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Introduction. The first hurdle for the definition of the direct product of
operator algebras was the construction of the product space on which the
product algebra acts as an operator algebra. This task was accomplished by
F.J. Murray and J. von Neumann in the prominent papers [6][8]. However by
the recent progress of the theory of operator algebras, for some problems
we can now proceed without the explicit usage of underlying Hilbert spaces.
Thus T. Turumaru [14] has succeeded to define the direct product of
two Cx-algebras without regard to the product space and Y. Misonou [5] [13]
[14] has proved that the algebraical structure of the direct product of two
Wk-algebras is uniquely determined only by the component algebras themselves
and is independent from Hilbert spaces they act. The purpose of this paper
is to extend these results to infinite direct product of operator algebras.

We introduce in § 1 a notion of inductive limit of C*-algebras and get a
dual relation: the state space of an inductive limit of C*-algebras Ay (y €
T") is the projective limit of state spaces of Ay (y € I'). After a brief résumé
of the finite direct product in §2, using the concept of inductive limit we
define the infinite direct product of C*-algebras in §3. As seen in the
construction of the infinite product of measure spaces [3], this infinite product
has been already popular for commutative algebras in some implicit forms.
For this product the associative law holds in the satisfactory manner.

Next, in the recent literatures [1][2][9], it is known that the o-weak
topology? plays a striking role in the theory of W*-algebras and a state is
o-weakly continuous if and only if it is normal? in the sense of Dixmier.
Hence employing normal states instead of ordinary states and regarding the
dual relation stated above we define the inductive limit of W*-algebras in §4.
We take a W+algebra A as the inductive limit of W*-algebras Ay (y € I')
if the set of normal states of A coincides with the projective limit of normal
states on Ay (y € I"). Then this W+*-inductive limit is uniquely determined. In
§ 5, relaxing the condition of Wt-inductive limit, we consider a limit of W*
-algebras on a fixed Hilbert space which is named a direct limit. An approxi-
mately finite factor [7] gives an example of the direct limit. The relation
between the inductive limit and the direct limit is given by the following
fact: a direct limit of W+*-algebras Ay (y € I') is always a normal homomor-
phic image of the W+-inductive limit of Ay (y € I"). In § 6, parallel to the
direct product of C*-algebras we define an infinite direct product of W+-algebra.

1) This terminology is due to Griffin [2]. Dixmier [1] called it la topologie ultrafaible.
2) A state o is called normal [1] if x& ¢ x implies o(za) } o(x).
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This product is determined freely from the underlying Hilbert spaces of
component algebras and does not coincide with the infinite direct product
defined by von Neumann [8]. The latter is a homomorphic image of the
former. At last we remark that the example of factors contructed in [8] is
reduced to the infinite direct product of normal traces or normal pure states
in our sense.

A B*algebra is a Banach algebra possessing a *-operation such as
la*x| = x12. It is always represented faithfully as a uniformly closed self-
adjoint operator algebra of bounded operators (shortly a C*-algebra) on a
Hilbert space. Theorem A in below concerning the representation of a B*
algebra is most frequently used and offers the foundation of the reasoning
in this paper.

When a B*- algebra A is represented faithfully as a Cx-algebra on a
Hilbert space H(we call it a C*-representation of A on H') a state o of A
which permits the express1on

a(a) = 2 < a¥pi, @i > for ac A
i=1

=)

where @; are elements in Hsuchas > [@;/? =1 and a* is the representa-
i=1

tive operator of a € A, is called a distinguished state of A with respect to
this representation.

Then the set S of the distinguished states with respect to a C*-represen-
tation of A has the following properties [12]

(i) S is weakly dense in the state space Q of A,

(i) S is strongly closed in the conjugate space of A,

(iii) S is convex,

(iv) if p€ Sande < p then o € S, where ¢ < p means that the represen-
tation of A constructed with ¢ by the usual method is unitarily equivalent
to a restriction on an invariant subspace of the representation constructed
by p.

A subset in the state space () which satisfies (i)-(iv) is called a basic
subsel. Then we get

THEOREM A. For every basic subset S in the state space of a B*-algebra
A, there exists a C*representation of A for which the set of distinguished
states coincides with S. If ithe set of distinguished states wiih respect to a
Crrepresentation of A is contained in the set defined by another representation
of A, there is a normal homomorphism of the weak closure of the latter
representation onto that of the former representation. When these sets are
identical, the weak closures of lhese representations are normally isomorphic®
each other [10], [11].

3) In this paper, an algebraic isomorphism between two x-algebras means an isomor-
phism preserving x-operation.
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1. Inductive limit of C+-algebras.

After I.E.Segal, a Ct*-algebra means a uniformly closed self-adjoint
operator algebra on a certain Hilbert space and a W*-algebra means a weakly
closed self-adjoint operator algebra. Though there is no distinction between
B*.algebras and C*-algebras from the algebraic aspect since every B*-algebra
is faithfully represented as a C*-algebra, we use in the following the
terminology of C*-algebras instead of B*-algebras to be symmetrical with
W-algebras. A principal isomorphism fga of a Ct-algebra A, with the identity
1, into another C*-algebra Ag with the identity 1z means an isomorphism
which satisfies

(€)) Sea (1a) = 1.
Now, we introduce a new concept of inductive limit for C*-algebras.

