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In this paper, we study the principal fibre bundles whose structure
group is the 1-dimensional toroidal group 7%, mainly from the differential
geometrical point of view. Therefore all the spaces considered here are
differentiable manifolds (of class C=) wiih the second countability axiom and
all the maps are supposed to be of class C=.

First we define the additive group structure in the set P(M,T!) of alk
principal fibre bundles over M with group T!. It is possible to study the
group P(M, T!) at least from three points of view; (1) the differential geo-
metrical point of view, (2) the sheaf theoretical point of view and (3) the
homotopy theoretical point of view. The method of (2) is the simplest and
gives the best result ; namely an isomorphism between P(M, T*) and H*(M, Z)
{[14])). The method of (1) gives only a homomorphism of P(M.T*) onto the
Betti part of H*(M,Z). The deficiency comes from the use of differential
forms which makes it difficult to obtain any information about the torsion.
part. However this method has some advantage for the applications, because:
the homomorphism is closely related to the curvature form of a connection
in a bundle P € P(M, T!). The method of (3) can be applied only to the case:
where M is simply connected. Since the second point of view is well known,
we only sketch the outline and in this paper we put stress on the first point:
of view.

In § 6,7,8 and 10, some applications of the first method are discussed
and making use of the third method we give in §9 a very geometrical
description of P(M, T*) under the assumption that M is a simply connected
homogeneous space with the compact isotropic subgroup.

Most of results in this paper are mutatis mutandis valid in the case the
group is the kA-dimensional toroidal group, and such a case can be usualiy
reduced to the case of group T

We remark also that the second method can be applied to the case
where the structure group is not abelian ([6],[8]). The case where M is a
complex analytic manifold and the group is the complex torus has been
studies by Blanchard [2].

To finish this introduction, the auther acknowledges many valuable
suggestions given by Professor H. C. Wang.

1. Principal fibre bundles with group T*
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Let P and P’ be principal fibre bundles over an n-dimensional manifold
M with the 1-dimensional toroidal group 7T%. (T is the additive group of
real numbers modulo 1, written multiplicatively in this section). We shall
define the sum P + P/, which will be also a principal fibre bundle over M
with group T!. Let A(P x P’) be the set of all elements (u,#’) € P x P’ such
that 7(#) = 7'(«’), where 7 and 7' are respectively the projections of P and
P’ onto M. We say that two elements (ui,#;) and (., #;) of A(P x P') are
equivalent if there exists an element s € T! such that

wis = u; and ;57! = u,.
We denote by P+ P’ the quotient space of A(P x P’) by this equivalence
relation. The projection from A(P x P’) onto M induces a projection from
P + P’ onto M, which we shall denote by ="". The action of T on A(P x P')
defined by
(u,u')s = (us,u’) sc T, (u,') € AP X P),
preserves the equivalence relation; hence it defines the action of 7% on P +
P’. (Note the fact that T! is abelian). Now we shall show that T! acts
simply transitively on ="~ (x) for each x € M. Let u;,u, be arbitrary
elements of P+ P’ and let (u,, %)), (., »;) be representatives for u;’, u,” resp-
ectively. Then there are elements s,s’ € T! such that
#, = ws and u,= us,
if 7''(u)) = 7" (a)). Since (@, 4,) and (u.S', #;) are equivalent, we have that
u, = u,’ss’. Hence T! is transitive on 7"~ (x). Now suppose #'’s = u" for
some element #” € P+ P and s € T!. Let (u,%’) be a representative for »".
Then (#,%’) and (us,u’) are equivalent. Hence s is the unit of 7. We shall
prove that the set of all principal fibre bundles over M with group T* forms
an additive group under the above defined addition operation. It is evident
that the correspondence
AP X P)>D (u,u) ~ (o', u) € AP’ X P)
gives rise to the bundle isomorphism between P + P and P’ + P. (Note the
fact that (us, ') and («, #’s) are equivalent in A(P x P’)). Hence the addition
operation is commutative. Let P, be the product bundle M x T!. Then the
mapping
P >u—(u,(m(u),1)) € AP X By)
induces a bundle isomorphism of P onto P+ P, (1 is the unit of 7" and
(7(u), 1) € Py). This shows the existence of the unit element. Let — P be a
space homeomorphic to P and let — % be the element of — P corresponding
to an element # of P. Then we define the projection — 7 of — P onto M by
—7( — u) = m(u).
The action of T on — P is defined by
(—u)s = —(us™?).

