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J. Tate's formula of genus reduction in his article ''Genus reduction
in purely inseparable extension of algebraic function fields", Proc. Amer.
Math. Soc. (1952), gives a solution to the problem to characterize conser-
vative algebraic function fields, stated in E. Artin's "Algebraic numbers
and algebraic functions I", New York (1951), which we quote as A. N. F.
in the following, but we discuss in the present article the problem directly
on the base of the Chapter XV of A. N. F., especially on the Theorem 20
there.

Though our results follows also from above Tate's formula without
any difficulties, it seems to the writer that our treatment based on a p-adic
number theoretical lemma (Lemma 4 in the following) has some interest.

THEOREM 1. Let k be an algebraic function field of transcendental degree 1
with coefficient field k0 of characteristic p(Φθ). Suppose that there exists an element
x of k, not belonging to k0, such that the rank n of k over kύ(x) is not divided
by p. Then k is conservative, if and only if every prime ideals of k^x^
generated by polynomials of xp with coefficients in kd does not ramify, that
is, any irreducible polynomials of x with coefficients in k0 dividing the
discriminant of the principal order of k over k^_x"} are not polynomials of xp

with coefficients in k0.

PROOF. TO prove the Theorem 1, it is sufficient to show that the
Theorem holds when k0 is separably algebraically closed (i. e. when every
separably algebraic elements over k0 are involved in k0 itself). Because,
when kυ is not so, we take the separably algebraic closure k) of k0, the
field consisting of every separably algebraic elements over kh and we
extend the coefficient field kύ of k to £j, denote kok by k then clearly the
genus of k' is equal to that of k, and Ή is conservative, if and only if k
is conservative; on the other hand, as it holds clearly that

the same x in k satisfies the assumption of the Theorem for k' with
coefficient field k*0; and as irreducible polynomials of x in ko[_x2 which are
polynomials of xp with coefficients in k0 resolve into products of different
linear polynomials of xp with coefficients in k], there exists a prime ideal

in feoZx2 satisfying the conditions of the Theorem for k', if and only if
there exists a prime idea! of &0M satisfying that for k.
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So we suppose from now on that k0 is separably algebraically closed.
Now we state three trivial lemmas without proof.

LEMMA 1. Let S be an arbitrary algβbiaic field, S * its alge braic closure, S\ a
separably algebraic finite extension field of S in S*, and S2 a purely inseparable
algebraic, not necessarily finite, extension field of S in S*. Then holds

CSiS,: S,l = [Si : S"J

LEMMA 2. Every finite algebraic extension field of k0 is also separably
algebraically closed.

LEMMA 3 l ). Let Ko be an arbitrary inseparable finite algebraic extension
field of k0. We denote the principal order of k over kQ[_x~} by ox, and that of
Ko k over ϋfυ ZXJ by Cx. Let p be an arbitrary prime ideal of o», then the
ideal of £x generated by p is a power of a prime ideal of Ox.

The following Lemma 4 is fundamental to our proof of the Theorem.

LEMMA 4. Let S' be a field with a discrete non-archimedean valuation

I \p, S be a sub field of S', and Si and S £ be finite extension fields of S

involved in S\ Let Sn denote the field generated by Sγ and S2 in S' Σ, Σi,

Σa, and Σu respectively the rings of integers of S, S3, Sa, and Sl2 with

reference to \\P; p, pi, p2, and pιt> respectively their prime ideals-, Σ, Σi, Σ2,

and ΣVJ respectively the residue class fields Σ/p, Σi/pι, Σa/py, and Σia/£i2 Owe

identify the natural images of 2, Σi, and Σ2 in Σia respectively with Σ, Σi,

and Σ2 themselves, to obtain

And let eλ and e« denote respectively the ramification degrees of Sλ and Sz

over S. Suppose that

(1) e,£l, e^l,

(2) ^ (eu e,)= 1,

and that Σi and Σ- are linearly disjoint over Σ to each other. Then holds

(3) Σ i 2 ^ Σ i Σ ,

where Σi Σ? denotes the subring of Σia generated by Σi βwd Σ2

PROOF. We take a primitive element TΓ of p in S and determine the
orders of elements of S' with reference to | | P such that that of π is equal
to 1. From (2) there exists in Σn an element A of order l/£i£2 (we denote
it by A ^ π11"1'*). We show that every element in Si2 with order l/eΊe2 does
not belong to Σi Σj. The denial of this fact leads to a contradiction as
follows. Suppose that there exists an element A of Σi Σs with order l/eλe2.
A can be written as