Definition 1. Let I' be an increasingly directed set and Ay be a C*-algebra
having an identity 1, associated with y in I'. If there exists a C*-algebra
A with the identity 1 and a principal isomorphism fy of Ay into A for
every v € I' such that

) Ju(As) =fs(Ap) ifa<pB (a,Bel)
and that the join of fy (Ay) (y € I') is uniformly dense in A, A is called the
C*-inductive limit of Ay, and is denoted by A = C+limpAy.

THEOREM 1. Let (A,, v € I') be a family of C*algebras where 1" denotes
an increasingly dirvected set. If, for every a,3 with a < 3, there exists a
principal isomorphism fea of Aw into Ag satisfying

3) Sya =Jyp * fea fa<B<y,
then there exists the Cxinductive limit of Ay.

Proor. Let K be the collection of all pairs (v, xy) where y varies over
I" and x, takes all elements in A, associated with y. We introduce an

equivalence relation in K by defining («, xa)~(83, %) if and only if there exists
{y,%y) in K such that a < v, 83 < ¢ and

Sra (Xa) = frp (25) = %y.
By this equivalence relation, K is divided into equivalence classes. Put {%y}
the equivalence class which contains (v, xy). Then we can define the algebraic
operations and the x-operation in the set A’ of all equivalence classes as
follows,
addition : {xa} + {yﬁ} = {xy + ¥y},
where aa < vy, B< v and %y = fya (%), Yy =Sve(Vp),

scalar multiplication: A{%z} = {\%+}, Where A is a complex number,

product; {#} {¥g} = {wv¥v}
where v, %y and yy are taken similarly as above,

x-operation : {xz}* = {xi}.
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It is easily confirmed that these operations are well defined. Moreover
by a Kaplansky’s theorem [4; Theorem 6. 4], each fys is an isometric mapping,
that is,

4) [ %8 = fvg ()| = | 2y .
Hence, if we put [{x.}| =[], {2} is uniquely defined and possesses the
norm properties, furthermore

%) ey {xa}| = [{xd %} = | %5 %' = %a *= {%a}*

Thus the totality A° of these equivalence classes constitutes a normed *-algebra,

which will be called ¢ke algebraic inductive limit of Ay. Put A the completion

of this normed x-algebra. Then A gives the desired C*-inductive limit of Ay.
q.e. d.

By the definition of the C*-inductive limit we get immediately

ProrosiTION 1. Let a C*-algebra A be a C*-inductive limit of Ay (y € I")
and 1" be a cofinal subset in 1", then A is the C*inductive limit of Ay (y € 1V).

Next proposition asserts the algebraic uniqueness of the C*-inductive
limit.

PrOPOSITION 2. Let A and B be C*-inductive limits of C*-algebras Ay and
By (y € I') respectively. If there is an algebraic isomorphism hy beltween Ay
and By for every v € I which satisfies

(6) hg « foa =féa‘hw f a<p,

(where feu and fy, are the principal isomorphisms of A into Ag and ihe one
of B, into By respectively), then A and B are algebraically isomorphic.

Let Q, Qy be state spaces of A and Ay respectively. When A is a C*-
inductive limit of Ay (y € I"), every state o of A defines a state o. on Aa.
Then, for every «, 3 such as a < 3, we put fis the conjugate mapping of
the principal isomorphism fgz 0f Ae into Ag which maps Qg onto Qe. fis
has the following properties

@ oa = fag(o8),
) foy =S fty Ifa<B<y.

Conversely, a system of states (oy € )y, v € I') which satisfies the condition
(7) defines a state on A since every positive bounded linear functional on the
algebraic inductive limit A° of Ay is uniquely extended over A. Furthermore
as the state o, of A converges to a state o by the usual weak topology if
and only if every o.» converges to o, on each A,, the state space Q) of A
is homeomorphic to the closed subspace composed of all systems satisfying
(7) in the product space H Q. of all state spaces Q.. Thus we get
@el

THEOREM 2. If a C*algebra A is a C*inductive limit of Ay (y €T), the
state space Q of A is homeomorphic to the projective limit of the state space
Qy of Ay (veD).
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Thus if Ay is commutative we can consider the projective limit of
bounded positive Radon measures. This is closely related to the result
announced by A.L. Shields [11] and the extension of Kolmogoroff’'s theorem
due to I.E. Segal [10].

COROLLARY. If a commutative C*-algebra A is a C*-inductive limit of the
commutative C*-algebras Ay (v € I"), the spectrum X of A is the projective limit
of spectrums Xy of Ay (y €1).

2. Direct product of C+*-algebras.

T. Turumaru has defined the direct product of two C*-algebras [14].
We shall extend this notion to the direct product of infinitely many Cx-alg-
ebras in the next section. For its preparation we give here a brief explanation
of Turumarws product and a theorem connecting direct product and inductive
limit of C*-algebras.