Then — P is a principal fibre bundle over M with group T%. We shall show
that P+ (— P)= P,. Let (%, — u,) be any element of A(P x ( — P)). Then
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there exists a unique element s of T* such that
Uy = UsS.
The mapping
AP X (— P)) > (thy, —ts) = (m(st1),s) €« M x T' = P,

induces a bundle isomorphism of P+ ( — P) onto P,. This shows the ex-
istence of the inverse elements. Finally we shall show the associativity.
Let P, P’ and P’ be arbitrary principal fibre bundles over M with group Tt
and let A(P x P' x P’) be the set of all elements (u, ', u’) & P x P x P”
such that 7(x) = 7w'(#') = 7w"(u”’). We say that (u, u’, ") and (us, u's™'s’, w’s’"?)
are equivalent for any s,s’ € T!. The quotient space of A(P x P’ x P") by
this equivalence relation is naturally isomorphic to the spaces P + (P’ + P")
and (P + P’) + P”. Furthermore the action of T! on A(P x P x P”) given by

(w0, ', 26'")s = (us, w0, u'’)
defines the action of 7! on the quotient space, which turns out to be a
bundle isomorphic to P+ (P + P”) and (P + P’) + P”. (The detail will be
omitted).

THEOREM 1. The set P(M,T") of all principal fibre bundles over M with
group T forms an additive group. The zero element is given by the trivial
bundle.

ReEMARK 1. If we adopt the Steenrod’s definition of a fibre bundle, then
the sum of two bundles P and P’ can be defined as follows. Let fi;: U; N U;
— T1 (resp. fi;: UiNU;— T*) be the coordinate transformations of the bundle
P (resp. P), where U;, U; are open sets in M. Then the bundle whose co-
ordinate transformations are given by f;-f;; is the sum of P and P

REMARK 2. The r2sults in this saction hold for any principal fibre bundle
over M with abelian structure group.

2. From the point of view of the differential geometry

Let P be a principal fibre bundle over M with group T:. We note the
fact that the Lie algebra of T is the real line R with the trivial bracket
operation. An infinitesimal connection in P is defined by a real valued linear
differential form o on P with the following properties ([7], [10]):

(w.7) w(us) = s7ls  for u € P, s TT").

(@.2) o(us) = o(u) for u & T(P), s< T

REMARK 1. Since T! is abelian, the property (w.2) is equivalent to the
usual one: w(us) = s~ w(%)s.

The structure equation of E.Cartan 3s given by

dw =
where Q is the curvature form.
REMARK 2. Since T! is abelian, the usual structure equation

dm=—%—[w,w]+ﬂ



32 S.KOBAYASHI

is reduced to the above equation.
Since () satisfies the following condition:
Q(#:31, %#:5;) = Q(u1, 4s) for all #,, 4y € Tu(P), 51,5:€ T«(T"),
there exists a unique 2-form Q* on M such that
Q = 7x(Q*),
where 7* is the mapping induced from .
From
TdQ*) = dQ = ddw = 0,
it follows that dQ* = 0.
Let o’ be another form defining a connection in P. Then
(0 — @)@ S) = (0 — &) (s + us) = (0 — @) (%).
Hence there exists a unique differential form ¥ on M such that
(V)= w —o'.
From
7XAYV) = d(m*(V)) = do — dow' = THQ*) — 7THQ'*),
we obtain
av = Q* — Q'*,
(Q)' is the curvature form of the connection defined by «’).
Therefore the cohomology class of Q* is independent from the choice of

connections and is called the characteristic class of P. This is a particular
case of the theorem of Cartan-Weil [3].

