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Introduction. The first hurdle for the definition of the direct product of
operator algebras was the construction of the product space on which the
product algebra acts as an operator algebra. This task was accomplished by
F. J. Murray and J. von Neumann in the prominent papers [6] [8]. However by
the recent progress of the theory of operator algebras, for some problems
we can now proceed without the explicit usage of underlying Hubert spaces.
Thus T. Turumaru [14] has succeeded to define the direct product of
two C*-algebras without regard to the product space and Y. Misonou [5] [13]
[14] has proved that the algebraical structure of the direct product of two
W*-algebras is uniquely determined only by the component algebras themselves
and is independent from Hubert spaces they act. The purpose of this paper
is to extend these results to infinite direct product of operator algebras.

We introduce in § 1 a notion of inductive limit of O-algebras and get a
dual relation: the state space of an inductive limit of C*-algebras Ay (7 €
Γ) is the projective limit of state spaces of Ay (7 € Γ). After a brief resume
of the finite direct product in §2, using the concept of inductive limit we
define the infinite direct product of C*-algebras in §3. As seen in the
construction of the infinite product of measure spaces [3], this infinite product
has been already popular for commutative algebras in some implicit forms.
For this product the associative law holds in the satisfactory manner.

Next, in the recent literatures [1] [2] [9], it is known that the σ -weak
topology0 plays a striking role in the theory of W*-algebras and a state is
cr-weakly continuous if and only if it is normala) in the sense of Dixmier.
Hence employing normal states instead of ordinary states and regarding the
dual relation stated above we define the inductive limit of W*-algebras in §4.
We take a W*-algebra A as the inductive limit of W*-algebras Ay (7 € Γ)
if the set of normal states of A coincides with the projective limit of normal
states on Ay (7 6 Γ). Then this WM-inductive limit is uniquely determined. In
§ 5, relaxing the CDndition of Wκ-inductive limit, we consider a limit of W*
-algebras on a fixed Hubert space which is named a direct limit. An approxi-
mately finite factor [7] gives an example of the direct limit. The relation
between the inductive limit and the direct limit is given by the following
fact: a direct limit of W*-algebras Ay (7 € Γ) is always a normal homomor-
phic image of the WMnductive limit of Ay (7 ζ Γ). In § 6, parallel to the
direct product of O-algebras we define an infinite direct product of W* algebra.

1) This terminology is due to Griffin [2]. Dixmier [1] called it la topologie ultrafaible.
2) A state σ is called normal [1] if xa \ x implies σ(xa) f c(x).
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This product is determined freely from the underlying Hubert spaces of
component algebras and does not coincide with the infinite direct product
defined by von Neumann [8]. The latter is a homomorphic image of the
former. At last we remark that the example of factors contracted in [8] is
reduced to the infinite direct product of normal traces or normal pure states-
in our sense.

A B ^-algebra is a Banach algebra possessing a ^-operation such as
]]#*#][ = !!#i2. It is always represented faithfully as a uniformly closed self-
adjoint operator algebra of bounded operators (shortly a C*-algebra) on a
Hubert space. Theorem A in below concerning the representation of a B*-
algebra is most frequently used and offers the foundation of the reasoning
in this paper.

When a 2?*-algebra A is represented faithfully as a O-algebra on a
Hubert space H(we call it a C^-representation of A on H), a state σ of A
which permits the expression

σ{α) = 2 < <**ψt> ψi > for αζ A
ί = l

where φt are elements in H such as 2 ίl ψι !'2 = 1 a n ( ^ α* * s t n e representa-
ΐ = l

tive operator of α 6 A, is called a distinguished state of A with respect to
this representation.

Then the set S of the distinguished states with respect to a C*-represen-
tation of A has the following properties [12]

(i) S is weakly dense in the state space ί l of A,
(ii) S is strongly closed in the conjugate space of A,
(iii) S is convex,
(iv) if p G S and σ < p then σ € S, where σ < p means that the represen-

tation of A constructed with σ by the usual method is unitarily equivalent
to a restriction on an invariant subspace of the representation constructed
by p.

A subset in the state space O which satisfies (i)-(iv) is called a basic
subset. Then we get

THEOREM A. For every basic subset S in the state space of a B*-algebra
A, there exists a C*-representation of A for which the set of distinguished
states coincides with S. If the set of distinguished states with respect to a
C ^-representation of A is contained in the set defi?ιed by another representation
of A, there is a normal homomorphism of the lυeak closure of the latter
representation onto that of the former representation. When these sets are
identical, the weak closures of these representations are normally isomorphic3>

each other [10], [11].

3) In this paper, an algebraic isomorphism between two *-algebras means an isomor-
phism preserving -^-operation.
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1. Inductive limit of C*-algebras.

After I. E. Segal, a Cκ-algebra means a uniformly closed self-adjoint
operator algebra on a certain Hubert space and a ^-algebra means a weakly-
closed self-adjoint operator algebra. Though there is no distinction between
B*-algebras and C*-algebras from the algebraic aspect since every B*-algebra
is faithfully represented as a C*-algebra; we use in the following the
terminology of C*-algebras instead of #*-algebras to be symmetrical with
W*-algebras. A principal isomorphism fβΛ of a C*-algebra Aa with the identity
la into another C*-algebra Aβ with the identity lβ means an isomorphism
which satisfies

(1) />*0L) = V
Now, we introduce a new concept of inductive limit for C*-algebras.