For two C*algebras A;, A,, put & the set of all formal expressions

n
©) D a XY =X XY A e X X Y,
i=1
where x;, € A, € Ay, i=12,...., ;=12 .....
In & we give a relation ~ which obeys to the following rules:
n n
@ % X Y~ 20 Koy X Voo,
i=1 i=1
where p(1), ....,p(n) denotes a permutation of the integers 1,2, .....,n.
n
(ii) (X + %) X D+ 20 X

>

i=2

n
~x XY+ 2 XY+ Exz X Y,

t=2

n
iy X (0 )+ 24 X Y

i=2

n
~EX Y T XY+ D XY,

i=2

(iii) S um) X i~ 2 4 X (i),
i=1

i=1
where \; are complex numbers.
n m
Two expressions > x; X ¥; and % s; x ¢; in & will be termed equivalent if
i=1 j=1
one can be transformed into the other by a finite number of successive
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applications of rules (i)-(iii). & is divided iato equivalence classes by this
equivalence relation. If we define scalar multiplication, product and *-opera~
tion in & as following

n n
scalar multiplication: A (2 X X yi) = 2 %) X ¥
i=1

i=1

where A is a complex number,

n m n m
product : (2 x xy,-) . (2 S5 X tj) = D>V wis; X Vit
i=1 J=1

i=1 j=1

. n * n
%-operation : (2 % X yi) = > xF x5,
i=1

t=1

then these operations are invariant under the equivalence relation, hence
the set of equivalence classes A;® A. becomes a x-algebra, which we call
the algebraic direct product of A, and A..

Next we consider a linear functional p X o on the *-algebra A, ® A,
where p and o are the states on A, and A, respectively, defined by

(10) Ip x o] (2 5 X yi) = S e

Let ©S={p X o|lp € O, 0 € Q:} (; is the state space of A;, 7=1,2) be the
set of all such linear functionals and put

N(;Ell X X yi>2:
11) [p % a']((:nzl $; X tj>*<é X3 X .’Vi)*<iéxﬁ X J’t) (ﬁ $; X t,))
su = " = * m = =
’ [p x o] <<§ s; X t!) (g 85 X t;))

m

where p X ¢ varies over & and 2 s; X t; takes every element in A; ® A,.
. j=1

Then this N (2 X X y,-> defines a cross-norm (in the sense of Schatten) on
i=1
A ® A, and A, ® A, becomes a non-complete C*-algebra. Hence completing
A; © A,, we obtain a new C*-algebra which we call the direct product of A,
and A, and denote it by A; x A..
When A, and A, are C*-algebras on Hilbert spaces H;, H: respectively,
then we can construct the direct product space H = H, x H; by the method

n
of F.J. Murray-J. von Neumann [6] and 2 x; X ¥; may be seen as an operator

i=1
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n

on H. We can prove its operator bound is exactly equal to N (2 X X yi)'

i=1
This means the C*-algebra on the product space H generated by such
operators is algebraically isomorphic to A; X A,. That is, if A, and A, are
operator algebras on H, and H; respectively, then A; X A. can be seen as
an operator algebra on H; x H; though the algebraic structure of A, x A,
is uniquely determined freely from H, and H..

THEOREM 3. If A is the C*inductive limit of Ay(y € T') and B is the C*-
inductive limit of Bs (8 € A), then the direct product A x B is the C*-inductive
Uimit of Ay x Bs (v, 8) € (I', A)) where (', A) means the directed set of all pairs
(v,d), y €T, 8c A ordered by (v,8) < (v,8) if and only if y < o/, and § < §'.

Proor. If (y,8) < (v, &), there exists a principal isomorphism fiy: 5,8
of Ay x Bs into Ay, x Bs. and the same condition as (3) is satisfied. Thus
we can consider the C*-inductive limit of Ay x Bs((7y, 8) € (I', A)). Let A° and
B9 be the algebraic inductive limits of Ay and of B; respectively then A°

® B?, the set of all elements of the form 2 axb) (@€A% B cB)in A

i=1
X B, is isomorphic to a dense subalgebra of the C*-inductive limit of Ay
XBs.
On the other hand, A°® B? is densein A x B. To prove this, we show
A°® B is densein A ©® B. As A% and B are dense in A and B respectively,

n

for every 2 a X b€ A®B, there exist a € I'and B <€A, @) € As and
i=1

b € B such as
(12) lai—a[ <& [bi— b <é,

then
n n
1 2a % b — 2 d) x b
i=1 i=1

n
S| xbi—a) xbi+a xb,—a)x b

(13) i=1

n

2 bl sla—a)+ |al] - b — 8

i=1

=eX b+ ée X (lai]+ &)
i=1 i=1

IA

This shows A?® B° is dense in A ® B. Thus, since A? ® B¢ is isometrically
isomorphic to a dense subalgebra of C*limcr sy Ay X Bs and dense in A x
B, these two Cx-algebras must be algebraically isomorphic.
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3. Infinite direct product of C*-algebras.

Using the concept of the C*-inductive limit we can define the infinite
direct product of C*-algebras.

Definition 2. Let A; ({ € I) be a collection of Cralgebras, where the set
of indices 7 may have an arbitrary cardinal. For every finite subset ¢ =
(4, .. .., 2a) of I we associate the C*algebra Ay = A X Ay X .... x A,
Then for the directed set I' composed of all finite subsets v of 7 ordered
by the inclusion relation, we can construct the Cxinductive limit of A.
We define this C*inductive limit as the infinite direct product of A: (i € I),

and denote it by X A,
Corresponding to Theorem 3 we get

TueoreM 4. X jA; is algebraically isomorphic to X pAv x X .40
where I', I are disjoint subset in I such as I' J 1" = L.

Proor. By 1V, I denote the directed sets of all finite sets in 7/ and 7”

respectively. Then by Theorem 3, X rA; x X 1, Ay is the C*-inductive
limit of

13) Agrym = Ay X Ayr
where v = (G, .....e) eV, " =G/, ....,i)eI.
On the other hand the family of sets (v, y") = (¢}, .. - -, &; &, .. ..,4, ) forms

a cofinal subset in I. Thus by Proposition 1 C*-lim. A,y is algebra-
ically isomorphic to X ;A;. Hence X A; is algebraically isomorphic to
X rA; x X 1A, qg.e.d.