Let P and P’ be principal fibre bundles over M with group T" and let
o and o’ be connection forms on P and P’ respectively. We define a linear
differential form w X o’ on P x F' as follows:

o X o' = pXw) + ¢ o'),
where @ and ¢’ are the natural projections from P x P’ onto P and P’
respectively. We denote also by o X o’ the restriction of » X o’ on A(P X
P’). From the properties (w. 1 & 2) it follows that o X ' induces a linear
differential form on P + P’; more explicity, there exists a unique differential
form " on P+ P such that

pHo”’) =0 X o,
where p is the natural projection of A(P x P’) onto P+ P'. It is easy to see
that o’ defines a connection in P+ P’ and

Q* = O* + Q'*,

Therefore the mapping which sends P into its characteristic class is a
homomorphism of P(M, T"') into the second cohomology group H*M,R) of M
with real coefficients. We shall study the kernel of this homomorphism.
Suppose that the characteristic class of P vanishes. If a form o defines a.
connection in P, then the 2-form Q* on M is cohomologous to zero,i.e.,
there exists a 1-form 6 on M such that
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do = Q.
It is easy to see that the form 77'*(0) has the following properties:
@) us) = 0 for any € P, s € T(T),

7*0) (us) = wx(0) (%)  for any # € T(P), s € T".
Hence the form o — 7*(#) possesses the properties (w. 1 & 2) and defines a
connection in P. Its curvature form vanishes identically. We have proved
that, if the characteristic class of P vanishes, then there exists in P a connection
with the vanishing curvature form. The restricted holonomy group of this

connection contains only the unit. Let Jl~l be the universal covering of M

and p the projecton of M onto M. Let P be the bundle over M induced
from P by p. If a form w defines in P a connection with the vanishing

curvature, then p*(w) defines in Pa connection with the vanishing curvature,

where p is the natural bundle map of P onto P. Since the base manifold
of P is simply connected, the holonomy group of this connection contains
only the unit. Hence the structure group of P can be reduced to the unit;
in other words, Pis the product bundle M x T'. We have proved that, if
the characteristic class of P vanishes, then the bundle P over the wuniversal

covering space M of M, induced from P by the projection p : M~ M, is trivial.
In particular, if M is simply connected, the above homomorphism is an isomor-
Dhism.

Let P be again a principal fibre bundle with the vanishing characteristic
class and let w be a connection form on P whose curvature vanishes. We
have the natural homomorphism from the fundamental group w (M) onto
the holonomy group. Since the holonomy group is abelian, the commutator
subgroup [m(M), m(M)] of 7 (M) is in the kernel of the homomorphism.
On the other hand it is well known that the 1st homology group H\(M,Z)
of M with integer coefficients is isomorphic to 7 (M)/[m (M), m(M)]. Hence
if H(M,Z)= 0, then the homomorphism of P(M,T) into H*(M,R) is an
isomorphism into.

Now we shall study the image of the homomorphism of P(M, T%) into
H!(M, R). To this end, we state a result of Weil in [17].

LLMMA oF WEIL.e Every differentiable manifold admits a differentiably
simple open covering.

An open covering {U,}ir is, by definition, differentiably simple, if

(1) It is locally finite and each U; is relatively compact.

(2) Let J be a subset of 7, if ﬂ U; is non-empty, then it has a dif-

JeJ
ferentiable retraction.

Observe that the cohomology of the nerve N associated with a differen-
tiably simple open covering of M is isomorphic to the Cech cohomology of
M.

Let ¥ be a closed 2-form on M. Then, for each 7 € I, there exists a
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1-form ¥; on U; such that
V¥ =d¥; on U..

If U;NU; is non-empty, then W¥; — V¥, is a closed 1-form on it. Hence

there exists a function W;; on U; N U; such that
d‘I’tj =V -—-‘I’j and \Pij = —-\I’ﬁ.
Suppose U;NU;NU; is non-empty. Then fij = Vi; + Wi + Wi is closed,
hence it is a constant function on U;NU;\Us. Since (4,7, k) is a 2-simplex
in the nerve N, a function f: N— R given by
f&,5,k) = fis
is a 2-cochain of the nerve IN. It can be easily shown that f is a cocycle.
According to a theorem of Weil [17], the correspondence
v —f

gives rise to an isomorphism between the De Rham cohomology H*(M, R)

and the cohomology H?(N, R) of the nerve N with real coefficients.
A closed form WV is 7nfegral, if

f P = integer
(4

for any finite singular cocycle ¢ with integer coefficients. The set of all
elements of H%(M, R) which contain integral closed forms is the image of
the natural homomorphism H:M, Z)— H*(M, R), which will be denoted by
H (M, Z), (the subscript & stands for “the Betti part”). We define similarly
HXN, Z),. Then the isomorphism of H*(M, R) onto H?*N, R) induces an iso-
morphism of H* M, Z), onto H*(N, Z)y.

