}. Let $\overline{k_{0}(x)}, \bar{k}, \overline{K_{0}(x)}$, and $\overline{K_{0} k}$ denote respectively the completion fields of $k_{0}(x), k, K_{0}(x)$, and $K_{0} k$ with reference to the valuation determined by a prime divisor of $K_{0} k$ dividing $x^{p^{r}}-\alpha$. Then, applying Lemma 1,2, and 3, we see easily that we can apply Lemma 4 to $k_{0}(x), h, K_{0}(x)$, and $K_{0} k$, instead of S, S_{1}, S_{2}, and S_{12} respectively. So follows from A.N.F. Theorem 20, Chap. XV, 5

$$
g(k) \gtreqless g\left(K_{0} k\right),
$$

where we denote by $g(k)$ and $g\left(K_{0} k\right)$ the genera of k and $K_{0} k$, and the necessity is proved.

Sufficiency. Now suppose that every prime ideal of $k_{0}[x]$ written as
($x^{\nu^{r}}-\alpha$) with natural number r and $\alpha \in k_{0}$, does not ramify in $k / k_{0}(x)$. We take an arbitrary purely inseparable algebraic simple extension field $k_{0}(\sqrt[n t]{\beta})$ of k_{0}, denote it by K_{0}, and $K_{0} k$ by K and prove

$$
g(k)=g(K),
$$

from which results easily the sufficiency.
Now let \mathfrak{F} be an arbitrary prime divisor of the algebraic function field K with coefficient field $K_{0} ; \|_{p}$ denote the valuation of K determined by \mathfrak{p}; $\left.\bar{k}_{0}(x), \bar{k}, \overline{K_{0}} \overline{0}\right)$, and \bar{K} respectively the completion fields of $k_{0}(x), k, K_{0}(x)$ and $K ; \widetilde{k_{0}(x)}, \widetilde{k}, \widetilde{K_{0}(x)}$, and \widetilde{K} the residue class fields of $\overline{k_{0}(x)}, \bar{k}, \overline{K_{0}(x)}$, and $\bar{K} ; e_{\mathrm{i}}, e_{2}$, and e^{\prime} respectively the ramification degrees of $\bar{k} / \overline{k_{v}(x)}, \overline{K_{\mathrm{v}}(x)} / \overline{k_{0}(x)}$, and $\bar{K} / \overline{K_{0}(x)} ; f_{1}, f_{2}$, and f^{\prime} respectively the ranks $\left[\widetilde{k}: \widetilde{k_{0}(x)}\right],\left[\widetilde{K_{0}(x)}: \widetilde{k_{0}(x)}\right]$, and $\left[\widetilde{K}: \widetilde{K^{\prime}}\right]$. Then, as

$$
\begin{equation*}
e_{1} f_{1} \mid n, \quad(n, p)=1, \tag{17}
\end{equation*}
$$

follows from Lemma 1 and 2 that

$$
\begin{equation*}
e_{1} f_{1}=e^{\prime} f^{\prime}, \quad f_{1} \leqq f^{\prime} \tag{18}
\end{equation*}
$$

On the other hand, from $\left(e_{1}, e_{2}\right)=1$ it follows clearly

$$
\begin{equation*}
e_{1} \leqq e^{\prime} \tag{19}
\end{equation*}
$$

Thus we obtain

$$
\begin{equation*}
e_{1}=e^{\prime}, \quad f_{1}=f^{\prime}, \tag{20}
\end{equation*}
$$

and so

$$
\begin{equation*}
e_{1} e_{2}=e_{12} \tag{21}
\end{equation*}
$$

where we denote by e_{12} the ramification degree of $\bar{K} / \overline{k_{0}(x)}$. Now we distinguish the case when \mathfrak{P} divides $1 / x$, from when not. If \mathfrak{P} divides $1 / x$, then clearly e_{2} is 1 , while, if \mathfrak{B} does not divide $1 / x$, then follows from the assumption that any prime ideal of the form ($x^{p^{r}}-\alpha$) with natural number r and $\alpha \in k_{0}$, that either of e_{1} or e_{2} is equal to 1 . Thus for each divisor of K holds always either

$$
\begin{equation*}
e_{1}=e_{12} \text { or } e_{2}=e_{12} . \tag{22}
\end{equation*}
$$