This theorem gives the associative law of a restricted form for the
infinite direct product. But the associative law is true for this product in
the complete form as shown in below.

THEOREM 5. X 1A; is algebraically isomorphic to X J( X ,JA;,) where I;
(G € J) are mutually disjoint subsetsin I such that UI; = I and X r,A, means
the infinite product of A, (i; € I).

Proor. Let © r,4;, be the algebraic infinite direct product of As, (i; € 1),

that is, the subset in X r,A;, of all form such as

m
14) 2 Wiy X Qusgp X o+ X G
p=1
where G0 € A;,k and (i, iy ----,%;) is an arbitrary finite set in I;, nis a
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positive integer and put ©,(®,A4; J) the algebraic infinite product of @szt :
€. Then ©, (@11A1 ) is isometrically isomorphic to the algebraic

infinite direct product (9;A; and they are dense in X J( X z,At,) and X ;
A, respectively. Hence X rA; is isomorphic to X J( X IJA;)- q.e.d.

By Theorem 2 the set of states of X ,A; is the totality of the projective
limits of states oy on A,, v € I'. If a state ¢ of X A, is the projective limit
of states of the form

(15) o‘y=0'tl><0'i2><....Xo’tnfOI"y:(Z'[,....,in)

where o, is a state of A;,, then o is called the product state of o; and is

denoted by X 10¢

When each A; (: € I) is commutative, the spectrum of infinite direct
product is given by the next theorem.

THEOREM 6. The spectrum X of the infinite direct product of commutative
C*-algebras A; (i € I) with the identity 1; is homeomorphic to the product space
H X: of the spectrum X; of every component algebra A;.

QeI
ProOF. As every algebra A; has the identity 1;, each X; and its product
space X = H X, are compact Hausdorff spaces. By a theorem of Turumaru
qel
[14], the direct product A;; X .... X A;, is algebraically isomorphic to the

C*-algebra C(H th) of all continuous complex valued functions on the
k=1

n
product space H Xi,. Then by the definition of infinite direct product and

k=1
the Weierstrass-Stone Theorem the C*-inductive limit of Ay, 7y = (41, .. .., %)
€ I' is algebraically isomorphic to C(X). That is, the spectrum of the infinite
product of A; is homeomorphic to X. q.e.d.

Furthermore if a measure dy; is given on each spectrum X; such that
dup; (X;) =1 or equivalently if a state u; is associated to each commutative

C*-algebra A;, we can consider the infinite product X i Or equivalently a
measure on X. This is nothing but the infinite product of measures du: [3].
4. Inductive limit of I *-algebras.

By the definition, a W*-algebra is a weakly closed self-adjoint operator
algebra on a Hilbert space but as we treat in this section the properties of
W+-algebras which do not depend on the underlying Hilbert space, we do
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not specify the spacz except the cases especially need it.

Now we assume that A, (y & I') is a family of W+algebras, I'" being an
increasingly directed set, and assume that there exists a normal principal
isomorphism f, of A, into a certain W+-algebra A on a Hilbert space H [1]
for every v € I' which satisfies

(16) Ju(Ao) =fe(Ap) if a<B.

Furthermore if the join of f,(Ay) (y € I') is weakly dense in A, then to employ
A as the inductive limit of W+algebras A seems to be rather natural com-
paring with the C*inductive limit, but unfortunately we cannot get the
algzbraical uniqueness of A in this case, that is, the algebraic structure of
A is not indepandent from the Hilbert space A and so a proposition correspon-
ding to Proposition 2 does not hold. Hence it compels us to employ a more
restricted algebra as the W+inductive limit of A,. However, since the above
limit algebra A is useful in practical applications, we name it the direct
limit of Ay on the Hilbert space H and discuss it in the next section.

While, every normal state o» on A, can be extended to a normal state
opon Ag if a < 3 since fu(Aa) =fs(Ag). Hence we can consider the projective
limit o of normal states oy of A, (y € I'), that is, the state o of the C*-
inductive limit A* which induces a normal state oy on each A,. Then
refering Theorem 2 we put the next definition.

Definition 3. When a W+-algebra A is a direct limit of A, (y € I') and
the set of states of A* = C*limr A, which are induced by all normal states
of A coincides with the totality of the projective limit of normal states
of A, (y €T'), Aiscalled the W-inductive limit of A,(y € I") and is denoted
by A= W*-limr A1.

To assure the existence and the uniqueness of W*-inductive limit, we
need two lemmas.

LeMMA 1. Let o be a state of A* defined as the projective limit of normal
states oy of Ay (y €TI"). Then in the representation A% of A" on a Hilbert
space H, constructed by the state o, the representation A¥ of Aa considered as
a subalgebra of A“* forms a weakly closed subalgebra.

Proor. To simplify the statement, we assume that each A, is a sub-
algebra of A* and put A° the algebraic inductive limit of A, (y € I') (this is
nothing but the join of all A, under the above assumption). By the definition
of H, there exists a mapping from A* into H,. Denote by a the image of
ay € A, by this mapping, then

%
17) (@8] = [oy(aya)] .
Then the image A% of A° by this mapping is dense in H, since A° is uni-
formly dense in A™.
We denote the representative operator on H, of a. € Ay by a¥. We

suppose that the representative operator a¥ of a directed family @ in
A (I € L)converges weakly to m satisfying
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(18) la¥ | < 'm! for all le L.
Then we can assume without loss of generality
(19) || =M (I € L) for a constant M.