We shall apply the above results to the form Q*. Let {U;}.r be a
differentiably simple open covering of M. Let o; be a local cross-section in
P defined on U;. Then w; = ¢(w) is a 1-form defined on U; and satisfies the
following equation:

dw; = Q* on Us;.
If U;NU; is non-empty, we define the coordinate transformation function
vv:i; as follows:
oi(X)y:§(x) = o5(x) for x € U;NU;.

v:s is a mapping from U;N\U; into T, hence it can Be considered as a real
valued function modulo 1. We have ([5])

Wj; — Wi = d'y“ on Utnt.
From the fundamental property of coordinate transformations :

Yis + Y + v =0 (mod. 1),
it follows that the cocycle of the nerve N corresponding to the closed form
Q* is integral. Therefore the characteristic class of P belongs to H M, Z),.

We shall prove the converse. Given an arbitrary element of H*(M, Z)»,
let ¥ be a 2-form which represents it. According to the method of Weil,
we define a 1-form W, on each U; and a function ¥;; on each non-empty
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U:NU;. If we choose properly ¥;;, then we have that
f},,c=\lfij+‘1fjk+‘lfm=integer on U; NU;NUs.

In fact, if the fis ’s are not integers, the 2-cochain f defined by

ﬂiyjy k) = ﬁﬂ’
is cohomologous to an integral 2-cochain f’ of the nerve N; that is, there
exists a 1-cochain g of the nerve N such that

f=r+0og
“Then we have to only take WV;; + g(z,7) in place of WV;;.
If we consider the W;;s as functions with values in T! and take them as
the coordinate transformations, then we obtain a principal fibre bundle P
over M with group T%. From

d\pij - \Vi - ’\I’j,
it follows that the set of W.'s defines a connection in P, whose curvature

form is 7*(\V). More precisely, there exists a connection form » on P such
that

W, = o’(w) on Ui

‘where o; is the natural cross-section on U; associated with the coordinate
transformations W;;. (cd(X)Wss(%) = as(x), x€ U;NUy).

We have obtained the following

THEOREM 2. Let P(M, T") be the additive group of all principal fibre bund-
les P over M with group T'. The mapping which sends P into its charac-
teristic class is @ homomorphism of P(M, T') onto H*M,Z),. If P is in the
kernel of this homomorphism, then there exists a connection in P whose
restricted hotonomy group is trivial. If the first homology group H,(M,Z) of
M with integer coefficients is zero, then the homomorphism is an isomorphism.

3. From the point of view of the theory of sheaves

Since the msthod based on the theory of sheaves (faisceaux) is well
known ([6], [8], [14]), we shall only sketch the outline of the method and com-
pare with the geometrical method in the section 2.

Let F (resp. F' and F”) be the sheaf of germs of all local mappings of
class C= from M into R (resp. Z and T!). Let {U:}i.: be a differentiably
simple open covering of M and «;;: U;NU;— T* the coordinate transforma-
tions of a bundle P. Then the set of ;s defines a cochain y of M with
coefficients in the sheaf F’. It can be easily shown that  is a cocycle and
the mapping P— vy gives rise to'an isomorphism of P(M,T*) onto H(M, F").
From the natural exact sequence

0>Z—>R—->T'—0
we obtain an exact sequence
H(M,F)— H(M,F')—~ H(M,F)— H(M,F)— ....
Sincz H(M,F)= H¥M, F)=0 and H*M, F')= HXM, Z), we have the iso-
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morphism
H (M, F") = HXM, Z).
Finally we obtain an isomorphism of P(M,T') onto H*M,Z). It is easy to
see that the composed homomorphism
PM, TY)—> H(M,Z)— H M, Z),
is nothing but the homomorphism defined in the section 2.