Definition 1. Let Γ be an increasingly directed set and Ay be a C*-algebra
liaving an identity lγ associated with 7 in Γ. If there exists a O-algebra
A with the identity 1 and a principal isomorphism fy of Ay into A for
-every γ ^ Γ such that

(2) / β (A«) dfβ (Aβ) if a < β (a, β € Γ)

and that the join of fy{Ay) (7 € Γ) is uniformly dense in A, A is called the
C*-inductive limit of Ay, and is denoted by A = C -limrAy.

THEOREM 1. Let (Ay, 7 € Γ) be a family of Cκalgebras where Γ denotes
an increasingly directed set. Jf, for every a, β with a < β, there exists a
Principal isomorphism fβa of Aa into Aβ satisfying

(3) fyΛ = fyβ ./ f l* ifa<β<y,

then there exists the C^-inductive limit of Ay.

PROOF. Let K be the collection of all pairs (7, xy) where 7 varies over
Γ and xy takes all elements in Ay associated with 7. We introduce an
equivalence relation in K by defining {a, xΛ)^{β, xβ) if and only if there exists
{7, Xγ) in K such that a < 7, β < 7 and

fy<* (Xa) —fyβ (Xβ) = Xy.

By this equivalence relation, K is divided into equivalence classes. Put {xyj
the equivalence class which contains (7, Xγ). Then we can define the algebraic
operations and the ^-operation in the set A0 of all equivalence classes as
follows,

addition: {#«} + {yβ} = {xy + yy},

where a < 7, β < 7 and xy -fya (x»), yy =fyβ(yβ),

scalar multiplication: \{xa} — {\Xa}, where λ is a complex number,

product {xay {yβ} = {xyyy}

where 7, xy and yy are taken similarly as above,

^-operation: {Λ;«}* = {xl}.
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It is easily confirmed that these operations are well defined. Moreover
by a Kaplansky's theorem [4 Theorem 6.4], each fyβ is an isometric mapping,
that is,

(4) ))*βll = ;!Λp(^)ll = i;^!!.

Hence, if we put j!{#α>}ί! = [) xa ||, \\{x*}\\ is uniquely defined and possesses the
norm properties, furthermore

(5) i! {**>*{*«};! = I K Λ Ϊ χΛy\\ = I Λ Ϊ ^ J ' = Λ .:;3 = \{χ*y\s
Thus the totality A0 of these equivalence classes constitutes a normed *-algebrar

which will be called the algebraic inductive limit of Ay. Put A the completion
of this normed ^-algebra. Then A gives the desired C*-inductive limit of Ay.

q. e. d.

By the definition of the CMnductive limit we get immediately

PROPOSITION 1. Let a C*-algebra A be a C*-inductiυe limit of Ay (7 € Γ)
and V be a cofinal subset in Γ, then A is the C*-inductive limit of Ay (7' € Γ").

Next proposition asserts the algebraic uniqueness of the C*-inductive
limit.

PROPOSITION 2. Let A and B be. C*-inductive limits of C*-algebras Ay and
By (7 G Γ) respectively. If there is an algebraic isotnorphism hy between Ay
and By for every 7 6 Γ which satisfies

(6) hβ fβ«=f'βΛ hΛ ifa<β,

(where fβa and f'βa are the principal isomorphisms of Aa into Aβ and the one
of Bo, into Bβ respectively), then A and B are algebraically isomorphic.

Let Ω, ί l v be state spaces of A and Ay respectively. When A is a C*-
inductive limit of Ay (7 £Ξ Γ), every state σ of A defines a state σa on AΛ.
Then, for every a, β such as a < β, we put f%β the conjugate mapping of
the principal isomorphism fβa of AΛ into Aβ which maps ίlp onto ίlα. faβ
has the following properties

(7) <rΛ=fϊβ(σβ),

(8) fly =jββjfjy if a < β < 7

Conversely, a system of states (σy € Ωγ, 7 € Γ) which satisfies the condition
(7) defines a state on A since every positive bounded linear functional on the
algebraic inductive limit A0 of AY is uniquely extended over A. Furthermore
as the state σκ of A converges to a state σ by the usual weak topology if
and only if every σκa converges to σa on each A«, the state space ί l of A
is homeomorphic to the closed subspace composed of all systems satisfying

(7) in the product space; Π O« of all state spaces ίl«. Thus we get

THEOREM 2. If a C-algebra A is a C*-induciive limit of AΊ (7 € Γ), the
state space ίl of A is homeomorphic to the projective limit of the state space
Ωy Of Ay (7€Γ ) .
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Thus if Ay is commutative we can consider the protective limit of
bounded positive Radon measures. This is closely related to the result
announced by A. L. Shields [11] and the extension of Kolmogoroff's theorem
due to I.E. Segal [10].

COROLLARY. If a commutative C*-algebra A is a C*-inductive limit of the
commutative C*-algebras Ay (7 6 Γ), the spectrum Xof A is the projective limit
of spectrums Xy of Ay (7 € Γ).

2. Direct product of C*-algebras.

T. Turumaru has defined the direct product of two C*-algebras [14J.
We shall extend this notion to the direct product of infinitely many C*-alg-
ebras in the next section. For its preparation we give here a brief explanation
of Turumaru's product and a theorem connecting direct product and inductive
limit of C*-algebras.

For two C "-algebras AΊ, A2, put 2 the set of all formal expressions

n

(9) *Σxt x y* = χι xyι + .. + xn xyn,
ί = l

where Xι € Ah yt € As, / = 1, 2, ...-., n n = 1,2,

In 2, we give a relation ~ which obeys to the following rules:

n n

(ί) 2 ** χ y* ~ 2 ^(o x ypco,

where £(1), ,pln) denotes a permutation of the integers 1, 2, , n.

n

(ϋ) (χ[ + x'') x yx + 2 *i x &
i = 2

n

~χ[ x y\ + χ'ι xyy + 2 *• x
 Λ»

i - 2

(ϋy xι x (X + yϊ) +*Σχtxyt

—̂ Λτt x 3^ + ΛΓI x y{' +

n n

2 c^**)χ y* ~ 2 *χ

ί - l ί -1

where λf are complex numbers.

