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1. Let f(¢) be a summable function, periodic with period 24, and its
Fourier series be

Slf] = %ao + 2 (an cos nt + by sinnt) = EAn(t)
n=1

n=0

We write
Pt) = %{f(x + )+ flx — )}

It is well known that the absolute convergence of &[f] at a point %, is
not a local property but depends on the behaviour of f{x) in the whole
interval (0,27). Further we can easily show that even the absolute con-
vergence of Z A«t)/nlog(n + 1) is not a local property. L.S. Bosanquet
and H. Kestelman [4] have shown that the summability |C, 1| of a Fourier
series at a given point is not a local property of the generating function.
R.Mohanty [2] has further remarked that the summability |C, 1| of the series
2 Ax(t)/log (n + 1) is also not a local property. S. Izumi [3] and R. Mohanty
[2] have independently proved that the summability |R, log », 1| of a Fourier
series at a given point is not a local property. Furthermore we can see
that the summability |R, logn, 1] of 2 Ax(t)/log log (n + 1) is not a local

property of the function. :

The main object of the present paper is to treat the local property of
the absolute Riesz summabiiity |R, As, 1|. More precisely we prove the
following theorems.

THEOREM 1. The |R A, 1| summability of the series D, An(t)ln is mot a

local property, where
I

| Am exp n i exp (log n)> ] exp (log log n)*
ln { 1/nAlog(n+ 1) ! 1/(log (n + 1))* Il/(log log (» + 1))* |
A 0<A=<1 ‘ 0<A 0<A

that s, if x< a < B < x4 2, there is a function summable over the interval
(a, B) and vanishing in the remainder of the interval (%, x + 2m), such that

ZAn(t)tn is not summable |R,\x,1| at t = x.

This is a generalization of theorems due to L.S. Bosanquet and H.
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‘Kestelman, S.Izumi, and R. Mohanty, quoted above. For the proof of this
theorem we require the following fundamental lemma.
LEMMA 1. If 0< << .. K N> 00, and 2 cn 1S Summable

|R, Ay, 1|, then the series 2 co/log )21 (0 < A< 1) 2s summable
|R, exp(log A4, 1.

LEMMA 2. If 0 < M<M< ... <, > 00, and the series 2 cu is summable
| R, An, 1|, then the series 2 cn/exp (log Ax)'2 (log A)VA-1 (A > 0) is summable
|R, exp {exp (logA:)/4}, 1].

The second is a generalization of the following result.

MOHANTY’S LEMMA [2]. If 0 <M <A< onty A —> OO, andEcn is sum-
mable |R, \s, 1], then 2 A;len is summable |R, 1., 1| where 1, = eXp An.

Theorem 1 is the best possible in a sense. Infact we prove the following
‘theorem.

THEOREM 2. The |R, \u, 1| summability of the series 2 A(t)lne at t = x,
1S a local property where

M| ewm | explogm® | exploglogmt
iln,e ?II/nA(log (n 4 1)y*<| 1/(log (n + 1))**<|1/(log log(n + 1))**<
a| o<as1 | o<a 0<a

&) tlog/y | t/log(1/t)  t/log(1/tloglog(l/?)

More precisely, if

f |P(2)| du = O{g(?)},
0

the series 2 An(x), ¢ 1S summable |R, An, 1].
In this direction the following theorems are known:

Izumr's THEOREM [3]. If the Fourier coefficients are of order o(1/log? n), then
the |R, logn, 1| summability has local property.

MOHANTY’S THEOREM [2]. Let d(2) = f du)udu. If D(t)/{log (k/t)}

t
(B > ) is of bounded wvariation in the interval (0, n) where n >0, then
EAn(x)/log(n + 1) is summable |R, logn,1]|.

2. Proof of Lemma 1. We write
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Ci(r)= 2 ¢n D7) = 2 caf(logAa)i31, Dyft) = 2] cal(l0g An)V27,

ST =T 1St

where 7, = exp (Iog Ax)'/2-1. Then, by the assumption,
1 W
gw) = f Cu(r)dr
w
A
is of bounded variation in (A,, ); and we shall show that,
1 U
— | Dyt)at
u 1
1

is also of bounded variation, which becomes, putting # = exp (logw)'/2,
t = exp (log 7)"/4,

h(w) = exp{ — (log w)/*} f D,\('r)—g; {exp (log 1)~} dr.
1

Since

Dy(r) = f 1/(log w)"- dCy(w),
AL
we have
" a d Cy(u)
= —_— 1/A hadil 17470,
(1) h(w)=exp{— (logw) }! o {exp (log T) }d—:-A (log s)/A~1

w w
= exp{ — log w)"/4} f (I’Bdé%)\)(it?_'f %exp (log Ty/adr
Al %

w
— _ \LjA exp (log w)/» — exp (log %)/»
exp { — log w)'/2} ! (log /A1 dCx\n)

w
d exp (log w)/> — exp (log z)!/A
— — 1A e
exp { — (log w)"/2} f C(z) dn (log #)/A-1 duw
1

