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1. Let fit) be a summable function, periodic with period 2ΊΓ, and its
Fourier series be

2
©Γ/J = ^r

c o s w* + &• s i n w ί ) Ξ 2

We write

It is well known that the absolute convergence of ®Γ/J at a point #0 is

not a local property but depends on the behaviour of fix) in the whole

interval (0,2 if). Further we can easily show that even the absolute con-

vergence of 2 An(t)jn log(n + 1) is not a local property. L.S. Bosanquet

and H. Kestelman [4] have shown that the summability | C, 11 of a Fourier
series at a given point is not a local property of the generating function.
R. Mohanty [2] has further remarked that the summability \C, 1| of the series

2 An(t)/log {n + 1) is also not a local property. S. Izumi [3] and R. Mohanty

[2] have independently proved that the summability | R, log n, 11 of a Fourier

series at a given point is not a local property. Furthermore we can see

that the summability \R, logn, 1| of 2 An(t)/log log (n + 1) is not a local

property of the function.
The main object of the present paper is to treat the local property of

the absolute Riesz summabiiity \R, \n, 11. More precisely we prove the
following theorems.

THEOREM 1. The |/?,λn, 1| summability of the series 2 An(t)!n is not a

local property, where

~Λ.n

In

expwΔ

l/nA log (n + 1)
I

Δ 1 0 < Δ ̂  1

exp (log w)Δ

l/(log(w + l))Δ

0 < Δ

exp (log log nY

l/(loglog(w + l))Δ

0 < Δ

that is, if x < a < β < x -f 2 7r, ί/tê β is a function summable over the interval
{a, β) and vanishing in the remainder of the interval (x} x + 2ττ), such that

is not summable \R, \n, 1| at t = x.

This is a generalization of theorems due to L.S. Bosanquet and H.
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Kestelman, S. Izumi, and R. Mohanty, quoted above. For the proof of this
theorem we require the following fundamental lemma.

oo, and 2 Cn *s summable
1 (0 < Δ < 1) is summable

LEMMA 1. / / 0 < λτ < λ2 < — . . < λ

\R,\n,l\> then the series 2 Cn/ilogXn

\R, exp (log λ,,)1^, 1|.

LEMMA 2. If 0 < λi<λ 2< <, λ?i ~> oo, and the series 2 cn is summable

|i?,λ»,l|, then the series 2 ^/exp(logλ^)1/Δ(logλ^)1^"1 (Δ > 0) is summable

\R, exp

The second is a generalization of the following result.

MOHANTY'S LEMMA [2]. // 0 < \λ < λ2 < ,[ ] / < λ 2 , , ^ c n is sum-

mable ]R,λn, 1 | , then 2 λ « l c ? * *s summable \R,ln,l\ where In- expλ y ι .

Theorem 1 is the best possible in a sense. In fact we prove the following
theorem.

THEOREM 2. The \R,\n, 1| summability of the series^ An(t)ln,e at t = #,

property where

ln,e

Δ

exp wΔ

l/nA(log(n + l))1+f

0<ΔSl

t/log(l/t)

exp(logw)Δ

l/(log(/ί + l))Δ + e

0 < Δ

//log (1/ί)

exp (log log w)Δ

l/(log log(w + l))Δ + e

0 < Δ

ί/log(l/01oglog(l/f)

More precisely, if

ί
the series ̂ An(x)ln)* is summable \R, Xn, 1\.

In this direction the following theorems are known:

IZUMI'S THEOREM [3]. If the Fourier coefficients are of order o(l/log2 n), then
the IR, log n, 1 ] summability has local property.

MOHANTY'S THEOREM [2]. Let Φ(t) = J φ(u)/udu. If Φ(0/{log (k/t)}

(k > 7r) is of bounded variation in the interval (0, η) where η > 0,

2 + 1) is summable \R, logn, 1\.