Two expressions 2 ** x ^ a n ^ 2 SJ X ^ i n ^ w i l 1 b e t e r m e ( i equivalent if

one can be transformed into the other by a finite number of successive
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applications of rules (i)-(iii). 2 is divided into equivalence classes by this
equivalence relation. If we define scalar multiplication, product and #-opera~
tion in 2 as following

n n

scalar multiplication : λ ( 2 ** x ^ ) = 2 (^£) x •

where λ is a complex number,

product:

^-operation:
n * n

( 2 %t x # ) = 2 *?

then these operations are invariant under the equivalence relation, hence
the set of equivalence classes Aτ © A2 becomes a ^-algebra, which we call
the algebraic direct product of Ax and A*.

Next w e consider a l inear functional p x σ o n t h e ^-algebra Ax©A2,

w h e r e p and σ a r e t h e s ta tes on Ai and A > respectively, defined by

(10)
n

( 2 χι x yi) = 2

Let © = {p x σ I p € ίli, σ € Ω2} (ίlί is the state space of At, i = 1, 2) be the
set of all such linear functionals and put

n

i v ( 2 Xi χ .

Έsjxtj) ( 2 * XA) ( 2 * ><*)(?'S U P

where p x σ varies over © and 2 SJ X *̂ takes every element in Aτ © A2.

Then this iV( 2 * * x ^ ) defines a cross-norm (in the sense of Schatten) on

Ai © A3 and Ax © A3 becomes a non-complete C*-algebra. Hence completing
Ai © A2, we obtain a new C*-algebra which we call the direct product of Ax

and A2 and denote it by Ai x A2.

When Ai and A2 are C^-algebras on Hubert spaces H\,H* respectively,
then we can construct the direct product space H = Hτ x H2 by the method

of F. J. Murray-J. von Neumann [6] and 2 ^ x •?* m a v ^ e s e e n a s a n operator
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on H. We can prove its operator bound is exactly equal to N\lj£xi x yA
i = l '

This means the C*-algebra on the product space H generated by such
operators is algebraically isomorphic to Aτ x A2. That is, if Aτ and A2 are
operator algebras on Hi and H2 respectively, then Aτ x A2 can be seen as
an operator algebra on Hi x Hh though the algebraic structure of Ax xA 2

is uniquely determined freely from Hi and H>.

THEOREM 3. If A is the Conductive limit of Ay (7 6 Γ; and B is the C*-
inductive limit ofB8 (δ € Δ), then the direct product A x B is the Conductive
limit of Ay x Bδ ((7, δ) € (Γ, Δ)) where (Γ, Δ) means the directed set of all pairs
(7, δ), 7 € Γ, δ € Δ ordered by (7, δ) < (7', δ;) if and only if 7 < 7', and δ < δr.

PROOF. If (7, δ)< (7', δ'), there exists a principal isomorphism /(v,δo(y,δ)
of Ay x -Bs into Ayr x B$> and the same condition as (3) is satisfied. Thus
we can consider the Conductive limit of Ay x B8 ((7, δ) € (Γ, Δ)). Let A0 and
B° be the algebraic inductive limits of Ay and of Bs respectively then A0

n

© B°, the set of all elements of the form 2 ^ x fl? (dj € A0, d\ € 5°) in A
i = l

XJB, is isomorphic to a dense subalgebra of the CMnductive limit of Aγ
xft.

On the other hand, A0 0 B° is dense in A x β. To prove this, we show
A0 © B° is dense inAQB. As A0 and 5° are dense in A and B respectively,

for every ^aiXbi^AQB, there exist α £ Γ and β e Δ, dj € Aα and
/ = 1

ty 6 -Bβ such as

(12) ί[*f-fl?[[<£, | [ & - δ 2 I J < £ ,

then

s ϋ 2 « « χ & - « i χ ^ + « ϊ χ ^ - <*ι x δ2 ίi
(13)

^ 2 lίfcll llΛ-α?ll + .KIi l;Λ-ίίll
i = l

n n

S f i 2 ll*»ll + e 2 (l|ft!l + £).
ί=l i=l

This shows A0 © B° is dense in A © 5. Thus, since A0 © B° is isometrically
isomorphic to a dense subalgebra of C*-limCr,Δ) Aγ x B8 and dense in A x
B, these two C*-algebras must be algebraically isomorphic.
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3. Infinite direct product of C*-algebras.

Using the concept of the CMnductive limit we can define the infinite

direct product of C*-algebras.

Definition 2. Let A* (i ^7) be a collection of O-algebras, where the set

of indices / may have an arbitrary cardinal. For every finite subset 7 =

(Λ, , in) of / we associate the C'-algebra Λy = AiΛ x Ai% x x Atn.

Then for the directed set Γ composed of all finite subsets 7 of / ordered

by the inclusion relation, we can construct the C*-inductive limit of Ay.

We define this CMnductive limit as the infinite direct product of A« {i €Ξ I),

and denote it by X iA(.

Corresponding to Theorem 3 we get

THEOREM 4. X rAi is algebraically isomorphic to X vAi* x X i»Ai>>

where Γ, 1" are disjoint subset in I such as Γ U 1" = /.

