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In a simply connected Riemannian space with non-positive curvature, E.
Cartan [1] dealt with a particular class of geodesies called asymptotes. H.
Busemann [2] extended the concept of asymptotes to the case of Zs-spaces
defined by him. In this note the initial point of an asymptote will be called,
if it exists, its asymptotic conjugate point (§2). We study the set of asymtotic
conjugate points to a given ray and show some examples to make clear the
circumstances.

1. In this paragraph we explain some preliminary concepts.
In a metric space1) points will always be denoted by small roman letters

and the distance between two points x and y will be denoted by xy. The
axioms for a space @ to be an E-space are these:

A. 6 is metric with distance xy not necessarily symmetric.
B. (£ is finitely compact, i. e., every bounded subset X contains a sequence

of points {xv} which converges to a point x in @.
C. S is convex metric, i. e., for every pair of two distinct points x and

y a point z with xz + zy = xy exists.
D. Every point x has a spherical neighborhood s(x, ax) = {y\yx < OLX, xy <

oίχ} (<x>x > 0) such that for any positive number 6 and any two points a, b £E
S(x, a*} there exists positive numbers δk(a, &) ( <Ξ £) (£ = 1, 2) for which a point
ai with a\a + ab = aib and aλa = Si and another point bι with ab + bbL = abi
and bbi = S i exist and are unique.

In an E"-space, for any two points x and y the axioms A, B, and C
guarantee the existence of a segment T(x,y) (or T(y, x)) from x to y (or from
y to x) whose length is equal to the distance xy (or yx). Furthermore the
prolongation of an arbitrary segment is locally possible and unique under
the axiom D. The whole prolongation of a segment is called an extremal.
An extremal £ has a parametric representation x(τ), — oo < r < +00, such
that for every TO a positive number δ(τ0) exists such that x(τλ) #(τ2) = τ2 — Ή
for τ2 > τt and |TO - n \ ̂  δ(τc) (i = 1, 2).

An extremal £ is called a straight line, if its parametric representation
x(τ), — oo < T < +00, has the property x(τι)x(τ-2) = τa — τι(τa ̂  τt). A positive
ray is a positive half extremal x(r), 0 <Ξ r < +00, for which x(rτ)x(τ^ = τ2

— τι(τa > TI). Similarly negative rays are defined. Our consideration will be

1) In this paper, we use the "metric space" for a set (£ with the following
properties (1), (2), (3), (4).

(1) xy is defined for any ordered pair of points x and y in ($• and is non-negative.
(2) .ry=0, if and only if x—y.
(3) xy -i yz^xz for any three points x,y, and 2.
(4) For any sequence of points {xv} and a point x, xxv-*Q if and only if XyX-^Q.
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restricted to positive rays and positive half extremals, since the develop-
ments are entirely parallel and therefore the term "positive" will be omitted.

In [2], the number ^Λ(Λ ) (λ £^ 2) and the term ''direction" were introduced.
The number ηλ(x) is defined as the least upper bound of those β's for which
every segment T(a, b) (a, b € S(x, β)) is a cocentral subsegment of a segment
of length \β. η\(x) is positive for an arbitrary point x in ® and an arbitrary
positive number λ not less than 2. A segment T with x as an initial point
is called a direction at x, if the length of T is equal to η(x) = min (ηQ(x), 1).

For two points x and y max(xy,yx) is denoted by σ(x,y). If A and Dz

are respectively the initial directions of half extremals & and &, then the
distance between the two half extremals & and r.2 is defined by

(1. 1) <r(lι, &) = {σ(A, A) + crfai, 02)}/2,

where p{, p» are respectively the initial points of D\, D> and #ι, q± the end
points of DI, D .̂ The set of half extremals is not necessarily finitely compact
under the metric (1,1) [2].

Let a ray I ba given, let x(τ), 0 <; r < +00, be its parametric represen-
tation, let {/>„} be a sequence of points which converges to a point p, and
let {rj be a sequence of positive numbers such that τv-+ + oo as ϊ>-> + oo.
The sequence of segments {TV}(TV = (pt,x(τv)), v = l,2, ) contains a
subsequence converging in the sense of the metric (1,1) to a ray £ with the
initial point p. ε is said a coray from the point p to the ray ϊ. The following
theorem (1.2) and the theorem below (1.5) are necessary for our later
purposes.

(1. 2) In an E-space ®, let ϊ be a ray, and let 36 be the set of all corays
to the ray ί. The set 9c forms a closed subset of the set of all half extremals.