2. Proof of Lemma 1. We write
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Cκ(τ)= "Σcn, Dλ(τ)= 2

where ϊn = exp (logλn)1^"1. Then, by the assumption,

aw)= λ I cκ{τ)dτ
W J

λi

is of bounded variation in (λ ι? oo) and we shall show that,

— / Dι{t) dt
u J

is also of bounded variation, which becomes, putting u = exp(logw)ιlA

r

ί*w

h(w) = exp{ - (log w)1^} Γ D λ (τ)-^- {exp (log

Since

λl λl

we have

(1) h(w) = exp { — (log w)ιIA} I -r— {exp (log τ)Ί / Δ) dτ I
J dτ J

= exp { — log w)ιlAy

= — exp { — (log w
v du

λl

- / uc(ιί) d l e x p ( l 0 g W ) 1 ; Δ ~ e x p ( l 0 g ^ ) i

λl

Now
d exp (log wflA — exp (log u)llA

du

- —
Δ

- IU
Δ / w
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If we substitute this into the first term of the right side of (1), then it
becomes

- exp { - (log w)llA} wg(w)( - 1/Δ)w~1 exp (log w)1^ = (1/Δ) g(w),

which is of bounded variation in (λl5 oo), by the assumption. Let us now
•estimate the second term of the right side of (1). We have

f~ {(exp (log ii y/Δ - exp (log itf
du1

+ exp (log uf^/Δ uι - exp (log w ^ l o g uf^/Δ* uΛ

- ί 1 - T") e χ P ( l oS u)llA/Δu* log u

4- ( l - ~\ exp (log u)llA /Δu\log u)llA+1

+ Klu) + . - . . . + KΊ(u\

say, and we put

hi{w) = - e x p { - (log u>YjA} I ug(u) Kt(u) du (i = 1, 2, . . . . , 7).

λi

We have first

λl

which is of bounded variation, since, using g[w) = 0(1) in (λi, oo),

d w

λ i

.

= ί Ol———A dw < Co (O<Δ<1).
λi

Similarly hι(w) is also of bounded variation, since K{(u) = KΛ(u)/Δ log w.
Among .fiQ(̂ ) (f = 3,4, , 7), ijf4(&) has the greatest absolute value. Let us
now estimate h4(w), i. e.

hlw) = - Δ - exp { - (log w)V*} f S(u)e^{\om)
J u
λi

By partial integration, this becomes
w τυw τυ

*> tf exp (log ufi* g{u) 1 - J exp (log «
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SAW) 1 d c /
h'Xw) = —£->-^- -i , exp{ — (log^)1 / Δ} I exp(logw)17

Δ Δ dw J
λl

= — - — exp{ — (log w)ιlA} I exp (log w)1/Δ g'(u) du
Δ dw J

λi

Since by the assumption
oo

I \g'(w)\dw < oo,

λl

we have

/

oo o

h'lw) dw^ I
J

λl λl

Δ dw
- (log wf'A Γ

I exp (log «)1/Δ I g\u) I ί/w Jίσ
λl

Δ dw
dw du= J exp(\ogu?i*\f(u)\J

λi u

/

oo —

exp (log «y/Δ I ̂ (n) I / A- ^ exp { - (log w)1^} dw du
J Δ dw

which shows that h^w) is of bounded variation in the interval (\h oo).
Concerning K3, K5, KQ and Ki, we can prove similarly that they are of bounded
variation in the interval (λi, oo). Hence all hi(w) are of bounded variation,
and then h(w) is also, which is the required.

3. Proof of Lemma 2. If 0 < Δ < 1, then this Lemma is obtained by
repeated use of Lemma 1 and Mohanty's lemma which was quoted above.
In the case Δ ^ 1, we can prove the lemma quite similarly to the proof of
Lemma 1, hence we omit it. The reason that the restriction 0 < Δ < 1 is
required in the proof of Lemma 1 lies in that the integral

/

dw
w(log wfi*

converges for 0 < Δ < 1. On the other hand that Δ is not restricted in Lemma
2 follows from that the corresponding integral used in the proof becomes

ί dw
wexp (log w)llA '

which is convergent for all Δ > 0.