PROOF. By F , Y" denote the directed sets of all finite sets in Γ and /"

respectively. Then by Theorem 3, X/A/X X ^ A ' is the CMnductive

limit of

(13) Acw") = Ay X Ay-

where Y = (flf . . . . , ik) e Γ, 7" - (ί;', . . . . , O € F ' .

On the other hand the family of sets (7', 7") = (i[, , i'h i[', , ϊ{) forms

a cofinal subset in Γ. Thus by Proposition 1 C*-lim(Γ',r")^-(Y/,7") is algebra-

ically isomorphic to X rA{. Hence X 7A< is algebraically isomorphic to

X ΓAi' x X i"Ai". q. e. d.

This theorem gives the associative law of a restricted form for the
infinite direct product. But the associative law is true for this product in
the complete form as shown in below.

THEOREM 5. X iAt is algebraically isomorphic to X j \ X i3Aι}) where Ij

(J £Ξ /) are mutually disjoint subsets in I such that U jlj = I and X τjA3 means
the infinite product of Aιό (ij € Ij).

PROOF. Let 0 i3Aij be the algebraic infinite direct product of At3 {ij € Ij\

that is, the subset in X ijAij of all form such as

(14) 2 ah\p x <*i3tP x x diinP

where aijkp € Aijk and (ijv ij%, , iJn) is an arbitrary finite set in IJ} n is a
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positive integer and put ®j(®rjAtp the algebraic infinite product of QijAij

(J € 7). Then ©^ (OiyAfp is isometrically isomorphic to the algebraic

infinite direct product QiAt and they are dense in X j ( X TiAtj) and X τ

At respectively. Hence X iAi is isomorphic to ^ j ( X ^Atμ- q. e. d.

By Theorem 2 the set of states of X τAi is the totality of the projective

limits of states σy on AΊi 7 € Γ. If a state σ of X τAι is the projective limit
of states of the form

(15) σΊ = σtx X σ ί 2 X X σιn for 7 = (il9 in)

where σίk is a state of Aik, then σ is called the product state of σ% and is

denoted by X / σι.

When each At (i € /) is commutative, the spectrum of infinite direct
product is given by the next theorem.

THEOREM 6. The spectrum X of the infinite direct product of commutative
C*-algebras At (i € /) with the identity h is homeomorphic to the product space

H Xi of the spectrum Xi of every component algebra At.

PROOF. AS every algebra At has the identity lt , each Xi and its product

space X = H X{ are compact Hausdorff spaces. By a theorem of Turumaru

Γ14], the direct product A£l x x Ain is algebraically isomorphic to the

C κ-algebra C (H X(fc) of all continuous complex valued functions on the

product space H Xιk. Then by the definition of infinite direct product and

the Weierstrass-Stone Theorem the CMnductive limit of Ay, 7 = (h, ,4)
C Γ is algebraically isomorphic to C(X). That is, the spectrum of the infinite
product of At is homeomorphic to X. q. e. d.

Furthermore if a measure dμ% is given on each spectrum Xi such that
dμi (Xi) = 1 or equivalently if a state μι is associated to each commutative

C*-algebra Ait we can consider the infinite product X ψi or equivalently a
measure on X. This is nothing but the infinite product of measures dμt [3].

4. Inductive limit of 7Γ*-algebras.

By the definition, a TF*-algebra is a weakly closed self-adjoint operator
algebra on a Hubert space but as we treat in this section the properties of
TF*-algebras which do not depend on the underlying Hubert space, we do
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not specify the space except the cases especially need it.
Now we assume that Av (7 € Γ) is a family of W"-algebras, Γ being an

increasingly directed set, and assume that there exists a normal principal
isomorphism fy of Ay into a certain T7*-algebra A on a Hubert space H [1]
for every γ 6 Γ which satisfies

(16) fΛ (Λ«) afβ(Aβ) Ίίa<β.

Furthermore if the join of fy(Ay) (7 € Γ) is weakly dense in A, then to employ
A as the inductive limit of W;-algebras A seems to be rather natural com-
paring with the Conductive limit, but unfortunately we cannot get the
algebraical uniqueness of A in this case, that is, the algebraic structure of
A is not independent from the Hubert space Hand so a proposition correspon-
ding to Proposition 2 does not hold. Hence it compels us to employ a more
restricted algebra as the I7*-inductive limit of A7. However, since the above
limit algebra A is useful in practical applications, we name it the direct
limit of Ay on the Hubert space H and discuss it in the next section.

While, every normal state σΛ on Aa can be extended to a normal state
σβ on Aβ if a < β since fa(Aa) czfβ(Aβ). Hence we can consider the projective
limit σ of normal states σy of Ay (7 € Γ), that is, the state σ of the O-
inductive limit Au which induces a normal state σy on each Ay. Then
refering Theorem 2 we put the next definition.

Definition 3. When a ϊ̂ Γ^-algebra A is a direct limit of Ay (7 € Γ) and
the set of states of Au = C*-limΓ Ay which are induced by all normal states
of A coincides with the totality of the projective limit of normal states
of Ay (7 <Ξ Γ), A is called the W*-inductive limit of Ay(<y € Γ) and is denoted
by A = T7*-limΓ Ay.

To assure the existence and the uniqueness of W*-inductive limit, we
need two lemmas.

LEMMA 1. Let σ be a state of Au defined as the projective limit of normal
states σy of Ay (7 € Γ). Then in the representation A%# of Au on a Hilbert
space Hσ constructed by the state σ, the representation A%σ of AΛ considered as
a subalgebra of A1^ forms a weakly closed subalgebra.

