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1. On the absolute convergence of the Fourier expansion of a function
fx) with period 27z, the Wiener theorem reads as follows:

If, for every x, €[0.2z], there corresponds a neighbourhood I, of %, in
which f{x) coincides with a function having the absolute convergent Fourier
expansion, then the Fourier expansion of f(x) itself converges absolutely.

The main object of this paper is to show that the |theorem does not
always remain true if there is an exceptional point in the hypothesis.

Q2. THEOREM 1. Let fix) be a function with period = and vanish at x = 0
and x = . Suppose that the sine expansion of f(x) converges absolutely :

1 fx) = 2 @, sin nx,
@ > [an| < .

Under these conditions the cosine expansion of f(x) is not always absolutely
conver gent.

From this theorem we can show that the existence of an exceptional
point is not permissible in the hypothesis of the Wiener theorem. In fact,
from Theorem 1 we may find a function f(x) of period = such that

3) f(%) = > an sin nx, > lasl < o O=x=<=nx)
n=1 n=1

and that

4) fix) ~ 2 b, Cos nx, E |ba| = o O=x=<n).
n=0 n=0

Let g(x) be the even function of period 2z which coincides with f(x) in the
interval [0,7], then its Fourier series coincides with the expression (4) for
0<x=< 27, and so does not converge absolutely ; meanwhile g{x) coincides
with flx) or — f{x) in every neighbourhood I,, % #= 0(mod. 7). The Fourier
series of the function f{x) and — f(x), regarding as functions of period 27,
are both absolutely convergent. The function gx) forms a required negative
example with exceptional point x = 0.

3. To prove Theorem 1 we shall make some preliminary consideration.
Let ai,a,, .... and &, b, .. .. be the coefficients of sine and cosine expansions
of f(x) respectively. Then
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b, = if f(x) cos nx dx = 3‘/. Zak sin kx cos nx dx
s p = k=1

oo T

=2 Eakf sin kx cosnx dx.
2 k=1
Since
- 0 if 2— »n is even,
;f sin kx cos nx dx ) (;_*%; 4 k—}_n) if £ —n is odd,
we have

4 1
_”g (k+n+k—n>

where >’ means the summation in which % — # is odd. Therefore

(5) glb" Ek% (k—!—n kin)
- —Zzsn

n=1

say. Let us divide the inner sum S, into several partial sums and the rest:

[n/7 a ;Sn[‘.".’
s %
Sn = + 2
k=1 komel BT k=n+l k—mn
, a, [n)2}
S + 2 v 3
k=[3n/21+1 k—mn k + n k=[n/2}+1 k

= Sn(1) + Su(2) + Su(3) + Sn(4) + Sa(5) + Su(6)
sa{r. If z |as| < oo, then, denoting by A a positive constant not necessarily

the same in every occurrence, we get

Siswl -3 3 %

n=1| k=[3n/2]+1

S 3 eSS
= b = 2 |ax] .

n=1k=[3n/2]+1 k -n k=1 n=1 k -n

S A2 &l <o,

k=1

similarly

o

> 1Sk6)| = 2

n=1

o a
2, kE+n
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§A2 la| < oo.

k=1

Onithe other hand

© oo [n]2]
' k
2 lSn(1)+SrA(5)l =22 2 aknz__kz l
n=1 n=1| k=1 )
hd hat 1
S22 kel 2

k=1 n=2k

=AY el < oo
k=1
Hence the convergence of 2 |6,] will be, under the assumption 2 |anl
< oo, equivalent to the convergence of the series

> [Su(2) + S\3)]

n=1

which will be reduced easily to the convergence of:
n/2)

2' Qn-1 — Qn+
%k .

k=1

o

(6) >

n=1

4. We are now in a position to prove Theorem 1. From the above
consideration it is sufficient to construct a sequence {a,} such that 2 lan|

converges and the series (6) diverges.

Put
an= L
"= for n=1,2,3,....
and @, = 0 if m is not of the form 4"
Obviously
o = 7
Sial= 3L <o
k=1 n=1
and
o L a o 4‘*1—1;’[7»/2:' a
P D D D D
n=l) k=1 & 1=0 n=4 }k=1 k
o 2egl (/2] a a
n—k — Gn+k
223 22 R
1=1 ;! k=1
o 2e4t
=33 lal g
=1 poglyy
o 204? 1
= 2 [
D T

=1 n=4ls1
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— 1 R |
SSiSleSlamizElow

=1 n=1 =1 =1

Thus the theorem was proved.

5. Now we shall consider the problem: Under what condition does the
absolute convergence of sine expansion imply that of cosine expansion?