1). We need not the supposition that k0 is separably algebraically closed in the
Lemma 3.
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with

(4)

Then holds clearly

A

Σi,
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ί

= 2 Λ ί f e

i = l

&e € Σ2
(« = 1,2, . . . .t).

(5) 2 βA = 0
1 = 1

where we denote by at and b, the elements of Σi» naturally determined
respectively by a^ and bι. As from the supposition holds

(6) min.α/e,, l/e^^l/e^

follows that all of aΦi for ί = 1,2, . . . Λ are not divided by φ]2. We sum up
among afii (£ = 1,2, ί) all of such ones which are not divided by %3,
and denote the sum by

then holds clearly

as our valuation is non-archimedean. Then, changing the suffixes suitably,

if necessary, we obtain a natural number t' <; t such that

(8) βiδiΦO for i = 1,2, . . -^

ί ? ί = 0 for ί « f + 1, f 4- 2, .. t.
Now

and so clearly
t

(10) 2 ^ = ° ' ^ = t = 0 for ί=l,2, ..-.ί'.

As, from the supposition, Σi and 22 are linearly disjoint over Σ to each
other, there exists c* €ί Σ (ΐ = 1» 2, f) such that for not all of them hold

cΓ= 0
and

αi) ^
t =

So we can suppose that
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Then there exists clearly c\ ̂  Σ for i = 2, f such that

(12) Λ l = 2 β < < m o d Φi

Then from (6) holds clearly

As

(14) fc + δicί€22 « = 2,3,..--ί/),

denoting them respectively by b\ for ί = 2,3, f, we obtain that

(15) A,= 2 *
i = 2

with

Now we consider A! as A, repeat the above process, obtain Aι, A2, and
repeat it to A2 again, obtain A'2i A3 and so on. Then we obtain a € Σi and
b € 22 such that

_ τ

(16) ab~τreιP\

which contradicts to (6), as easily seen, and we obtain the Lemma.

From the above proof we obtain also

COROLLARY. If one replace the condition

(*I,*2)= 1

in the Lemma 4 with the condition that there exists an element in Σi2 with
order smaller than min (l/eΊi l/e>), it holds also

Σ12 ii= Σi Σ2

Now we prove the Theorem (for separably algebraically closed k0).
NECESSITY. Suppose that (xpr — a) is a prime ideal of £ υ M and it

ramifies in k/kQ(x), where r is a natural number and a € k0. We take

and denote it by Ko. Let ko(x), k, EJxj, and K^k denote respectively
the completion fields of *„(#), k, Kt)(x), and Kok with reference to the
valuation determined by a prime divisor of Kok dividing xpr — a. Then,
applying Lemma 1,2, and 3, we see easily that we can apply Lemma 4 to
ko(x), h, K()(x\ and Kok, instead of S,Sl9S2, and SVI respectively. So
follows from A. N. F. Theorem 20, Chap. XV, 5

where we denote by g(k) and g{Kok) the genera of k and Kok, and the
necessity is proved.