PROOF. TO simplify the statement, we assume that each Ay is a sub-
algebra of Au and put A0 the algebraic inductive limit of Ay (7 € Γ) (this is
nothing but the join of all Ay under the above assumption). By the definition
of Hσ there exists a mapping from Au into Hσ. Denote by aΘ

y the image of
ay € Ay by this mapping, then

Then the image Aoθ of A0 by this mapping is dense in Hσ since A0 is uni-
formly dense in Au.

We denote the representative operator on Hσ of aa € Aa by α*. We
suppose that the representative operator a*x of a directed family a*ι in
Aa, (/ € L) converges weakly to m satisfying
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(18) I! β» |; g ![ mf for all / e L.

Then we can assume without loss of generality

(19) I aaι\ <:M (I e L) for a constant M

As the unit sphere of a JF+-algebra is weakly compact and the weak topology
in the unit sphere is purely algebraic [1], a sub-family aaV (V € Lr) of aaι
(/ c L) converges weakly to a definite operator aa € Aa independently from
the underlying Hubert space for Aa. Since, if a < β, A«, is weakly closed
subalgebra of Aβ and σβ is a normal state of Aβ, σβ (a%aaJ.>ap) converges to
σβ (afaaaβ) for every aβ 6 Aβ. On the other hand, the representation of Aβ by
the state σβ is unitarily equivalent to the restriction of the representation
{Afσ, Hσ} on a subspace Hσβ in Hσ. Thus the above fact implies < a%ψ, ψ >
converges to < a$ψ, ψ > for every element ψ ^ Hσβ. Since Hσy c Hσβ if
7 < β and Aoθ a [)βΉβ where β runs over all indices such a s o : < f t by
the denseness of Aoθ in Hσ, a%, converges to a% weakly on Hσ. Thus m
must be coincident with <z*. This shows the weak closedness of the repre-
sentation of A00.

LEMMA 2. Put N the set of all states of Au defined as the projective limit
of normal states of Ay. Then N constitutes a basic subset in the state space
of A\

PROOF. We assume that Ay are subalgebras of Au as in the preceding
lemma.

(i) N is tυeakly dense in the state space £1 of Au. As N is a subset in the
unit sphere of the conjugate space of Au and the algebraic inductive limit
A0 of Ay is uniformly dense in Au, we prove N is dense in O by the topology
σ(Ω, A°)4). For any finite elements Xι,x i} ,xn in A0, there is a a € Γ such
that every x% (i = 1, . . . . , n) are contained in Aa. Then the restriction py on
Ay of a state p in Ώ gives a state of Aa and by the weak denseness of the
normal states in the state space ί l v of every Ay, there exists a normal state
σcc in the weak neighborhood V(pa, X\, x i, , xn €) defined by xlf x2, ,xn

and £ > 0. There exists a projective limit σ of {σy, σy € Ny}, where σy =
σa for 7 = a. Then clearly σ is in the weak neighborhood V(p, Xι, ΛΓ2, ,
xn 8) of p in O. Thus N is weakly dense in ίl.

(ii) N is closed in the norm topology. Let {σn} be a Cauchy sequence in
N in the norm topology. Denote by σny the restriction of σn on Ay, then
{/Tny} is a Cauchy sequence in Ny since j| σn — σm \ ̂  j! σny — σmy J|. As each
JVγ is closed in the norm topology σny converges to a normal state σy. Then
the projective limit of {σy, 7 ^ Γ} is clearly the limit of {<rw}.

(iii) N is a convex set in ίl. This is obvious by the definition of N.
(iv) If the representation {A^, HP} of Au by a state p is unitarily equivalent

to the restriction on an invariant subspace of the representation {A^f Hσ} of
Au by a state σ € N, then p € JV. By Lemma 1 the representation of A*.

4) σ(a, A°) is the weakest topology by which functions a°(p) on n Ĉ ° € A0) are
continuous.
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on Hσ is weakly closed, hence the representation of A* on HP is weakly
closed too. This means the restriction of p on A« is a normal state, that
is, p € N.

Thus N is a basic subset in ίl. q. e. d.

Then, corresponding to Theorem 1, we get

THEOREM 7. Let Ay (y € Γ) be a family of W*-algebras, Γ being an incre-
asingly directed set. If there exists a normal principal isomorphism fβa of Aa into
Aβ for every pair of indices a, β svch as a< β satisfying

(20) fγ> = / v β fy*ifcc<β<y,

then there exists the W*-inductive limit of Ay.

PROOF. By Lemma 2, the set N of all states of the C*-inductive limit Au

defined as the projective limit of normal states of Ay forms a basic subset
in the state space of Au. Hence by Theorem A, we can represent A t t as a
uniformly closed self-adjoint operator algebra on a certain Hubert space for
which the set of distinguished states coincides with N, and then each Ay is
represented as a weakly closed subalgebra. The weak closure A of this
representation is a W*-algebra whose normal states are the σ -weakly continuous
extensions of states in N. This means A is the W*-inductive limit of Ay.

q. e. d.

Of course Proposition 1 remains valid for the W*-inductive limit and
Proposition 2 is slightly modified as follows. .

PROPOSITION 3. Let A and B be W*-inductive limits of W*-algebras Ay and
By (y € Γ) respectively. If there is an isomorphism hy between Ay and By for
every 7 € Γ which satisfies

(21) hβ β« = fβa h« if a<β

{where fβ<* and fβcύ are the normal principal isomorphism of Aa into Aβ and
the one of BΛ into Bβ respectively). Then A and B are algebraically {hence
normally) isomorphic.