Then there exists clearly an integer in $K_{0} 0_{p}$ divided just by \mathfrak{F}, not by \mathfrak{P}^{2}, where we denote by \mathfrak{o}_{p} the ring of integers of \vec{k}. On the other hand, from

$$
f_{1}=f^{\prime}
$$

follows that we can take representatives of the residue classes of \bar{K} within $K_{0} \mathfrak{0}_{p}$. So we can approximate each element of \mathfrak{D}_{P} by elements of $K_{00} 0_{p}$ in the sense of the metric defined by $\|_{P}$, where we denote by \mathfrak{D}_{P} the ring of integers of \bar{K}. As $K_{0} \mathfrak{D}_{p}$ is, as easily seen, a closed subset of \bar{K} in the sense of that topology ${ }^{2}$, we obtain
(23)

$$
\mathfrak{D}_{P}=K_{0} 0_{p}
$$

2). Cf. A. N. F. Chap. II.
which satifies

$$
\begin{equation*}
g(k)=g(K) \tag{24}
\end{equation*}
$$

from A.N.F. Theorem 20, Chap. XV, 5. From Lemma 3 no prime ideal of $K_{0}[x]$ written as ($x^{p^{\prime}}-\alpha^{\prime}$) with natural number r and $\alpha^{\prime} \in K_{0}$ ramifies in $K / K_{l}(x)$. So repeating the above considerations as to K, we conclude that K is also genus-conservative for purely inseparable algebraic simple extensions of the coefficient field K_{0}. Thus k is genus-conservative for purely inseparable algebraic finite extensions of the coefficient field k_{0}, and the sufficiency is proved. q.e.d.

As to the necessary condition for the conservativity holds moreover
Theorem 2. Let k be an arbitrary algebraic function field of one variable with coeff icient field k_{0}. If k is conservative, then for each element x of k not involved in k_{0}, the prime ideal of $k_{0}[x]$ written as ($x^{p^{r}}-\alpha$) with natural number r and $\alpha \in k_{0}$ can not be divided by $2 n d$ power of any prime ideal of the ring of integers of k.

This can be proved without any essential difficulties in a similar way as in the first part of the above proof of the Theorem 1, applying Corollary of Lemma 4 in place of Lemma 4.

Finally we add the following remark due to Prof. T. Tannaka.
If we presuppose the Tate's formula and a proposition on p. 405 of his paper quoted above, and also the book "Introduction to the |theory of algebraic functions of one variable, (1951)" of C. Chevalley, then we have immediately the following generalization of our Theorem 1.

Theorem. Let k be a separably generated algebraic function field, and x be a separating variable. Then the theorem 1 remains true.

We confine ourselves by indicating the, facts:
(i) By separable constant extension, the genus is invariant (Chevalley, 1.c. p.99).
(ii) If k is a separably generated algebraic function field, and L an extension of constant field, then the constant field of the constant extension $k(L)$ coincides with L (Chevalley l.c. p.91).
(iii) If k is a separably generated algebraic function field, then none of the prime divisors of k is ramfied by constant extension (Chevalley, 1.c.p. 92).

As the genus change occurs already in a finite constant extension, and so by (i) already by finite purely inseparable constant extension we can restrict ourselves to the case of such constant extension. From (iii) it suffices to investigate the case of prime degree p, where p is the characteristic of k. The fact (ii) is used when we apply the formula of Tate.

[^1]
[^0]: 1). We need not the supposition that k_{0} is separably algebraically closed in the Lemma 3.

[^1]: Mathematical Institute, Yamagata University, Yamagata