Let x(τ), 0 <Ξ T < + oo, be the parametric representation of a ray ί.
In [2] the function a(p, I) is defined as follows:

(1. 3) a(p, ί) = Km (px(τ) - T).
T->+oo

This limit exists for every point p and every ray ί. By use of this function,
the limit sphere through a point p is defined as the set of points x satisfy-
ing the following relation:

(1-4) L(p,l): a(p,ΐ) = a(x,l).

The following theorem is fundamental.
(1. 5) In an E-space @, let ϊ be a ray. Every half extremal is a coray to

, if and only if its parametric representation;^), 0<iτ< 4-00, satisfies the
following condition,-

«(*(TO), I) - tfW n), ϊ) = T! - TO for TO, Tl > 0.

As can be seen from the definition, the relation | a(p, I) — a(q, ϊ) | < σ(p, q)
holds for any two points p and q. Therefore if TI > τ0, then X(TI) is a foot3)

2) H. Bus^mann [2] proved that the convergence of a subsequence of {Tv} is
equivalent to the convergence in the sense of the closed limit introduced by Hausdorff
[2], [41.

3) Let a point1/* and a set E be given. A point f of E is said to be a foot of p
on E, if pf^px holds for every point # of E.
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of ΛΓ(TO) on L(x(n), I). Hence every coray is perpendicular to limit spheres
which intersect it. From the theorem (1. 5) and the definition of corays, there
does not necessarily exist another coray containing a coray as a subray,
but every subray of a coray is also a coray. An asymptote to a ray is
defined as the union of all corays containing a coray as a subray.

2. An asymptote has an initial point, unless it is a straight line. The
initial point of an asymptote 2ί to a ray ί is said the asymptotic conjugate
point of 31 to ϊ. Hereafter the set of asymptotic conjugate points to a ray
I will be denoted by K(\\ Prom the definition of asymptotes we see that
any asymptote is also a coray whose initial point is an asymptotic conjugate
point.

Then the following (2.1) is to be noticed.
(2.1) Let 3ί be an asymptote to a ray ί and a be its initial point. A

•coray from every point of 21 — a to ί is a subray of 9ί.
To make clear the above explanation, we show the following example.
EXAMPLE 1°. In a 3-dimensional euclidean space referred to the rectangular

coordinate system (x, y, z), cut off from the #y-ρlane the circular disk whose
center is (1,1, 0) and diameter 1/2, and join the half cylinder:

(#-l)* + Cy-l)2 = 1/4, z>0.

Then we have a surface S' instead of the #y-plane. To get a smooth surface
we make use of an arc of the algebraic curve C which is expressed by a
rectangular coordinate system (ξ, ή) as follows:

a(ξ - 1/4)* + a(η - 1/4)4 -f 2βξ*η* - tf/4* = 0 (Λ > 0, β > 0).

Thefccurve C is in contact of third order with ξ, ^ -axes at (1/4, 0) and (0,1/4).

(QW

0/1.0)

As shown in the figures, by use of C we smooth every section of S' by
.-a plane through the axis of the half cylinder. Thus we have a smooth
surface S.

On this surface S, let ί be the half straight line:
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# = 0, 0<:v< +00, 2 = 0,

and {pΛy (pn = (xn,yn, zn), xn>l, — oo < yn g 1/2, zn > 0) be a sequence of points
with the limit point p on the curve t) which is the intersection of S and the
half plane :

Further, let the plane through pn and the axis of the half cylinder intersect
y-axis at a point qn. Then qn is given by (0, (xn — yn)l(Xn — 1), 0) and lining
(XΛ — yn)l(Xn — 1) = +00. Obviously there exist two segments from pn to qn

which are not homotopic. We suppose to denote them by Tm and T2n such that
the closed curves T(p,p) + Tu + T(qlt qn) + Γ^1 + T(pn,p) and Γ(AΛ) + T2ι
4- jΓ(#ι, tfn) + T^l + T(pn,P) are homotopic to zero. By use of the sequences

{Tm} and {T2)i} we can easily see that there exist at least two corays &
and £2, from p to ί. Hence the point p is an asymptotic conjugate point.
From the above we also see that the curve t) coincides with the set K(l).

3. At first we shall prove the following lemma.
(3. 1) In an E-space $, let a ray \ be given. For a point p of the set K(ΐ)>

and a positive number d, there exists a positive number 8 such that all corays
whose initial points belong to @ — S(p, d) are disjoint from S(p, £).