PROOF. By proposition 2, the CMnductive limits Au of Ay and Bu of By

are algebraically isomorphic and the sets of projective limits of normal
states of Ay and By are the same if we neglect the algebraical isomorphism
between Au and Ba. Hence by Theorem A, A and B are normally isomorphic.

q. e. d.

It is favorable to conclude, corresponding to Theorem 3 for the C*-
inductive limit, that if A and B are the W*-inductive limits of Ay (7 € Γ)
and Bδ (δ € Δ) respectively, the W*-direct product6* A ® B is the T7*-inductive
limit of the W*-direct product Ay ® Bs (7, S) € (Γ, Δ)). But the present author
can prove only that A(χ)B is 3. normal homomorphic image of TF*-lim (Γ,Δ>

5) For two W*-algebras A, B acting on Hubert spaces H, K respectively W*-direct
prdu2t A ® B is the weak closure of the O-algebra A X B on H X K.
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Ay © Bs and whether these W*-algebras are isomorphic each other or not is
undecidable for him.

For a latter use we notice here the following facts concerning the W*-
inductive limit of factors.

PROPOSITION 4. Let A be the W*-inductive limit of finite factors Ay (y € Γ)
and τy be the trace of Ay. If a normal trace τ of A is the projective limit of
τ7, that is, if the restriction of τ on each Ay coincides with τy, then the
representation of A by r is a finite factor.

PROOF. Since T is normal, the representation A* of A by T is weakly
closed and each Ay is represented faithfully in it. Moreover, Af is a finite
W*-algebra since it has a faithful trace induced by T. TO simplify the
notation, we denote it by T again. If there exists another normal trace τi
on Af, since r and τL are both normal, they define the trace on the O-
inductive limit Au of Ay and these traces are different each other. The
latter fact means that they do not coincide on one Ay at least. This is a*
contradiction since each finite factor has a unique trace. Hence A* is a
factor. q. e. d.

PROPOSITION 5. Let A be the W*-inductive limit of factors Ay of type I
and π be a state of A which is the projective limit of normal pure state πΊ

(y € Γ) then π is a normal pure state of A. Hence the representation of A
by π is a factor of type L

PROOF. If π is not pure, π is again not pure on the O-inductive limit
A1* of A hence it permits the expression

(22) π = cp + (1 - c)σ

where 0 < c < 1 and p, σ are different states of A*. Let p7, σy be the
restrictions of p and σ on Ay respectively, then πy = pv = σy since πy is
pure on Aγ. This follows p = σ on Au. This contradiction shows that π is
a pure state, π is clearly normal by definition of the W*-inductive limit.

5. Direct limit of τr*-algebras.

Though the inductive limit of W:-algebras is algebraically unique, it is
strongly restricted and is hard to investigate its fundamental properties as
seen in the preceding section. Moreover it can not include the typical example
of a limit of algebras such as the approximately finite factor. For, an
approximately finite factor A is the direct limit of a sequence of factors
A[, A*, , Anj with the following condition (*) on a separable Hubert
space :

(*) An is a factor of type IPn where pn is a positive integer and is a divisor
Of pn+l.

If an approximately finite factor A would be the W*-inductive limit of
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A«, every state of the C*-inductive limit Au of AH must be uniquely extended
to a normal state of A, since every state of An is normal. Thus every pure
state of Au is extended to a normal state of A, that is, we get a pure and
normal state of A but such state does not exist for any FF*-algebra of not
type / [1, Corollary 6]. This shows A is not the W*-inductive limit of An.

The next theorem gives a relation between the W*-inductive limit and
direct limit.

THEOREM 8. 1/ a W*-algebra A acting on a Hubert space H is the direct
limit of W*-algebras AΊ (7 € I"), then A is a normally homomorphic image of
the W*-inductive limit Aw of AΊ (7 e Γ).

PROOF. Let Au be the CMnductive limit of Ay, then it is represented
as a subalgebra of A on the Hubert space H. The distinguished states of
Au with respect to this representation are contained in the set of all protective
limits of normal states on A (7 6 Γ). Hence by Theorem A, A is a normal
homomorphic image of Aw.

THEOREM 9. Let W*-algebras A and B be direct limits of Ay and BΊ (7 €
Γ) on Hilbert spaces H and K respectively, hy (7 € Γ) be an isomorphism between
Ay and By which satisfies the condition (21) in Proposition 3. Then A and B
are algebraically isomorphic if and only if tlτe set of states induced on the C*-
inductiυe limit Au of Ay by the normal states of A is identical with the set of
states similarly defined on the C*-inductive limit Bu neglecting the isomorphism
between Au and Bu.

By Theorem A, this theorem is obvious. An analogy to Theorem 2

holds for the direct limit as follow

THEOREM 10. If A and B are direct limits of Ay (7 € I") and B* (δ € Δ)
on Hilbert spaces H and K respectively, then W*-direct product A (x) Z? on the
product space H(g)K is the direct limit of Ay (x) Bs ((7, δ) € (Γ, Δ)) on the Hilbert
space H x K.

PROOF. Since every Ay ® B& (7, δ) € (Γ, Δ) are W*-algebras on H x K, there
exists the direct limit of Aγ ® B8 on H x K By the definition of the direct
limit, the join of Ay (x) Bδ or the join of Aγ © B8 (7, δ) € (Γ, Δ) is weakly
dense in the direct limit of A7(x).Bδ. The latter join is nothing but the
algebraic direct product A0 © B° of the algebraic inductive limits A0 and
B° of Aγ and Bs respectively. On the other hand A (x) B is a TF*-algebra on
the Hilbert space Hx K and A 0 © ^ is weakly dense in it, as shown by
Misonou in the proof of a lemma in [5]. Hence A (x) B coincides with the
direct limit of Ay ®Bs on H x K. q. e. d.