THEOREM 2. Let f(x) be of period = and vanish at x=0 and x = =.
Suppose that the sine expansion of f(x) converges absolutely, that is, the expres-
sions (1) and (2) hold. If one of the series

@) 2 laallogn,
n=1

(ii) > nlAaa| where Aa, = @, — Gpss,
n=1

is convergent, then the cosine expansion of fix) converges absolutely.

Proor. It is also sufficient to show the convergence of the series (6). In
case (i) we have

> [[72] a a | [3rj2+1 a
| -k " An+n R
33 e | g 3" e
n=1|k=1 k n=1] k=[nj2] k—mn j
oo n/’]TX [a ]
3
SO
n=1k=[n2]
o 2k +1) 1
= 2 |a; | I n
k=1 n=[2(k-1)/3]
<A |a]|log k.
k=1
In case (ii) we have
["/21' a a ‘[nﬂl
2 n—-k — Gn+k 2 2 A
Qn+j
k=1 k lk 1 j=-k
m/2; [n/21 [ (n)2!
= ZAafH—j 2 Z AV 2
k=j+1 J~—["I°] k=-j l
lSnIZ’ m/2] 1 )21
= X lAg)] 2 5+ 2 lag] S k
J=n+1 k=j-n+1 =[n/2) k=n-—j
3n/2| »322 —j—1 n-1 __ﬁ_i_
< 3 lag] S+ 2 gy
J=n+1 Jj—n+1 J=[n/2! n-—j

Hence
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o  [3n[2) e -1
- n+2
SAZ 2 el g5 +A§]§/n'm’"2<" ?
o j-1
<AS |aa] 3 +A21Aajl s
j=1 n=|2j/3] 7 n n=j+1 ”

< A jlAal.
Jj=1
Thus the convergent majorants of the series (6) were obtained in both
cases, and the theorem was proved.
We remark that if in Theorem 2 the coefficients {a,} forms a decreasing
sequence, then the series (ii) converges and so we get the same conclusion.
In fact

2 nlAan| = 2 ()
n=1

n=1

Il

2 2 an — a; — hm (N —1)ays — hm N ax+e

n=1

—_'—Zzan—al
n=1

since a, = o(n) as n— @ by Abel's lemma.

6. We discussed hitherto the absolute conveirgence of the cosine expansion
of function which has an absolute convergent sine expansion. Let us now
consider the case where the situations of “sine” and “cosine” are exchanged
with each other. The analogues of Theorem 1 and Theorem 2 (i) are valid
but Theorem 2 (ii) is not the case. We shall prove the following theorems.

THEOREM 3. Let f(x) be a function of period 7 and vanish at x =0 and
x = . Suppose that the cosine expansion of f(x) converges absolutely, that is,

o

(7 f(x) = > au cosnx,
® > laa] < oo.
n=0

Under these conditions the sine expansion of f(x) is not always absolutely
conver gent.

THEOREM 4. Let f(x) be of period = and vanish at x = 0 and x = =. Suppose
that the cosine expansion of f(x) converges absolutely, that is, the expressions
(7) and (8) hold, and that

) D laa| log (n + 1) < co.

n=0
Then the sine expansion of f(x) converges absolutely.

If f{x) does not vanish at x = 0 or at x = 7, its odd extension of period
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27z is not continuous and so its sine expansion is evidently not absolutely

convergent. Hence the condition £0) = f{z) = 0 is indispensable, and then
we get easily

(10) i an= X (—1ra, =0,

n=0 n=0

or equivalently

o ©o
2“27: = 2 Ain+1 = 0.
n=0 n=0

If we consider the analogue of Theorem 2(ii), with stronger condition
a. | 0,the monotonity of the sequence of coefficients {a,} needs therefore
some modification. For this it will be natural to suppose that the sequence
{a,} is monotone except the first two terms @, and a,, that is,

and

11 )= — Eazm a = — 2a2n+1~
n=1

n=1
But even under this condition of the sequence {a,} the analogue of

Theorem 2 (ii) does not valid, this fact will be shown later in the proof of
Theorem 3.