1

w)l'* — exp (log u)'/4 J’”

— exp { — (log w)/4} {[ugw)%exp og (log z)'/a-1

Ar

w
d? exp (log w)''* — exp (log u)t/A
A1

Now

d_exp (logw)"* — exp (log »)'*

du (log u)t/A-1
13\ 1 exp(logw)'/* — exp (log u)/4
Al u (log )\2 !

— L L expitoguys + (1 -
A u
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1f we substitute this into the first term of the right side of (1), then it
becomes

—exp { — (log w)"'*} wg(w)( — 1/A)w=* exp (log w)''* = (1/A) g(w),

which is of bounded variation in (A;, ), by the assumption. Let us now
.estimate the second term of the right side of (1). We have

diz {(exp (log w)"/* — exp (log u)''4)/log 2)/*-1}
T _<1 B —) exp (log w)"*/(log w)/*** u?

— (1 — =) exp (log w)/*/(log u)/* u?
+ exp (log ul2 /A ut — exp (log u)/2(log u)/2~1 | A? u?

- (1 — %) exp (log #)'/A/Au? log u

+ (1 ~ %) exp (log #)/4 | Au¥(log u)'/2+!
= K(u) + Ku) + .... + Ki(u),
say, and we put

hi(w) = —exp{ — (log w)”‘}f ug(u) Ki(u) du =12 ....,7).
‘'We have first

mawy = — (1 ) ()

u(log )2 du,

which is of bounded variation, since, using gw) =

[':z% 2<"’)|dw=[

= 1
_Af O{wuogww} dw < oo 0<A<1).

‘Similarly 7Z(w) is also of bounded variation, since K(#%)
Among Ki(u) (1= 3,4, ...
now estimate #,(w), i.e.

= 0(1) in (A, ),

— (1 —1/Agw))
w(log w)/A

‘dw

= Ky(u)/Alog u.
.,7), K,(u) has the greatest absolute value. Let us

hw) = — A exp{ — (ogwyrs) [ £exe (ogw)2 oguf 2! o,
u
By partial integration, this becomes
_ 1A w w
D) = — exp { — (log w)/*}

A - {[ exp (log 2)'/4 g(u)] _ f exp (log )"/ g'(z) du},

M M
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hyw) = _»g%ﬂ)_ + % EZZ} exp{ — (logw)"'2}+ f exp (log #)">g (%) du + ,&A(,’,‘).
Al

= 1 a _ 1/AY . fw 1A o,
A dw exp{ — (log w)'a} J exp (log u)!'2 g'(u) du
1

Since by the assumption

f |g'(w)|dw < oo,
A1

we have

f exp (log »)!'2| g'(n)| du dw

A1

oo ' - 1 a

< _ — A
f h*(w)dw_;\/~ ‘ exp { — (log w)/a}
A1 1

= f exp (log u)''*| &'(u)| f ‘ i j‘f; exp { — (logw)/A} | dw du

Al

. ” 1 d
— 1A o L a _ 1/A
= f exp (log u)!'2| g'(u)| f dw exp { — (log w)''2} dw du
Al w

- %f | ()| du < oo,

which shows that &,w) is of bounded variation in the interval (A, o).
Concerning K;, K;, K; and K;, we can prove similarly that they are of bounded
variation in the interval (A, ). Hence all h:;(w) are of bounded variation,
and then A(w) is also, which is the required.

3. Proof of Lemma 2. If 0 < A < 1, then this Lemma is obtained by
repeated use of Lemma 1 and Mohanty’s lemma which was quoted above.
In the case A =1, we can prove the lemma quite similarly to the proof of
Lemma 1, hence we omit it. The reason that the restriction 0 < A< 1 is
required in the proof of Lemma 1 lies in that the integral

f g _ dw
w(log w)t/2
A1

converges for 0 < A < 1. On the other hand that A is not restricted in Lemma
2 follows from that the corresponding integral used in the proof becomes

f ~ dw

~ wexp (logw)t/a’
A1

which is convergent for all A > 0.

4. We shall define kn, h,, depending on A, -as follows:
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An exp nd ] exp (log »)» exp (log log n)&
Ba | 1m-s | 1n(logny-s | 1/nlogn(log logn)-a
R i 1/nlogn | 1/nlogn 1/nlognloglogn

Then we have

LEMMA 3. If Dcu 45 |R A 1| summable then Dcoka is summable
|R, expn,1|.