SUFFICIENCY. NOW suppose that every prime ideal of £0M written as
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(xpr — a) with natural number r and a € k0, does not ramify in k/ko(x).
We take an arbitrary purely inseparable algebraic simple extension field

°f A), denote it by ϋΓn? and Kok by /£" and prove

from which results easily the sufficiency.
Now let 5β be an arbitrary prime divisor of the algebraic function field K

with coefficient field Kύ | \p denote the valuation of K determined by φ

ko(x), k, K0{x), and K respectively the completion fields of ko(x), k, KQ(x)

and K k^ix), k, K{)(x), and K the residue class fields of ko(x), Aί, K0(x), and

K; eu e2i and e' respectively the ramification degrees of Έ/kJx),

a.nd~K/K0(x); /,, / 2 , and/ ' respectively the ranks Ik: k^x)], ίK0{x): ko(x)3>

a n d l ^ : ^ . Then, as

(17) *χΛK (w,#)=l,

follows from Lemma 1 and 2 that

(18) eιΛ = e Ά Λ S Λ
On the other hand, from(^b ^2) = 1 it follows clearly

(19) ex^eT.

Thus we obtain

(20) eλ = ^, Λ = Λ

and so

(21) exe2 = e12,

where we denote by eVλ the ramification degree of K/ϊφc). Now we
distinguish the case when 5β divides 1/x, from when not. If φ divides 1/x,
then clearly e2 is 1, while, if φ does not divide 1/x, then follows from the
assumption that any prime ideal of the form (xpr — ot) with natural number
r and a € &0, that either of ex or e2 is equal to 1. Thus for each divisor
of K holds always either

(22) ex = 0i2 or ^2 = e12.

Then there exists clearly an integer in ϋfoO*, divided just by φ, not by ?β>z

r

where we denote by ô  the ring of integers of &Γ On the other hand, from

/l=/'

follows that we can take representatives of the residue classes of K within
Koθp. SO we can approximate each element of DP by elements of Koθp in
the sense of the metric defined by | \P, where we denote by Dp the ring of

integers of K. As K0O1} is, as easily seen, a closed subset of K in the sense.
of that topology2), we obtain

(23) £)P

2). Cf.A.N.F. Chap. II.



NOTE ON CONSERVATIVE ALGEBRAIC FUNCTION FIELDS 17

which satifies

(24) g(k) - g(K)

from A. N. F. Theorem 20, Chap. XV, 5. From Lemma 3 no prime ideal
of ϋfoM written- as (xpr — a') with natural number r and a! € Ko ramifies
in K/K0(x). So repeating the above considerations as to K7 we conclude that
K is also genus-conservative for purely inseparable algebraic simple exten-
sions of the coefficient field iζ, Thus k is genus-conservative for purely
inseparable algebraic finite extensions of the coefficient field k0, and the
sufficiency is proved, q. e. d.

As to the necessary condition for the conservativity holds moreover

THEOREM 2. Let k be an arbitrary algebraic function field of one variable
with coefficient field kQ. If k is conservative, then for each element x of k
not involved in k0, the prime ideal of k0 M written as (xpr — a) with natural
number r and a €Ξ k0 can not be divided by 2nd power of any prime ideal of
the ring of integers of k.

This can be proved without any essential difficulties in a similar way as
in the first part of the above proof of the Theorem 1, applying Corollary of
Lemma 4 in place of Lemma 4.

Finally we add the following remark due to Prof. T. Tannaka.
If we presuppose the Tate's formula and a proposition on p. 405 of his

paper quoted above, and also the book "Introduction to the (theory of
algebraic functions of one variable, (1951)" of C. Chevalley, then we have
immediately the following generalization of our Theorem 1.

THEOREM. Let k be a separably generated algebraic function field, and x
be a separating variable. Then the theorem 1 remains true.

We confine ourselves by indicating thejacts:
(i) By separable constant extension, the genus is invariant (Chevalley,

I.e. p.99).
(ii) If k is a separably generated algebraic function field, and L an

extension of constant field, then the constant field of the constant extension
k(L) coincides with L (Chevalley 1. c. p. 91).

(iii) If k is a separably generated algebraic function field, then none of
the prime divisors of k is ramfied by constant extension (Chevalley, 1. c. p. 92).

As the genus change occurs already in a finite constant extension, and
so by (i) already by finite purely inseparable constant extension we can
restrict ourselves, to the case of such constant extension. From (iii) it
suffices to investigate the case of prime degree p} where p is the characte-
ristic of k. The fact (ii) is used when we apply the formula of Tate.
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