4. From the point of view of the homotopy theory

Consider the exact homotopy sequence of a bundle P:

s P) = 7o M) > 70(TY) — 74 P).
Given a bundle P, we have a homomorphism A :m(M)— 7 (T!) (= 2Z). We
shall prove that, under a certain condition (which is satisfied if M is simply
conneced), the above defined mapping P(M, T') - Hom(mx(M), Z) is an iso-
morphism.
Let « be an arbitrary element of m,(M) and f: I x I— M a differentiable
mapping which gives «. Then f maps the boundary of 7? into a single point

%,. Let f be a differentiable mapping of I? into P with the following pro--
parties:

1) wof (1, t) = fir, t) for any 7,¢ € I,
@) AT,0)=f0,¢) =f(1,t) = u, for any 7, t € I,
where %, is a point of P such that (%) = x,.
Put
Af(r) = f(r, 1).

Then Af is a mapping of 7 into the fibre of P over x, and defines Aax €
a(Th). Let By be the generator of 7 (T*). Then the integer m defined by A«
= mB, is the winding number of the closed curve Af along the circle 7.

Let 2 be the natural homomorphism of (M) into H.M, Z). Consider the:
following integral of the characteristic class:

f Q*=fﬂ*=f _Q*=f7r*(ﬂ*)=f_ﬂ.
() b () g 7

Applying the Stokes formula, we obtain .
[ 0 P Y P
s I or o1 o2 g o4

o) =A0,8) tel
T =fr1) v€I
o) =f1t) tel
o™ =f(r,0) TEL

where
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:From the 2nd property of f, we get immediately

f co=f w=f o =0, f w=f .
g g3 gy g2 Ar

From (w.1), it follows that the integral of w around the fibre of P is equal
‘to 1. Hence the integral of w over Af is equal to the winding number m.
We have proved the

THEOREM 3. Let h: mw(M)— HM,Z) be the natural homomorphism and
et m be an integer given by Aa = mB3,, where (3, is the generator of = (T*)
and A is the boundary operator of the exact homotopy sequence of a bundle P.
Then

O* = m,
h(a)

.where Q* is the characteristic class of P.

If M is simply connected, then % is an isomrophism of 7.(M) onto
Hy(M, Z). From the theorems 2 and 3 we obtain the

COROLLARY. If M is simply connected, then P(M, T") is isomorphic to Hom

(7ro(M), Z). The isomorphism is given by P— A (the boundary operator of the
_homotopy sequence of P).

5. Properties of P(M,T")

Let f be a mapping of a manifold M’ into a manifold M and let P& P
(M, T*). The induced bundle f~1(P) over M’ is defined as follows.
SUP) = A{(x, w); f(x') = m(u)}
The projection 7' and the action of the group T! are defined by
a'(x,u) =%, (Xu)s = (x',us) for s T
The following theorem is easy to prove.

THEOREM 4. Let f be a mapping of M’ into M, Then the mapping P —
~YP) is @ homomorphism of P(M, T") into P(M', T").

Let G,, be the cyclic subgroup of T* of order m. Since T acts on P on
the right, G,, acts on P on the right. The quotient space P/G, is a principal
fibre bundle over M with group T!/G,. Since T'/G, is isomorphic to T!, it
.can be considered as a principal fibre bundle with group 7. More precisely,
the bundle structure in P/G,, is defined as follows.

Let [#] denote the element of P/G,, which is represented by # € P. We
.define the action of T* on P/G, by

[uls = [us'] for any s € T! and [u#] € P/Gu;
‘where s’ is an element of 7" such that
s =s"™
“This defintion is independent from the choice of representative # and m-th
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root s’. In fact, if g is any element of G,

[ugls = [ugs'] = [us'g] = [us'] = [uls.
If /™ = s, then (s’~!s”)™ is the unit, hence s’~!s” is in G,, Therefore

[us"] = [us's'~1s"] = [us’].