As the unit sphere of a W+-algebra is weakly compact and the weak topology
in the unit sphere is purely algebraic [1], a sub-family a. (' € L) of am
(I € L) converges weakly to a definite operator a. € A, independently from
the underlying Hilbert space for A.. Since, if a < B, A, is weakly closed
subalgebra of Agand o is a normal state of Ag, op(afasrras) converges to
os(afasaz) for every ag € Ag. On the other hand, the representation of Agby
the state og is unitarily equivalent to the restriction of the representation
{A¥,, H,} on a subspace Hoyg in H,. Thus the above fact implies < a¥y, ¥ >
converges to < a¥yr, Y > for every element ¢ € H,,. Since H,, C H,s if
y< B and A% < Ug.Hg where B runs over all indices such as @ < B, by
the denseness of A% in H,, a¥, converges to a¥ weakly on H, Thus m
must be coincident with a¥. This shows the weak closedness of the repre-
sentation of A“. -

LEMMA 2. Put N the set of all states of A" defined as the projective limit
of normal states of Ay. Then N conslitutes a basic subsel in the state space
of A"

Proor. We assume that Ay are subalgebras of A* asin the preceding
lemma.

(i) N is weakly dense in the state space Qof A*. As N is a subset in the
unit sphere of the conjugate space of A% and the algebraic inductive limit
A% of Ay is uniformly dense in A% we prove N is dense in ) by the topology
o(Q, A%Y. For any finite elements %, %, .. .., %, in A?, there is a a € 1" such
that every x; (Z =1, ....,n) are contained in A.. Then the restriction py on
Ay of a state p in Q gives a state of A, and by the weak denseness of the
normal states in the state space Q, of every A,, there exists a normal state
o« in the weak neighborhood V(pa, %1, Xy, .. .., % ; &) defined by %, s, .. .., %n
and & >0. There exists a projective limit o of {o,, oy € Ny}, Where o, =
o« for v = a. Then clearly o is in the weak neighborhood V(p, %, %, .. ..,
%s; €) of p in Q. Thus N is weakly dense in Q.

(i) N s closed in the norm topology. Let {o,} be a Cauchy sequence in
N in the norm topology. Denote by o,y the restriction of o, on Ay, then

{ony} is a Cauchy sequence in N, since |osn — on! = | Ony — omy . As each
N, is closed in the norm topology o,, converges to a normal state oy. Then
the projective limit of {oy, v € I'} is clearly the limit of {o}.
' (iii) N is a convex set in Q. This is obvious by the definition of N.
(iv) If the representation {AL¥*, Ho} of A* by a state p is unitarily equivalent
to the restriction on an invariant subspace of the representation {A**, H,} of
A* by a state o € N, then p € N. By Lemma 1 the representation of As

4) o(Q, A%) 1s the weakest topology by which functions a%p) on o (a0& A9 are
continuous.



78 Z.TAKEDA

on H, is weakly closed, hence the representation of A, on H, is weakly
closed too. This means the restriction of p on A, is a normal state, that
is, p€ N.

Thus N is a basic subset in Q. q.e. d.

Then, corresponding to Theorem 1, we get

THEOREM 7. Let Ay (y €T) be a family of W+-algebras, T" being an incre-
asingly directed set. If there exists a normal principal isomorphism feo of Aa into
A; for every pair of indices o, 3 such as a < 3 satisfying

(20) fro =Sy - fra f a<B<,
then there exists the W+-inductive limit of A,.

Proor. By Lemma 2, the set NV of all states of the C+-inductive limit A*
defined as the projective limit of normal states of A, forms a basic subset
in the state space of A* Hence by Theorem A, we can represent A" as a
uniformly closed self-adjoint operator algebra on a certain Hilbert space for
which the set of distinguished states coincides with N, and then each A, is
represented as a weakly closed subalgebra. The weak closure A of this
representation is a W*-algebra whose normal states are the o-weakly continuous
extensions of states in N. This means A is the W*-inductive limit of A,.

q.e.d.

Of course Proposition 1 remains valid for the W*-inductive limit and
Proposition 2 is slightly modified as follows.

PRrOPOSITION 3. Let A and B be W*-inductive limits of W*-algebras A, and
By (v € 1) respectively. If there is an isomorphism h, between A, and B, for
every v € I which satisfies

21) hﬂ'pw=f;,,,°hm fa<p

(where fea and fy, are the normal principal isomorphism of A. into Ag and
the one of B. into Bg respectively). Then A and B are algebraically (hence
normally) isomorphic.

Proor. By proposition 2, the C*inductive limits A* of Ay and B* of B,
are algebraically isomorphic and the sets of projective limits of normal
states of A, and B, are the same if we neglect the algebraical isomorphism
between A* and B*. Hence by Theorem A, A and B are normally isomorphic.

q.e.d.

It is favorable to conclude, corresponding to Theorem 3 for the C*-
inductive limit, that if A and B are the W*inductive limits of A, (y € I")
and B; (8 € A) respectively, the W*-direct product® A & B is the W*-inductive
limit of the W*-direct product A, Bs (v, 8) € (I', A)). But the present author
can prove only that A &%) B is a normal homomorphic image of W*-lim (r,a)

5) For two Whkalgebras A, B acting on Hilbert spaces H, K respectively W+-direct
prduct A @ B is the weak closure of the C*-algebra A X B on H X K.
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A, ®) Bs and whether these W*-algebras are isomorphic each other or not is
undecidable for him.