4. We shall define kn, hn, depending on \n, as follows :
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Xn expwΔ

kn

Hn

l/nι'A

1/nlogn

exp (log np

l/n(logn)1-*

1/n log n

exp (log log n)Δ

11 n log n{log log n)ι"A

1/nlog n log log n

Then we have

is summάbleLEMMA 3. If 2 C w f"s \R,Xn,l\ summable then

IR, exp n, 1 \.

LEMMA 4. If^An{x) In is summable [R, Xn, 1|, then ^An(x)hn is sum-

mable \R, expn, 1|.

These resiHts are easily obtained by Lemma 1, 2 and Mohanty's lemma.
For example, if λ,, = exp nA, then

exp (log λn)1/Λ = exp n, kn = l/(log X*)1^1 == 1/n1'*,

and hence by Lemma 1 we get Lemma 3, in the case Xn = exp n\

THE BOSANQUET-KESTELMAN LEMMA [4]. Suppose fn(x) to be measurable
in {a, β), where β — a <i oo, for n = 1,2, — Then a necessary and sufficient
condition that, for every function φ(x), summable in (a, β) the function fn(x)φ(x)
are summable in (ct,β) and

\ίMx) φ(x)dx

is that 2 \Mχ)\ is essentially bounded in (a,β).

PROOF OF THEOREM 1. We assume for a moment that,, for any function
summable in the interval (x + a, x + β) and vanishing in the remainder of

the interval (x,x-\- 2ΊΓ), the series^An{t)ln is summable \R,Xn,l\ at t = x.

Then by Lemma 4, ^An(x)hn is summable \R, expn, 1\ or what i s the

same thing, it is absolutely convergent. Hence

An(X)

nlogn

I Cβ φ(t) cos nt
J n log n

< o o

and

An{x)

n log n log log n

φ(t) cos nt
nlogn log log n

dt < oo.

By Bosanquet and Kestelman's lemma, we have

cos nt
nlogn

<Mι,
cos nt

n log n log logw
<
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almost everywhere in (a,β) where Mu M-2 are absolute constants. On the
other hand if 0 < / < 2τr ( ί * TΓ),

[cos nt\ ^ «̂ , cos2 nt 1_ « 1 + cos 2nt
n ~~ 2 2*« n log n — ^* n log w 2 ^* n ]ogn

n log n 2 ^* n log w
cos

and

^ [cos
= oo.

j ~ w log w log log n

These are contradictions which arise from the assumption that the sum-

mability |j?,λ,»,l| of ^A»(t)ln is a local property.

Thus Theorem 1 is proved

5. Proof of Theorem 2. THE CASE \ n = expwΔ. We shall prove that,
if

(2)

then V — 4 d * ί — i s SUmmable \R,
** n\logn)1+e

We begin to prove the following estimation.

(3) "V e χ P n A c o s n t _ (logw)1+

For, since | cos nt \ S 1, we have

*S exp /2Δ

1£

ro t

1 _ Γ

* 6 Γ J J
rf

= 0{exρ wΔ •

which gives (3).
Furthermore
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e χ P nA c o s n i

 nί
 e χ P

121

\
+et )

For, denoting by Dn{t) the Dirichlet kernel, and using Abel's transformation
we obtain

exp nA cos nt

- ) n (1+e / - 2Δ(log2)1+

where δ α n = an — ΛW+I and the monotonity of the sequence {exp n* n~A

is used, which follows from

^ Δ , 1 + θ \
)

exp > 0 (* > 1).

Thus (4) is proved.
oo

Let us now consider the series j>jAn(x) n~A(log n)~ι~€, which is summable
= 2 • • ' ••

\R, expwΔ, 1| if

dw < oo.
j expwΔ ^ •—

We have

^ exp ΎI^ :—-—r— =
^mΛ ' /2 Δ ί lθβf W)̂ "̂ "€

/

say. By (2) and (3) we have

7 - . 1 __

Prom (4) we have

expw* /Γ 1 _ . 1X f
^ U log(l/ί) J _1 + Δ J _ 1 + Δ ί

dt

= O{exp ίϋΔ log log w • u>-Δ(log w)-1-'}.

