HOMOLOGY GROUPS IN CLASS FIELD THEORY

SHuicHr TAKAHASHI
(Riceived December 15, 1952)

Recently, J. Tate has given an interesting theorem that the higher
dimensional cohomology groups H'(G,A) occurring in class field theory,
i.e. A: the multiplicative group of nonzero elements in a p-adic field or
the idéle class group in an algebraic number field, G: the galois group,
are canonically isomorphic to the integral cohomology groups H" %G, Z)
for every r >2. It was stated, without details. that one can introduce
negative dimensional cohomology groups and the isomorphisms:

H%G,Z)= H(G,A)
are valied for every dimensions. Moreover, the isomorphism

H-%G,Z)= HYG, A)
from H-XG, Z) = commutator factor group of G, to HYG, A) = idéle norm
residue class group, is the reciprocity law mapping.

I shall show in this note that if we put
H"(G,A) = H,«(G, A) (r=1,2,....)

where H,_ (G, A) is the (r — 1)-dimensional homology group, then all
statements of Tate hold. Moreover, the isomorphism

H3G,Z)= HG,A)
is the isomorphism theorem of H.Kuniyoshi? in the theory of T.Tannaka®
concerning the “Haupt geschlechissatz im Minimalen’.

1. Let G be a finite group, A a G-module, we now define boundary
and coboundary operators 9, 8§ for the module of g-chains® C, (G, A) of G
with value in A :

Of (T, Xpmn) = &7 (%, Xy - Kgm)

zeG

1> J.TATE, Higher dimensional cohomology groups of class field theory. Ann.
of Math. , 56_1952), 294-277.

2) H.KuniyosHs, On a certain group concerning the p-adic number field, Tohoku
Math. Journ., 1(1950),186-193, Theorem 2.

3) T.TANNAKA, Some remarks concerning p-adic number field, Journ. of Math.
Soc. of Japan,3(1951),252-257, Theorem 2.

4) q-chain is a function of ¢-variable in G to A; therefore identical with ¢-cochain.
For infinite group G, one must restrict the function to the class that are = 0 only
for some finite systems (z;, --,2y) of elements in Q.
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zeG

+ '(— D (%, e, Xy, X),

weG

Bf(xx, .. -~,x11+1) = xl/(x21 et ';x(l+!)
1
+ Z( - l)i](xli sy XiXia1,y - ")x4+1)
i=1

+ (=D (%, -0, X)
H (G, A) and HYG, A) denote, respectively, the g-homology and g¢-
cohomology group for every g > 0; and for g =0 put
HyG, A) == Axy/AA, HYG, A) = Ax/NA®
where we used the following conventions :

Ay ={alNa=0, N= 2 x}, NA = {Na|ac A},

xeG
Ar=A{alA:a=0, As=1—2x,2€ G}, AA ={Asa|x € G,a € A}.
Let B be another G-module which is paired® to a third G-module E:
(A, B) > (a,b)>abcE.
Define cap-and cup-product N, U by
N g, -, %)

= 2 Xiow - Xpf(Xprr, oo, Xpra)(Xiy <+ -+, Xpia) € Co(G, E)

Tpaq t _zp_HleG

(/6 Cq(G; A); g 6 CI?-HI(G} B))}
fUgx, -, Xpia)
=f(x, -, X)Xy Xpg(Xpi1- - o, Xpag) € Cpao G, E)
(feCr (G, A), g€ CYG,B)).
By direct computations one can prove :
AfNg)=rNog+ (=128 Ny (f€ CYG, A), g € Cpsy(G,B))
S(fUp=8fUy+(=1PfU3dyg (f € C¥G, A), g € CG, B)).
2. Let now A be a G-module which satisfies the axiom 1 of J.Tate,
and a € H%G, A) be a canonical class whose restriction to any subgroup
U < G generates the cyclic group H*U, A) of order equal to that of U.
Tate’s isomorphisms are given explicitly by
HG,Z)>¢>a U § € H(G,A) (r=2)