For a latter use we notice here the following facts concerning the W*-
inductive limit of factors.

PROPOSITION 4. Let A be the W-inductive limit of finite factors Ay (y € I")
and v, be the trace of A,. If a normal trace v of A is the projective limit of
Ty, that is, if the restriction of T on each A, coincides with Ty, then the
representation of A by v is a finite factor.

Proor. Since r is normal, the representation A¥ of A by 7 is weakly
closed and each A, is repressnted faithfully in it. Moreover, A¥ is a finite
We-algebra since it has a faithful trace induced by +. To simplify the
notation, we denote it by T again. If there exists another normal trace 7
on A% since 7 and 7, are both normal, they define the trace on the C*-
inductive limit A* of A, and these tracss are different each other. The
latter fact means that they do not coincide on one A, at least. This is a’
contradiction since each finite factor has a unique trace. Hence A¥ is a
factor. ‘ q.e.d.

PRrOPOSITION 5. Let A be the W+inductive limit of factors Ay of type 1
and 7 be a state of A which is the projective limit of normal pure state =,
(y €T') then = is a normal pure state of A. Hence the representation of A
by = is a factor of type I.

Proor. If 7 is not pure, = is again not pure on the C*inductive limit
A* of A hencz it permits the expression

(22) r=cp+(1—c)
where 0<c<1 and p,o are different states of A®* Let p,, o, be the
restrictions of p and & on A, respectively, then =y = py = oy since =y is
pure on A,. This follows p = ¢ on A* This contradiction shows that = is
a pure state. = is clearly normal by definition of the W*-inductive limit.

5. Direct limit of 7/+-algebras.

Though the inductive limit of W+-algebras is algebraically unique, it is
strongly restricted and is hard to investigate its fundamental properties as
seen in the preceding section. Moreover it can not include the typical example
of a limit of algebras such as the approximately finite factor. For, an
approximately finite factor A is the direct limit of a sequence of factors
A, A, ...., Apn .... with the following condition (*) on a separable Hilbert
space :

(¥) A, is a factor of type Ip, where P, is a positive integer and is a divisor
of Dn+1.

If an approximately finite factor A would be the W+inductive limit of
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A,, every state of the C*inductive limit A* of A. must be uniquely extended
to a normal state of A, since every state of A, is normal. Thus every pure
state of A" is extended to a normal state of A, that is, we get a pure and
normal state of A but such state does not exist for any W+-algebra of not
type I [1,Corollary 6]. This shows A is not the W+-inductive limit of Aa.

The next theorem gives a relation between the W#+-inductive limit and
direct limit. :

THEOREM 8. If a W*-algebra A acting on a Hilbert space H is the direct
limit of W*-algebras Ay (v € I"), then A is a normally homomorphic image of
the W*-inductive limit A¥ of Ay (y € ).

Proor. Let A* be the C*inductive limit of A,, then it is represented
as a subalgebra of A on the Hilbert space H. The distinguished states of
A* with respect to this representation are contained in the set of all projective
limits of normal states on A (y € I'). Hence by Theorem A, A is a normal
homomorphic image of Av¥.

THEOREM 9. Let W*-algebras A and B be direct limits of Ay and B, (y €
I") on Hilbert spaces H and K respectively, hy (v € T) be an isomorphism between
Ay and B, which satisfies the condition (21) in Proposition 3. Then A and B
are algebraically isomorphic if and only if the set of states induced on the C*-
inductive limit A* of A, by the normal states of A is identical with the set of
states similarly defined on the C*-inductive limit B neglecting the isomorphism
between A* and B*.

By Theorem A, this theorem is' obvious. An analogy to Theorem 2
holds for the direct limit as follow

THEOREM 10. If A and B are direct limits of Ay (y € 1") and Bs (8 € A)
on Hilbert spaces H and K respectively, then W+-direct product A Q B on the
product space HR® K is the direct lIimit of Ay Q Bs ((vy, 8) € (I', A)) on the Hilbert
space i x K.

Proor. Since every Ay @ Bs (v, 8) € (I', A) are W*-algebras on H x K, there
exists the direct limit of A, ® Bs on H x K. By the definition of the direct
limit, the join of A,® Bs or the join of Ay ® Bs(v,d) € (I, A) is weakly
dense in the direct limit of A, ® Bs;. The latter join is nothing but the
algebraic direct product A°® B° of the algebraic inductive limits A° and
B of Ay and Bj; respectively. On the other hand A ® B is a W*-algebra on
the Hilbert space H.x K and A°® B? is weakly dense in it,as shown by
Misonou in the proof of a lemma in [5]. Hence A ® B coincides with the
direct limit of Ay ® Bs on H x K. . q.e.d.

COROLLARY (Misonou) [5). The WH-direct product of two approximately
finite factors is again an approximately finite factor.



INDUCTIVE LIMIT AND INFINITE DIRECT PRODUCT 81

6. Infinite direct product of W*-algebras.

We define the infinite direct product of W#*-algebras using the concept
of W+-inductive limit similarly as we have done for the infinite direct
product of C*-algebras.