COROLLARY (Misonou) [5]. The W*-direct product of two approximately
finite factors is again an approximately finite factor.
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6. Infinite direct product of W*- algebras.

We define the infinite direct product of TF*-algebras using the concept
of W*-inductive limit similarly as we have done for the infinite direct
product of C*-algebras.

Definition 4. Let Af (i ζ /) be a collection of W*-algebras where / is a
set of indices of arbitrary cardinal. For every finite subset y = {ih i%, ,
in} of / we associate the TF*-aigebras Ay = Aiλ ® A, 2 ® <8) Ain. Then for
the direct set Γ of all finite subsets 7 of /, there exists the W*-inductive
limit of Ay which is called the infinite direct product of A, (i € 1) and is

denoted by

Clearly the infinite direct product \c)iAt is uniquely determined freely
from Hubert spaces Hi on each of which At acts, but since the question
concerning to the W*-direct product of W*-inductive limits stated in §4 is not
solved, the associative law for this product is not certain even in a restricted
form. That is, we can only say that if ϊ and 1" are disjoint subsets in /

such that /' U 1" = /, there is a normal homomorphism of vyiAi onto

© Qyj'Άi" but cannot conclude the isomorphism of these algebras.

In the ordinary measure theory we treat only the infinite product of
measures with the total mass 1, hence in our product the most interesting
from the stand point of the non-commutative integration theory is not the

product QQrAi itself but the infinite product of normal states σt on A£. As

in §3, the state on X iAt defined by σt (i £ I) is denoted by X iσi and its

extension to a normal state on vQiAi is denoted by QQiσi. Then the rep-

resentation of Qv/Ai by the normal state (2v/σt is a W*-algebra which is

called the restricted infinite direct product lX)/(Ai, <r*) of W*-algebras At with

normal states σ{. The restricted infinite direct productVΛM^-f, en) is nothing

but the weak closure of the representation of the O-algebra X iAt by

the state X /σ«. Thus the associative law holds for the restricted infinite
direct product.

The next two propositions follow immediately from Proposition 4 and 5.

PROPOSITION 6. Let n be a normal trace on each W*-algebra At (i € I).

Then the infinite direct product QyiTi is a normal trace of {/yiAi. Moreover

if each At is a factor, then the restricted infinite direct product \λJi(Ai, T{)
is a finite factor.

PROPOSITION 7. Let πt be a pure normal state on each W*-algebras At (i ^

0 of type I. Then the infinite direct product Qyiπi is a pure, normal state
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of {\/S)τAi and the restricted infinite direct product \jS)j{AU7ti) is a factor of
type 7.

Now we compare our product with the infinite direct product of W*-
algebras defined by J. von Neumann [8]. For this purpose we introduce
briefly the direct products of Hubert spaces and of operator algebras defined
by J. von Neumann.

Let 7 be a set of indices with an arbitrary cardinal, and let for each

1 € 7 a Hubert space Hi be given. Then a C-sequence X φι is a sequence

such that ψι € Hi for all i € 7 and H [(φι || converges in the extended sense.
I

We consider all finite linear aggregates of C-sequences and for every pair
of its elements

V Q

(23) Φ = 2 X φt,v, Ψ = 2 X Ψ M

we associate

(24) (Φ,Ψ)

With this inner product (φ, Ψ), the linear aggregates of C-sequences becomes
an incomplete Hubert space. Its completion is called the complete direct

product of Hi and is denoted by Qζ)Γ Hu

Next we need here a concept of Co-sequence. A C0-sequence is a sequence

ψi (i € 7) such that φt 6 Hi for all / € 7 and 2 I II <Pt I! "" * I converges. Then

every C0-sequence is a C-sequence and conversely every C-sequence with

X ψί =f= 0 is a Co-sequence too. We say tw3 Co-sequences φι (t € 7) and ψt

(i € 7) are equivalent, in symbols (φt, i € 7) ^ (tfo ; f ^ 7), if and only if

2 I (φ** Ψ«) ~ ^ I converges. This equivalence for C0-sequences is reflexive,
uτ

symmetric and transitive, hence the family of C0-sequences is divided into
equivalence classes. We denote by @ the set of all equivalence classes. For

® ̂  ®> (X)j ^ ' means the closed linear set determined by all X φt where

φi (i € 7) is any C0-sequence from ©, and this is called an incomplete direct

product of Hi (i € 7). If E =t= ©, then (fy* Ht is orthogonal to (^)® J3i and

(fyjrHi is the direct sum of (g)® a (S € ®). Especially the following

fact is noteworthy: Each equivalence class (£ contains a C0-sequence >̂J (f 6

7) with )| <pj |[ = 1 for all i 6 7 and (^) z a is the closed linear set determined

by all C0-sequences φt (i ^ I) for which φt =*= 9̂ 5 occurs for a finite number
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Of i's.
We denote the ring of all bounded operators on Ht by Bt and the ring

of those on (^)7 Hi by 33®. Then for every operator xi0 € Bt, there corres-

ponds a unique operator x(0 ^ 33® such that for all C-sequences X φι

(25) ϊ ί 0 ( X ^*) = *o(^o x X <Pt) = teo^'o) x X ^«.