5) This definition of HO is due to J. Tate, loc. citl.)
6) L e. bilinear map of (4, B) to F satisfying z(a,b)=za-2b for any r € G, o < A4,
he B,
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HYG,Z)=0~> HYG,A)=0,
and

H-%G,Z) = H(G, Z)> f(x) > D a(N, »)/ (x) € H'(G, A

zeG

where H\(G,Z)> f(x)> fo(‘” € G/G is a canonical isomorphism and

zeG

a(N,x) = Ea(y, x) with a(y,x) € a. Therefore, the isomorphism G/G'=

YeG
H-XG,A)= HYG, A) = Ap/NA is given by
G/G > x>a(N, x) € Aa/NA,
i.e. the reciprocity law mapping as was stated by J. Tate.
For negative dimensions — r(r > 0) we have
H "G, Z) =H: (G, Z)> ¢ >a ¢ € H_(G,A) = H'(G, A).

The proof of this isomorphism theorem can be obtained, word for word,
from that of J. Tate.

From the theory of universal coefficients group™ it follows readily that

HyG, Z) = H*\G, Z) (=0,1,2, ....).
Hence we conclude from the above isomorphism theorem that
H/ (G, A) =~ H*(G, A) (r=01,2 -...).

3. We shall finally mention the meaning of the isomorphism :

H(G,Z)>¢ >a N ¢ € H(G, A) = Ax/AA.

For this, we assume that G be abelian of type (n, -+ «+, %), mui|(GE =1, ..,
m — 1), with m generators s, ----,s,. If we write A; =1—5s7', N.=1+s;
+ .... + s O.Schreier’s normalization process® can be applied to 2-

homology group H,G,B) for any G-module B and yields the following
statements : H,(G, B) has a representative system consists of 2-cycles :

fa(slic, S:) = ay 1<k<n —1, 1<i=<m,
Solsi, $5) = — oS5, 8:) = agy, 1<j<is<m,
fo(%,9) =0 for all other cases,

associated to a system (a;;), £ =7, in B satisfying

— zAjaii‘l’Niﬂti'*‘ zAjai_i:O: 1=:=<m.

j<i j<i o

fa~ 0 if and only if there exists a system (a;3), ¢=7= %, in B such that

7> E.g.S.EILENBERG, Topological methods in abstract algebra, Bull. A.M.S., 55
(1949), 3-37, Formula (13. 1.

8) O.SCHREIER, Uber die Erweiterung von Gruppen I, Monatsh. f. Math. u. Phys. , 34
(1926), 165-180. Satz 1. Cf. also a forthcoming paper by Prof. T. Tannaka.
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a;; = ZAMZJ{{ + 2 Ajaz'ii

> =i

a;= > M — Nty — > Maaus + Nyass + XA 1Sj<i<m.

K> I>E>J

k<Jj

We now apply this results to our group H(G, Z) and obtain the

following basis
Sis(siy s5) = —fif(sps1) =1
fi f(x} y) = 0
of order »;. Therefore
HY(G, Z)= 2, — 1)-Z/(n;)»
i=2
and consequently

Ax/AA = D (G —1)-Z[(ns),

1=2

this is the isomorphism theorem of H.Kuniyoshi®.

Since
a N fi; = a(s;, s;) — alss, i)
we see that
Ay = {a(s;, s;) — a(s;, i), AA},

1<j<ism

for all other cases,

this is the T.Tannaka’s “Hauptgeschlechtssatz im Minimalen’.
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9) This is a theorem of H. HOPF, Fundamentalgiuppe und zweite Bettische Gruppe,

Comm. Math. Helv., 14(1941-2), 257-309, Nr.13,0),

and is a special case of

Lyndon's formula; R.C.LYNDON, The cohomology theory of group extensions, Duke

Math. Journ,. 15(1948),271-292, Theorem 6.