PROOF. If this were not so, then we should have a sequence of points
{pny converging to the point p such that each point pn lies on a coray £„
with the initial point qn in ® — S(p, d). For a positive number 8 there exists
a positive integer N such that σ(pn, p) < 8 for every n>N. In this case we
can take 8 such that d/4 > 8 > 0. We then have qnpn ̂  qnp — pnp ^d — 8
> 3d/4: > 0. Hence we can take a point q'n on jn such that 0 < q'npn = δ < d/4,

Pnq'n < d/4 and q'n 6 K(l) for every n^N.

Let ι'n be a coray with the initial point q'n(n = N,N +1, ---- ). En is a
subray of %n (n = N,N+1, ---- ). By (1. 2) we can see that the sequence -Q^>
contains a subsequence {ε̂ } converging to a coray r/. Then the sequence
{tfήfc} converges to a point #'. £' contains p and its initial point qf does not
coincide with p, since q'p = S > 0. This contradicts p^K(l). Thus the lemma
is proved.

(3. 2) THEOREM. In an E-space ®, z/ the set K(l) of asymptotic conjugate
points to a ray ϊ contains an isolated point, then the set K(l) is composed of
only one point p and all asymptotes, with the initial point p simply cover the

whole space @.

PROOF. Under the assumption of the theorem we can take a positive
number δ such that (S(p,S)—p) f] K(\) = φ. By (2.1) there exists a positive
number 8 (< δ) such that all corays with initial points in 6 — S(p, δ) are
disjoint from S(p, 8).

In the same way as in the proof of (2. 1) we can prove that a positive
number £' exists such that every asymptote which is straight line is disjoint
from S(p, 6'). Put £" = min (£, 8'). Then we see that every asymptote con-
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taining a point S (p, £") has p as its initial point. From this it follows that
S(p, 6") is simply covered by asympototes with the initial point p.

If q is a point of (6 — S(p, δ)) Π K$\ then a half extremal issuing from
p and passing through q is a coray to the ray ϊ, which contradicts q € (6
- S(p, δ)) Π #(I). This fact yields (® - S(A δ)) fl #(0 = Φ Similarly we can

easily prove that, if there were an asymptote which is a straight line, then
we shonld arrive at a contradiction. Hence the theorem is proved.

(3. 3) Under the assumption of (3. 2) every sphere with the center coincides
with a limit sphere.

PROOF. Let q be a point of a sphere K(p, p) ( = {x\px = 0}). The asymptote
through the point q is perpendicular to the limit sphere through q. Hence
we have by (1. 5)

a(p, ί) - a(q, ϊ) = p( = pq\

Since q is an arbitrary point of K(p, p), we have, by the above relation,

a(q, ί) = a(x, ί) for every point x <Ξ K(p, p).
Therefore

K(p,p)czL(q,ί).

Conversely, let #be a point of L(q, I). The point p has a foot # on L(q, I),
since the asymptote through x is perpendicular to L(q, ί) at ΛΓ. From this it
follows that

Thus the theorem is proved.
In the theorem (3. 3), if q is a point on ί, then the asymptote 91 through

<7 contains the ray ί. Hence the ray ί is a subray of S2f, and the limit sphere
L(p, I) is composed of only one point p.

EXAMPLE 2°. Let (x,y,z) be a rectangular coordinate system of a 2-
dimensional euclidean space, and consider the surface denned by Λa + yj = 1
for z >; 0 and #- -h yj H- 22 — 1 for z < 0 and a generating line on #2 -1- y2 = 1,
2 > 0 as a given ray ί. It can easily be seen that the set K(l) is composed
of only one point (0, 0, — 1)

(3. 4) In an E-space &, the set K(l) to a ray I is not necessarily closed.

The above fact shows us that the limit point of a Cauchy sequence of
asymptotic conjugate points does not necessarily belong to the set K(l\ This
fact will be shown by the following example.

EXAMPLE 3°. Let (x,y,z) be a rectangular coordinate system of a 3-
dimensional euclidean space. Consider the sequence {pn} where pn is given
by ((2n -f I)/2n(n + 1), n, 0), and replace the circular disk whose center is pn

and diameter l/4n(n H- 1) by the half cylinder Zn :

(x - (2n + T)l2n(n -f !))=» + (y ~ rif - l/I6n*(n + l)a, z > 0 (n = 1, 2, . . . .) .