Definition 4. Let A; (z € I) be a collection of W*-algebras where I is a
set of indices of arbitrary cardinal. For every finite subset v = {4,%,, ....,
i,} of I we associate the W+-algebras Ay = A;, ® Au®.... ® Ai,. Then for
the direct set I' of all finite subsets v of I, there exists the W*-inductive
limit of Ay which is called the infinite direct product of A; (i € I) and is.

denoted by (X)zA;.

Clearly the infinite direct product @,-A{ is uniquely determined freely
from Hilbert spaces H; on each of which A; acts, but since the question
concerning to the W+-direct product of W*-inductive limits stated in §4 isnot
solved, the associative law for this product is not certain even in a restricted
form. That is, we can only say that if 7 and 7” are disjoint subsets in I

such that 7 U I” = I, there is a normal homomorphism of @IA{ onto (X)rAc'
®' @nAiu but cannot conclude the isomorphism of these algebras.

In the ordinary measure theory we treat only the infinite product of
measures with the total mass 1, hence in our product the most interesting
from the stand point of the non-commutative integration theory is not the

product @,—At itself but the infinite product of normal states o; on A;. As
in §3, the state on X 1A; defined by o; (Z € I) is denoted by X 1o: and its
extension to a normal state on ®1Ai is denoted by ®10t~ Then the rep-
resentation of @IAi by the normal state @Ia‘i is a W*-algebra which is
called the restricted infinite direct product @,-(At, o) of Wk-algebras A: with
normal states o;. The restricted infinite direct product@,(Af, o) is nothing
but the weak closure of the representation of the Cx-algebra X A by

the state X ;oy. Thus the associative law holds for the restricted infinite

direct product.
The next two propositions follow immediately from Proposition 4 and 5.

ProrosITION 6. Let 7, be a normal trace on each W+-algebra A: (i € I).
7
Then the infinite direct product @)m is a normal trace of ®1A:. Moreover

if each A; is a factor, then the restricted infinite direct product Qﬁ)I(A,, Ty
is a finite factor.

PROPOSITION 7. Let m; be a pure normal state on each W+-algebras A: (i €
1) of type I. Then the infinite direct product @m: is a pure, normal state
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of ®1A¢ and the restricted infinite direct product @ (A, 1) is a factor of
type I.

Now we compare our product with the infinite direct product of W*-
algebras defined by J. von Neumann [8]. For this purpose we introduce
briefly the direct products of Hilbert spaces and of operator algebras defined
by J. von Neumann.

Let 7 be a set of indices with an arbitrary cardinal, and let for each

i € I a Hilbert space H; be given. Then a C-sequence X : is a sequence
such that ¢; € H; for all 7 € I and 1I | @i | converges in the extended sense.
I

We consider all finite linear aggregates of C-sequences and for every pair
of its elements

» q
(23) =2 Xaon, Y= XY,
we associate
¥4 q
24) @, %) = S (@i, ¥e).
v=l u=1 I

With this inner product (®, V), the linear aggregates of C-sequences becomes
an incomplete Hilbert space. Its completion is called the complete direct

product of H; and is denoted by @I H;.
Next we need here a concept of Cy-sequence. A C,-sequence is a sequence

@1 (i € I) such that o, € Hi:forall i€ I and > | g — 1| converges. Then
del
every Cysequence is a C-sequence and conversely every C-sequence with

X @i 0 is a Cysequence too. We say twd Cy-sequences ¢ (¢ € I) and
(f€ 1) are equivalent, in symbols (g, i€ ) = (; i€ 1), if and only if

2 | (@1, ¥:) — 1| converges. This equivalence for Cy-sequences is reflexive,
(3

symmetric and transitive, hence the family of Cj-sequences is divided into
equivalence classes. We denote by € the set of all equivalence classes. For

€ ¢ €, (X}fH, means the closed linear set determined by all X @; where
@i (i € I) is any Cjy-sequence from €, and this is called an incomplete direct
product of H, € I). If € =D, then (X);D H; is orthogonal to @f H; and
®1H‘ is the direct sum of @f H; (6 € 6). Especially the following
fact is noteworthy : Each equivalence class € contains a Cy-sequence @) (Z €

I with | @?{=1 for all i€ I and ®f H; is the closed linear set determined
by all Cysequences ¢ (i € I) for which ¢; + @} occurs for a finite number
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of 7’s.
We denote the ring of all bounded operators on H; by B; and the ring

of those on @1 H, by Bg. Then for every operator x, € B;, there corres-

ponds a unique operator %, € Bg such that for all C-sequences X ¢

(25) ’_"50( X qn) =Tl x X <Pé) = (%igpig) X X @i

iwiy =i
We call %, the extension of x, and denote by B, the set of extensions of all
%, € By, and by B® the Wx-algebra generated by all B; (; € I). Clearly B®
< By and B® = By, unless 7 is finite. This B® is the infinite direct product
of B; (: € I) defined by J. von Neumann. Though J. von Neumann did not,
the infinite direct product is possible for arbitrary Wk-algebras A; along
with the same idea.