Hence we obtain
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exp w* ' " \J w{log wy^

which completes the proof.

<oc.

6. Proof of Theorem 2. THE CASE λ« = exp (log w)Δ. We shall prove
that, if

(5)

then ^ A * ^ i + 6 (θ > 0) is summable 1#, exp(logw/)Δ

} 1|. We need the

following estimations:

(6) Σ

exp(log /2)Δcos nt f exp (log w)^}
(7)

These are easily proved, so we omit their proof.
oo

The series ^An(x)(logn)~A'e is summable \R, exp (log w)*, 1\ if

/:
2

We have

dw < oo.

exp (log nYAnjx) _ 2^ ί ,,., ί ^ , exp(log M)ΔCOS nt) ,

(wlogw;)" 1 -Λ+*
say. By (5) and (6) we have

= O exp^log tv)A e (̂log w;)^^-e / |φ(ί) | Jί I

ϋϋ

= 0{exp (log^)Λ (log w)-2*'1-*}.

Using both (5) and (7), we have, putting / \φ(u)\ du = φ*(ί),

o

/2 = O{exp (log M;)Δ (log w)-*-*}\ \φ{t)\t^dt
(wlogw)"

It it

= O{exp (log w)Δ (log w;)-Δ-β> | [ φ*(t)t'11 + J φ*(ί)^-"2 dt
l " " 1 " 1
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= 0{exp (log w/)Δ log log w(log w)~*~€}
Thus

J w exp (log w)Δ I J w(log w)ι+€ f
2 2

which proves the theorem.

REMARK. When Δ = 1, | R, exp (log w)Δ, 11. = | C, 11, and for this case
M.T. Cheng [1] has proved the following theorem.

CHENG'S THEOREM [1]. If the Fourier series 2 Atίx) is multiplied by one

of the following factors

l/(log ny+ϊ+% l/(log n)ι+i (log, nY+%

then under the condition

J \φ(u)\ du = o{t),
o

the resulting series is summable \C,1\ at the point t = x.

7. Proof of Theorem 2. THE CASE λ^ = exp (log log n)A. We shall prove
that, if

(8) f |φί«)|rfw=θ(*/log(-?-)loglog( -J-)),
0

then *35 — — T - ^ M Γ - — is summable IR, exp (log log w)A, 11.
- " (log log w)Δ+e

We have

(9) 2ι - / Ϊ Γ Γ J ^ T ^ Ϊ ; = 0{exp (log log w)^ w logw (log log zi;)1

^ exp (loglog n)*cos^^ ί exp(logjog;w)A 1
» 5 doglogΛ)Δ+β I /(log logo;)A+ /

Proof is omitted.

The series 2 /T~4^^ΔTβ i s summable \R, exp (log log^)Δ, 1| if

/ — (log log w)*~ι

2
exp (log log wY w log w Σ

exp (log log M

(log log
dw < oo.

Now

ι exp (log log w)Δ
 A»(Λ) 2 f J /AN f ^ , exp (log log w)Δ cos wi_exp (log log yz)Δ AnW _ 2_ C ώ(t\(^ exp (log log n)* cos ̂ ^
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0 T

say, where r = 1/w log w log log w. By (8) and (9), we have

/ |φ(/)| dt\
0

= 0{exp (log log w)A (log w)"1 (log log w)~ι~tiA~€}.

Also using (8) and (10), we have

/ , - Q [ exp(loglog^)Δ Γ \φ(t)\ j 1
\ (log log w)A+€ J t J

T

it -it

•— \J \ / \ ~—~ I Clt

t (log log w)Δ + e J IL t J J *2

T T

= 0{exp (log log eί;)Δ log log log w (log log w)~A-€}.

Hence we conclude

J
\Lz\)dw = O Γ Γ log log log w

exp (log log w)A w log w [J w log w (log log w)i+e J
Z 2

.and this completes the proof.

Thus Theorem 2 is proved.
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