In the same way as in the example 1° we smooth the joint part of ZΛ

and the Λry-plane by use of the algebraic curve Cn :

ynY - 2βξ*n* ~ <XΎn == 0 (a > 0, β > 0, jn = l/8w(w + 1))
(Λ-1,2, . . . . ) .
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Let the surface thus obtained be S. On the surface S, let ϊ be the half
straight line:

x = 1, 0<Ξjy < +00, 2 = 0.

Then the system of half straight lines:

x = (2n + l)/2n(n + 1), — oo <y^n~ 3/8n(n + 1) (n = 1, 2, . . . . )

is contained in the set /JΓ(I). Hence the sequence of points {<?„} (#„ = ((2w 4-

l)/2n(n -f 1), λ, 0), 0 < λ <Ξ 13/16) is contained in the set K(l) and converges to
the point (0, λ, 0). But jy-axis (x = 0, — oo < y < -}- oo, 2 = 0) is an asymptote

to the ray ΐ. Hence (0, λ, 0) 6 K(l\ This proves (3.4).
In the above construction of the surface S, we can get a differentiate

surface of any order by use of suitable algebraic curves. Hence we can get
a Riemannian space of any class in such a way that the set K(l) for a ray ϊ
is not closed. The set of asymptotic conjugate points in Example 2° is closed
but in Example 3° is not closed.

REMARK. In order to get a 2-dimensional E-space, it is sufficient that
the above smoothing is of class C\ This fact easily be seen from the result
obtained by P. Hartmann and A. Wintner [5].

4. In this paragraph we shall consider the case where the set of asymp-
totic conjugate points to a ray ϊ is closed.

The set K(l) is closed, if an arbitrary point £ (~ϋi K(l)) has a neighborhood
simply covered by a system of asymptotes whose initial point do not belong
to this neighborhood.

At first we shall prove the following

(4.1) THEOREM. In an E-space ©, let a ray \ be given and a ray ι be a coray
from a point p to \. If the set K(l) is closed, then for an arbitrary positive
number p every point q ( Φp) on ι has a neighborhood simply covered by a
system of asymptotes containing a point in S(p, p).

PROOF. If this were not so, we should have a sequence of points {<7n}

(qn € K(l), n - 1, 2, . . . . ) converging to the point q such that the asymptote
3ίn through each point qn is disjoint from S(p, p), sinceithe set K(ΐ) is closed

and q e K(l).
Let 31 be the asymptote through q and &» be a coray from each qn to ί.

The in, is a subray of 3In, and the sequence of corays {£„} converges to the

subray £ of 3ί, since q <Ξ K((}. Hence the sequence of asymptotes {ίίw} con-
verges to the asymptote 9ί. From this a positive integer N exists such that
S(p, p) Π 3ί» Φ φ, for every n ^> N, which contradicts the assumption. Thus
the theorem is proved.

The converse evidently follows from the fact mentioned at the beginning
of this paragraph.

H. Busemann proved the following
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(4.2) If an E-space 6 is a straight line space, then every asymptote to a
ray \ is a straight line.

From the above theorem, we see that in a straight line space the set
K(l) to a ray ϊ is always empty, in other words, there exists only one coray
from every point to a ray ί.

In an E-space 6, if every subset homeomorphic to an open subset is
open in 6, then @ is said a space with the property of domain invariance
[3J. Then we have the following

(4. 3) THEOREM. In an E-space with the property of domain invariance, if
there exists only one coray from every point to a ray ϊ, -then the set K(\) is
closed.

PROOF. Let {pn} be a Cauchy sequence in the set K(l). Then {£„}
converges to a point p. It is sufficient to prove p c K-({). If this were not
so, then the coray from p to ί should be a proper subray of an asymptote
31. We take on 31 a point q before p. Let S(q, a) be a spherical neighborhood
such that qp > a. If we take a point x' on the coray from a point x of S(q, α)
such that xxr = qp, then this correspondence is one-to-one. Furthermore this
correspondence is bicontinuous. Therefore the set S'( ^ p) composed of such
points x' is homeomorphic to S(q, a}. By virtue of the assumption of the theorem
S' is open in 6. Hence S' contains a spherical neighborhood S(p, β) (β > 0) such
that S(q, a) Π S(p, β) = φ. Then there exists a positive integer A7" such that
S(P, β) contains pn for every n > N. At this time, S(p, β) is simply C3vered
by a system of asymptotes whose initial points do not belong to this neigh-
borhood. This contradicts K(l) 3 pn (n = 1, 2, ). Thus the theorem is
proved.