7. Let the expression (7) and (8) hold, and let

fix) ~ ) by sin nx.

n=1

By easy calculation we get

(12) by = —f:f Sf(x) sinnx dx

= 2“’“[ cos kx sinnx dx
0

k=0

2o (et s

where 2 has the same meaning as in §3. Hence if # is odd, putting # =
2m -+ 1, we have

4 < 1 1
bumsr = T Eagk<2k+2m+ T 2m — 2k + 1)‘
Substituting the first of (11) into this formula we get

4 1 1 S
%) b= {M““(zm- T T T TT) ;“”»zm+1}



ABSOLUTE CONVERGENCE OF FOURIER EXPANSION 249

. 32 _ 2 kza;z,v‘; o
= 2@m+ 1) = @m+ 2%+ D@m—2k+ 1)

Further we shall divide the sum into several parts:

E: axy, .
(14) bamsr = ”(2m +1 <z 2 ) 2m 428+ 1)2m — 2k + 1)

E=2m+1
2m

8 1
- n(2m+1)2k“”"(2m 2%k+1 2m+2k+1>
+ 32 2 k axy
7(2m + 1) 2m + 2k + 1)(2m—2k+ 1)

k=2m+1

m

2 ka,k 8 Z ka%
7r(2m+ 1) 2m — 2k + 1 z(2m + 1) 2m —2k+1

k=m+1
_ 2 kagk + 32 é kz (/233
,,(2m YD) M 2m+ 2kt 1 | z@m+ D) & @m+2k+ 1)@m — 2k + 1)
8 < 1

= 7(2m + 5 om—2k+1 {kaﬂc —(2m—k+1) a2(2m—x-+1)}
k=1

2m

_ 2 k A, _ 32 2 k‘: as:
\ 7r(2m F1) 2 2m 2%kt 1 " w@m+ 1) 2 2kt 2m+ 1)(2k — 2m — 1)
8 8 32
= demt DT 2em+ ) T em+ D B

say. For the proof of Theorem 3 it is sufficent to show the divergence of
the series

|8 8 32
(15) Zlblm'i'll—‘sz_i_l‘—Pm'—;Q1n—7R7n-

We shall now construct a counter example of the coefficients {a,}.
Put

1
(16) dnum for ﬂ—-2,3,4,.... ,
and
(17) Q) = — 2 Q2n, a = — 2a2n+l-
n=1 n=1

Obviously Zlanl < oo and the condition of Theorem 3 is satisfied.
Now we shall estimate the series (15), substituting (16) into P, we have

1 1 1
P = §2m —2k+1 { 20log 2k 2(log(2m — k + 1)) }
By elementary estimation, if 1< k<m, we get
1

(log 2k~ (log(2m — k + 1))



250 S.IZUMI AND T. TSUCHIKURA

log (2% (2m — & + 1)) log 22 1
= (log 2Ry (log (2m — k + 1))
2m —k+ 1
_ Ale T
=  (logk)logm
A . om +
< (logk)Z’ lf 1§k§ ——3_,
- A . 2m+ 1
(log &) Tog m’ if =5— sk=mn,
since
: 2m+1
log m, ifl<k=< ;
logz’”;%’§ m+ 1 2m + 1 ’
log =5 = S A, if == sk=mn
Theorefore we have
{(2m+1)/31 1 1
(18) | Pl §‘A E o = ok 1 (on i
m 1 1
+ A -
k=L(2m§+;)13‘.+12m —2k+1 (logk)logm
- A . A _ A
— (log m) (log my = (log m)
And easily
2m 1 A
(19) 1@l = kzl: 2 (log 2kF (2m + 2k + 1) = (log m)’
(20) Ral = S f
ml = & 2 (log 2k) (2k -+ 2m + 1) (2k — 2m — 1
é k
= 4 2(log2ky 3k(2k + 1)
_C
= logm

where C is a positive constant independent of m.
From (15), (18), (19) and (20) we obtain

< 32 < Rl 8 < |Pul 8 < 1Qul
N > - = o mL =
Elb-m*‘l= m%Zm-l—l nm§,2m+1 7rm2=02m+1

32C < 1 8A < 1
> e — — _—
= m2=0 2m + 1) log m T m2-=0 @2m + 1) (log m)*
= o0 )
and this proves Theorem 3.
We shall now prove Theorem 4. By the formula (12)
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S 14| 1 .
Elbnl:;’zga'“(k-!—n + n*k)l
4- s wv l 1 2)
I ’ 0w 10
”Z{g aw(k-i—n + n—=pFp n (by (10))
__8_% -~ _ Fka *
- T he1lk=0 n(n +k)(n——k)\
§ﬁm n-1 k‘lalcl _8- < hes k‘lL
Sw 2Zie =B w22 A B
8
=—M+§N
L T

say. We have then

M= Zk"” ! ngﬂn(nwxn )

=

éék‘”“ﬂ( 2wt 2 W)

n=k+1 N=2k+1

<A el (252 + )

<A 2 la.| log &,

k=0

N = Zklal 2 o T RE=
k/2]

1 1 1
<2k"‘k'k<2n(k s 2 n(k——n))

=[k/2]+1
log & log %
s a3 pal (OFF + EE )

= Az |a,| log k.

k=2

Hence we get immediately the conclusion: zlbn[ < oo.
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