Let ®1Bz and B® be the infinite direct products of the ring of all
bounded operators B; on H; (i € I) in our sense and in J. von Neumarnn’s
sense respectively. Put o; a state of B; defined by oia) = < aipi, pi >
where @; is a normalized element in H;, then o; is a normal pure state of

B;. Let o be the infinite product @10'( of such o; (: € I) and consider [the
representation of @IBt by this . By the definition of ®1 B;, the alge-
braic infinite direct product ®:B;, that is, the set of all form in ®1 B;
such as

(26) (oo X Lip X 1yg X bir X bus X vooo X bie X Liu X 1y X ..00),
— finite number —

bix € Bix (K=17,s,....,t), is strongly dense in the C*infinite direct product
X B, and o-weakly dense in ®1B¢. Hence by the construction of the

representative space H, the image of (©;B; in H, is strongly dense.
Furthermore,

27) PCoox Loy X Log X By X bus X oo X By X Tow X 1w X ... )0)|
= | bir @ir | = | Oes prs |- - .|| B s |
(where 6 means the mapping from );B; into H,). Next we consider the

mapping from (®; B;) into the incomplete direct product @f H,; determined
by a Cysequence gyt € I) such as
(oxTip X Lig X by Xbis X ovee X b X Liu X Lip X ... 00>
(28) (- v vy Pua, Pig, burpirs - - oy bie Puty Pru, Pivy oo .0,
This mapping is linear and norm preserving and the image is strongly dense

in ®@ H; by the fact noticed in the explanation of von Neumann’s product.
I

Thus this isnapping can be extended to a linear isometric mapping # from
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G .t
H, onto @ ;, Hi. Then by comparing the definitions of ®1Bi and B9,
the representation of (X) 1B, on H, is unitarliy equivalent to the restriction

of B® on (X)f H,.

THEOREM 11. B® is @ normally homomorphic image of & B;
Proor. Let € be the set of all incomplete infinite direct product in
@1 H, and from each incomplete infinite product in €, we pick up a C°-

sequence ;¢ (i € I) such as ' @;,c) =1 and make the infinite direct product

@,m,@ where o ¢ is a state of B; such as
(29) o, c(a) = < a6, Pi6 > for a; € B;.

Clearly @,af,g is a normal state of @13[. Hence every normal state of
"B® can be seen as that of ®1B,. Then by Theorem A, B®is a normally
homomorphic image of ®IB£ g.e.d.

Moreover @135 is not isomorphic to B® in general. We show this
by an example given by J. von Neumann in [8].

Let H; ({1 =1,2,....) be a countable family of two dimensional Euclidean
spaces and B; be the ring of all bounded operators on H;. Then there is a

normal trace 7; on each B;. The representation of @, B, by (X)m is a
finite factor by Proposition 6, and this is clearly not of type 7,. Thus it

must be of type 77;. Thus @1 B; is not the algebra of type 7. On the other

hand, B® is of type I [8]. Thus @1 B; is not isomorphic to B?.
Further, if we represent faithfully each B; by 7; as a factor of type Z,
on the Hilbert space H,, and make a W*algebra BQ generated by B; on

@zﬂn by the von Neumann’s method, then BY is not of type I since BY
contains the part of type 77; which is unitarily equivalent to the representa-

tion of @1 B; by QS)I 7i. Thus we have shown that the product B® is not
independent from the spaces H, (i € I).

Finally we give a remark concerning the ring C¥# given by J. von Neumann
[8]. Let H, and H, be two 2-dimensional Euclidean spaces and (@i, ¢i2) and
(@, @22) be complete normalized orthogonal systems in A and H, respective-
ly then (pu X @un, @11 X @az, @1z X @2, P12 X @) is a complete normalized.
orthogonal system in H; x H,. Let

(30) g = \/L—E—%¢1u X @un + \/1 ; « P12 X @2 (where 0 <a < 1)
be an element in A; x H., then
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<g,9> =
< L"é_‘x¢[1x¢1+\/——¢m><¢zd,
3D
\/l'jﬂq;u X @12+ \/1 P12 X @az >
14+«
=1.
2 + 2

Let B; be the ring of all bounded operators on H;. Denote by a x 1, the ex-
tension of a bounded operator @ € B; on H; x H,, then since everybounded

operator @ € B, can be represented by a 2 x 2-matrix with respect to (@u,
¢12), i. e,

C12
@) o= e )
<(@x1)g,9>
_ Ci1 Ci2 1+« Ci1 6'12) ( 11—« >
= —_— X P —_— 2 X 22y
<<Cz1 sz) ( 2 <Pu> Pt <C)1 Caz \/ 2 P P
\/1;a¢)1lx¢1+¢1 Pu X P2z >
<Cu\/1 —;a P11 X @+ 012\/—2£(pu: X @21
+ Czl\/l—_2—~6£¢11 X @2 + sz\/]% P12z X @i,
\/1+a¢u X @a1 + \/1_—£¢,12><¢,”>
2 2
<Cu\/—— 5= P11 X Py, \/1 +6£(PH X @ >
L < C“’JJ-—“——¢1) X Pay, \/]%%(Plz X @ >

1-—
= 1”_;'6‘{~ ¢ + 2 @ Ca.

Il

(33)

1l

Hence if @« =0, < (@ X 1) g, g > gives the trace of B, and if « =1, gives a
pure state.

Thus by the construction of C¥ (c.f. [8]) if ar=az=.... =1, C¥ is
a factor of type .. on the incomplete direct product ®nu-1,2,- - (Hen 1y ® Hen)
determined by the C’sequence ¢f, and if ai=as=.... =0, C¥ is a
factor of type II; on the incomplete direct product by Proposition 7 and 6
respectively. If we put a; = 1 for infinitely many but not all #’s and a; = 0

for other indices, we get an factor of type II. since the restricted infinite
direct product is associative.
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