Lemma 4. If ZAn(x) In is summable |R, \s, 1|, then ZAn(x)hn is sum-
mable |R, expn,l1].

These results are easily obtained by Lemma 1,2 and Mohanty’s lemma.
For example, if A, = exp #n4, then '

exp (log Aa)/2 = expn, kn= 1/(log Mp)a=t = 1/nt-4,

and hence by Lemma 1 we get Lemma 3, in the case A = exp .

THE BOSANQUET-KESTELMAN LEMMA [4]. Suppose fix) to be measurable
in (a,B), where 8 —a <o, for n=1,2,.... Then a necessary and sufficient

condition that, for every function ¢(x), summable in (a, 3) the function fu(%)$(x)
are summable in (&, 3) and

2 i f fu%) & (x) dx

is that 2, |fu(x)| is essentially bounded in (a,3).

< o,

PROOF OF THEOREM 1. We assume for a moment that, for any function
summable in the interval (¥ + a, x + 8) and vanishing in the remainder of

the interval (x,x + 2ir), the series EAn(t)ln is summable |R, Ay, 1| at £ = x.

Then by Lemma 4, ZA,.(x)h,, is summable |R, expn, 1| or what .is the
same thing, it is absolutely convergent. Hence

. B
> [ A ) ij __‘f’(t)COS’Ltdt‘ <o

nlogn nlogn
and
An(x) _ l ¢(t) cos nt |
p nlognloglogn‘ =2 nlognloglog”dt’ <o

By Bosanquet and Kestelman’s lemma, we have

>

n=2

cos nt < cos nt
nlogn <M, nzﬂ‘nlognlog logn! <M.,
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almost everywhere in (a, 8) where M,, M. are absolute constants. On the
other hand if 0< ¢t < 27 (¢ =% )

2 |cos nt| - 2 cos? nt 1 1 4+ cos 2nt

“ nlogn = nlogn = 2 nlogn
1 1 lcos 2nt
gE’znlogn 2 2 nlogn
1 1
= T T — =
= 2 nlogn o)

and

é |cos nt|
s = 0
~n log n log log n
These are contradictions which arise from the assumption that the sum-
mability |R,A,, 1| of EA,.(t)I,. is a local property.
Thus Theorem 1 is proved.
5. Proof of Theorem 2. THE CASE A, = exp #2. We shall prove that,

if

‘ 1
2 = s
@ [ 1wt = o1 biy)

0

then > W% is summable |R, exp#?, 1|.
We begin to prove the following estimation.
3 exp nicos nt _ {3xp wﬁ-wl"“}
( ) 2 nA(log n)l+€ (log w)l'l-e

For, since |cosnt| <1, we have
exp nA

mw n3(log n)l+e

2 Aexpne.ni-!
A n2a- l(]ogn)l+e

AxZA—l (]Og x)'.-i—e

- ___expxt ) _ : af_ 1 1+é& ')d }
O{[x“‘ ~1(log X+ ] f XpF (sz(logx)m wslogxye )

= O{exp wA - w'~24(log w)~1-<}

- O{ A exp xA - xA-1 dx}

which gives (3).
Furthermore
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exp nA cos nt _ exp wA
@ é n3(log n)t+e O{wé(log w)t+<t }

For, denoting by D.(¢) the Dirichlet kernel, and using Abel’s transformation
we obtain
exp »A cos nt
asw nA(log m)tte
r’g{ ( exp 7* )D(t)} 4 &P [w]*D[w] (t) __ exp 25 Dy(?)
nxlog mi+e /T T [wl(log [w]ive T 23(log 2)t+e
= O{exp w? - w-4(log w)~1-<¢-1},
where 8ay, = dn — Ars+1 and the monotonity of the sequence {exp nA.n-2
(log n)-1-<} is used, which follows from
d _expx* _ _expx® ( _ A 1+¢
dx x(log x)t+e x(log x)t+e xA x5(log x)

Il

n=2

(x > 1)

“Thus (4) is proved.

Let us now consider the seriesz A.(x) n~3(log n)~1-¢, which is summable
=2

|R, expnd, 1| if

~ =3 wA-1 ] A A”(x)
I=A exp wa E exp nA(log n)i+s. dw < co.
‘We have
A2 f’ { cos nt
a. = = ¢ a __COSnr
g expn n2(log m)t+e ™ a g expn n3(log n)“*’} &
nsw 0 nsw
9 wol+A T
=—(f +f )=11+Iz,
mw
0 wl+A

say. By (2) and (3) we have

w-1+A

neof epwt [T gwiar) - o jeRui ]

sz l(log w)1+s A(log w)‘H-e

From (4) we have

_ exp w* i [p(2)]
I, = O{wﬁ(log w)lﬁ‘/,;—u,; : dt}
_ expw? 1
- O{wA(log w)“‘([ log (l/t) + f tlog(l/t) }

= O{exp wA -log log w - w-3(log w)'l‘f}_
Hence we obtain
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©0 A—l
I§Af w
exp w?
2

which completes the proof.