We call #;0 the extension of xlo and denote by Bio the set of extensions of all

xiQ <E Bi0 and by B® the TF*-algebra generated by all B\ (i <Ξ /). Clearly B®
c: 33® and B® =#= 33® unless / is finite. This B® is the infinite direct product
of Bι (i ^ 7) defined by J. von Neumann. Though J. von Neumann did not,
the infinite direct product is possible for arbitrary TF*-algebras At along
with the same idea.

Let KcJiBt and B® be the infinite direct products of the ring of all
bounded operators Bι on Hi (z € /) in our sense and in J. von Neumann's
sense respectively. Put σ{ a state of Bt defined by σi(ai) = < ckφi, φι >
where φt is a normalized element in Hi, then σt is a normal pure state of

Bt. Let σ be the infinite product vyκrt of such σt (i € ϊ) and consider [the

representation of QyiBi by this σ. By the definition of \^)i Bi, the alge-

braic infinite direct product QiBt, that is, the set of all form in v̂ V/ Bt

such as

(26) ( x lip x lίq x Λr x bis x — x & x lilt xhv x — ) ,
v—• finite number —^

îA- € -BίA- (K ~ r,s, ,ί), is strongly dense in the CMnfinite direct product

X 7 5 i and cr-weakly dense in Qy/5ί . Hence by the construction of the
representative space Hσ, the image of QiBt in Hσ is strongly dense.
Furthermore,

(27) j ( . . x hp x liq xbtrXbisX . . . . x bίt x l i u x l i v x . . . . ) θ I I

= || &r ψir !| || ̂ is ψis ί| || 6 ί t φ« [j

(where ^ means the mapping from ®iBι into HιΓ). Next we consider the

mapping from (QzBi)Θ into the incomplete direct product ( ^ ) / ίZi determined

by a Co-sequence ^f(/ € /) such as

( . . X hp X ha X bir X bis X X &ί X l i i t x l t « X ) θ ->

(28) ( u h \
( . . . . , ^3ίg, ψiq, Oirψir , Oit ψit, ψiu, ψiV, ....).

This mapping is linear and norm preserving and the image is strongly dense

in (V)6 Ά by the fact noticed in the explanation of von Neumann's product.

Thus this mapping can be extended to a linear isometric mapping u from
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Hσ onto (Ϋ)® Hi. Then by comparing the definitions of 6ζ)iBi and

the representation of (jQIBi onHσιs unitarliy equivalent to the restriction

of B® on

THEOREM 11. B® is a normally homomorphic image of (x)j B{

PROOF. Let ® be the set of all incomplete infinite direct product in

J HI and from each incomplete infinite product in ©, we pick up a C°-

sequence φι^ (i ^ /) such as ^el] = 1 and make the infinite direct product

Qyi<π,® where σι^ is a state of Bt such as

(29) σi,(s(ad = < Oiψi^yψi^ > for at £ B{.

Clearly W/σ*\c$ is a normal state of QQiB{. Hence every normal state of

' B® can be seen as that of QQjBt. Then by Theorem A, £®isa normally

homomorphic image of Qy jBf q. e. d.

Moreover vSJiBi is not isomorphic to B® in general. We show this
by an example given by J. von Neumann in [8].

Let Hi (i = 1,2, ) be a countable family of two dimensional Euclidean
spaces and Bt be the ring of all bounded operators on Hi. Then there is a

normal trace τ< on each Bt. The representation of Qζ)τ B£ by Qs)iTi is a
finite factor by Proposition 6, and this is clearly not of type Ip. Thus it

must be of type IIλ. Thus K^Ji Bi is not the algebra of type /. On the other

hand, B® is of type / [8]. Thus \&)τ Bt is not isomorphic to B®.
Further, if we represent faithfully each Bt by τ t as a factor of type/2

on the Hubert space HTί and make a W* algebra B® generated by Bt on

)iHτt by the von Neumann's method, then Bf is not of type / since Bψ
contains the part of type IIX which is unitarily equivalent to the representa-

tion of v2v/ Bi by VV/ TU Thus we have shown that the product B® is not
independent from the spaces Ά (i € I).

Finally we give a remark concerning the ring C#/ given by J. von Neumann
[8]. Let Hi and Hλ be two 2-dimensional Euclidean spaces and (φu, φVi) and
(φ>z\, φ ϊz) be complete normalized orthogonal systems in Hi and Hλ respective-
ly then {ψn x ψ2\, ψn x <pτz, ψvi x φ n, ψvλ x φ*i) is a complete normalized,
orthogonal system in Hx x Hλ. Let

(30) g = J 1 - ^ ^ x φ*ι + J^'^^φ™ x Ψ* (where

be an element in Hx x H*, then
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^J>^ ψn X φn + ̂ JX-~- ψvi X ψn

Let Bx be the ring of all bounded operators on i/i. Denote b y a x l , the ex-
tension of a bounded operator a ζ Bτ on Hi x H*y then since every bounded
operator a^Bx can be represented by a 2 x 2-matrix with respect to (<pn,

<(axϊ) g,g>

(33) = <CJ'^^ X

X ^22 + C n

X ̂ 1 + tJl^Lφn X

Hence if α = 0, < (β x 1) flf, ^ > gives the trace of Bτ and if a = 1, gives a
pure state.

Thus by the construction of Cft/ (c. f. [8]) if aτ = Λa = ... = 1, C*' is

a factor of type /co on the incomplete direct product ®w-i,2, (H(n,i) ® H^n^y)
determined by the C°-sequence g°w and if aλ = α2 == =0, C#/ is a
factor of type Hi on the incomplete direct product by Proposition 7 and 6
respectively. If we put at = 1 for infinitely many but not all z's and at = 0
for other indices, we get an factor of type //oo since the restricted infinite
direct product is associative.
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