Now, if an E-space is a 2-dimensional different!able Finsler manifold we
can then get a further conclusion. We shall show this in the next paragraph.

5. In this paragraph, our purpose is to prove the following theorem.

(5. 1) THEOREM. \In an unbounded 2-dimensional Pinsler manifold % of
class Cr (r j> 4), if tliere exists only one coray to a ray I, then the set K(\) is
empty.

PROOF. It is clear that the property of domain invariance is, of course,
satisfied in $. Hence the set K(l) is closed in §. Let 31 be an asymptote to
the ray ί and a be its asymptotic conjugate point. We shall prove that if
such a point a exists, then we arrive at a contradiction.

If we take a sufficiently small positive number cc, then S'(a,a) = {x\ax
= a} is disjoint from all asymptotes which are straight lines. Let Sf(a, OL)
be such a neighborhood, and take on 3ί a point p such that OL < ap. In the
same way as in the proof of (4. 3) we can see that the system of asymptotes
containing a point of S'(a, a) simply cover a neighborhood of the point p.
Then such a neighborhood of p contains a circular neighborhood S'(p,β)(β
> 0) such that S'(a, a) f] S'(p, β) = Φ and S'(J>, β) f] K(l) = φ.

Consider in S'(p,β) a differentiate are L through p which does not
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intersect 21 except at p, and suppose that every asymptote having a common
point with L has no other common points. If the length of L is sufficiently
small, then every asymptote having a common point with L has necessarily
the asymptotic conjugate point. If this were not so, then we should have
a sequence of asymptotes {2ln} such that each 9In is a straight line and
intersects L at a point pn whose sequence converges to the point p. It is
easy to see that the sequence of asymptotes {9ί»} converges to ϊί. Hence 91
is a straight line, which contradicts a € K(l).

The set L' of the initial points of all asymptotes which intersect L is
in one-to-one correspondence with L. Furthermore this correspondence is
bicontinuous. Hence Lr is an arc containing the point a.

By the point p, the arc L is divided into the two arcs Lγ and L2, let

Lλ and L2 intersect the boundary of S'(p, β) at points pi and p» respectively,

where β is a suitable positive number smaller than β, and let p[ and ρ'.λ be
respectively the image of pi and p2 in the above correspondence. The arc
L' clearly contains p{ and p'λ, and any one of these three points p[, p\, and
a does not coincide with the others. The boundary of a neighborhood S'(a,

<x)(Q< a< min(α#, ap',) intersects U.

Let p[ and p'2 be the points at which L' intersects the boundary of S(a,

a) at first from a and Lf be the subarc of L' whose and points are p{ and

p'2. Then L' divides S'(a, a) into two domains Dl and D 2.
On the other hand, the set K(l) does contain all points of S'(a, a). Hence

there exists a point x € K(l) and a neighborhood S'(a, a!) such that S'(x, a7}
d S'(a, a) fl & — K(\)\ since the set K(l) is closed.

If q is a point of Z? - p[ -- &, then S'(q, p) fl Λ fl (ft - K(l) Φ φ (i = 1, 2)
for any positive number p. The asymptote £ from # to ί is locally contained
in one of the two domains Dt and D>. Let £ be locally contained in the
domain D\. In this case the domain D2 does not locally contain £ and contains

a sequence of points {qn} (#„ € -ίίcϊ) which converges to the point q. The
coray r,4 from each ^^ to ϊ is locally contained in the domain D 2, and the
sequence of corays {£,„} converges to the asymptote £.

Let r be a point on £ such that qr — k and T(#, r) d S'(#, a\ where k is
a positive number, and let {r^ be a sequence of points such that each rn

lies on £„ and ^rtrn = & Then {rn} converges to the point r, and the sequence
of segments {Γ (^/4, rn}J uniformly converges to the segment T(qt r). Hence

there exists a positive integer N such that T(qn, ru) d S'(a, a) for every n ̂

N. From this each ιn (n > JV) intersects £'. But the corays £n are all disjoint
from the set K(l). Thus we see that the asymptotic conjugate point a does
not exist. This proves the theorem.

The most interesting problem in differentiable cases is to investigate
precisely the behavior of anasymptotes at an asymptotic conjugate point. This
problem was completely solved in the case where the set of asymptotic
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conjugate points to a given ray contains an isolated point. In the later
paper, we shall deal with such a problem on a Riemannian surface with
non-positive Gaussian curvature which is homeomorphic to the sphere
punctured at a finite number of points.
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