(4] + IIzl)dw=0-If loglogw. dw} < oo,
l2 w(log w)'**

6. Proof of Theorem 2. THE CASE A» = exp(logn)*. We shall prove
that, if

) f du = o(»——
| ()| lg(l/t))
then 3 £ ;’;L (6 >0) is summable [R, exp(logw)®, 1|. We need the

following estimations :
exp (log m)A cos nt

(6) =~ (log mypve = Ofexp (log w)* w (log w) ~22-<}.
exp(log n)* cos nt_ _ exp (log w)2
@) ng (log n)a+e - { t(log w)r+e }

These are easily proved, so we omit their proof.

The series EAn(x) (log »)~2-¢ is summable |R, exp (logw)*, 1| if

n=2
_ [ _(logw)>! v | Adx)
I= 0 exp (log ) "Zéw exp (log n)a (log m)s+ dw < .
We have
exp (log ny*An(x) _ 2° f " ‘ { exp (log n)*cos nt
nszw (log m)a+e T a2 Eo (log m)a+e at
= e =
(wlogw) ~ 1 u
= s Yensn
mw
0 (wlogw) ~1

say. By (5) and (6) we have

(wlogw) 1
1, = O;{ exp_(log w)* - w{log wy ~2a~¢ f lp(t)| at }

0
= O{exp (log w)* - (log w)=22-1=¢}

Using both (5) and (7), we have, putting f {p(n)| du = d*(2),
0

.

I, = O{exp (log w) - (log w)‘A“}f |p@)|t-1dt

-1
(wlogw)

— Ofexp (log w) - (log w)‘A"}{[ (B! } + f " SH()E-2 dt}

(wlogw) 1 (wlozw) ~1
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= O{exp (log w) - log log w(log w)~2-<}
Thus

_(logw)r—t { ~ log log w }
< A = s &
I< f wexp(logw)A (Jh] + | L])dw = O 2 wilog Wy dw} <

which proves the theorem.

REMARK. When A= 1, |R, exp(logw)*, 1| = |C, 1|, and for this case
M. T. Cheng [1] has proved the tollowing theorem.

CHENG’s THEOREM [1]. If the Fourier series 2 Ax(x) is multiplied by one
n =0

of the following factors

1/(log n)+1+<, 1/(log n)+} (log. n)*e, .. ..,
then under the condition

f | ()| du = o(?),
0

the resulting series is summable |C,1| at the point t = x.

7. Proof of Theorem 2. THE CASE A, = exp (log log n)2. We shall prove
that, if

(8) f’ | p(u)| du = O( t/log(%)log log( : ))

then 2 (log log m)3+ is summable [R, exp (log log w)2,1].

We have
9 exp (log log n)* cos mt _ Ofexp (log log w)>w - 1 log log w)i-A-%
( = (log log 1)>** = O{exp (log log w)*- w - log w (log log w .
exp (log log n)* cos nt {_gg (1_9g_1qg_w_)é»}
10) 2 (log log n)>+« =0 t (log logw)A+¢

nsw
Proof is omitted.

The series 2 (log lcy)i(g{%); ;. 1s summable |R, exp (log logw)*, 1| if

(log log w)®-!

7= f ~ (loglogw)*~t 2 exp (log log n)* Ax(x)
J exp (log log w)3-w log w

(log log n)a+« dw < <.

nsw
Now

exp (log log 7)> An(x) _ 2 f g exp (log log n)* cos nt }
> (log log n)A+e — () {2 (log log m)a+¢ dt

nsw 0 nsSw
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([ )
T
0 T
say, where 7 =1/w logw log log w. By (8) and (9), we have

5L=0 { w log w (log log w)i-23-< exp (log log w)> f 1) a't}
0

= O{exp (log log w)? - (log w)~! (log log w)~1-24-¢},
Also using (8) and (10), we have

1= of explorlogw ["1901 )

(log log w)>+«
- of ewtostozw» | 107" _ [ 470
_O{ (log log w)s+e }{L ¢ J J & dt}

= O{exp (log log w)? - log log log w (log log w)~2-<}.
Hence we conclude

" (loglog w)>-1 (11| + | L])dw " log loglog w
I= =0
: exp (log log w)* w log w w log w (log log w)**<

.and this completes the proof.
Thus Theorem 2 is proved.
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