We shall prove that 7' acts simply transitively on each fibre of P/G.
Given two elements [#] and [«'] in the same fibre, let s’ be an an element
of T! such that #’ = us’. Then [«'] = [u]s’™. Suppose [#]s = [#s'] = [«], Then
s’ is in G, hence s = '™ is the unit element.

THEOREM 5. Let P be a principal fibre bundle over M with group T' and
let G, be the cyclic subgroup of T' of order m. We consider P|G, as a
principal fibre bundle over M with group T' as defined above. Then

PIGpn=m-P(=P+ .... + P, m times).

Proor. From the definition given in §1, it follows by induction that m- P

can be defined directly as follows. Let A(P X .... X P) be the set of all
points (21, ....%,) € P X .... X P such that =(u) = .... = 7w(sn). Two ele-
ments (#1, --.., %) and (2,51, .. .., UnSn) of AP X .... X P) are equivalent if
and only if s;s,....s, is the unit element. The quotient space of A(P X ....
x P) by this equivalence relation is m - P. We denote by [(«,, .. .., #,)] the
equivalence class of (#;, ....,#,). The action of T* on m- P is given by

[(w, - .. .08m)]s = [(2618, 2, - . . . %m)].

We shall define a mapping f of P/G, into m- P by
S(2]) = [(w, w, ....u)l
First of all, f is independent from the choice of representative . If g< Gu.
then
S([ugD) = [(ugug, ....,u8l = [(nu, .... u)]

because g™ is the unit element.
Let s be any element of T and s’ an element such that s'm = s. Then

Sluls) = fillus']) = [us/, ...., us')] = [(us,u, ....,u)]
= [(a, ....,u)ls = (f([«]))s.
Therefor f is a bundle isomorphism of P/G, onto m - P. Q. E.D.

COROLLARY. If P is simply connected and m is an integer greater than 1,
there does not exist a principal fibre bundle P’ such that P= m- P.

Proof. If such a bundle P’ does exist, then P= P'/G,. Hence P’ is a
covering space of P. Since P’ is connected, this can happen only in the case
where m = 1.

6. Applications to bundles with group U(m).

Let P be a principal fibre bundle over an #n-dimensional manifold M
with group U(m). (U(m) stands for the unitary group in m variables). Since
SU(m) = {s € U(m); det s = 1} is a normal subgroup of U(m), P/SU(m) is a
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principal fibre bundle over M with group U(m)/SU(m) (which is isomorphic
to T'). The Lie algebra of U(m) consists of all skew-hermitian matrices in
m variables. Hence a connection in the bundle P is is given by a matrix
differential form o = (@), s1.....,m such that

(1) Each of; is a complex valued linear differential form,
2) o = (%) is skew-hermitian,
(3) w(us) = s-is for any s € T«(U(m), u € P,
4) o(us) = s~'w(#)s for any s € U(m), © € T(P).
The structure equation of E.Cartan is given by

dw = ——é [w, 0] + Q

or, more explicitly,

do' = =3 w's A\ 0y + Q.
Consider the trace I o’;, which is a complex valued linear di‘ferential form
on P. Then there exists a unique linear differential form ¢ on P/SU(m) such
that

v¥(§) = 3 o',

where v is the natural projection from P onto P/SU(m). Then ¢ defines a
connection in the bundle P/SU(m).

REMARK 1. This is a particular case of a general theorem. If P is a
principal fibre bundle over M with group G and if H is a closed normal
subgroup of G, then P/H is a principal fibre bundle over M with group
G/H. Let g and §) be the Lie algebras of G and H respectively and let A be
the natural projection of g onto g/, If w is a g-valued linear differential
form on P defining a connection in P, then there exists a unique g/9-valued
linear differential form ¢ on P/H such that

v*(§) = Mo,

where v is the natural projection of Ponto P/H. And & defines a connection
in P/H.

The curvature form of the connection in P/SU(m) defined by ¢ is d¢
and there exists a unique 2-form p on M such that

7*(p) = df,

where 7 is the projection of P/SU(m) onto M. We call p the generalized
Ricci curvature form of the connection in P defined by . We call the 2-
dimensional Chern class the cohomology class of p/27a/ — 1.

REMARK 2. If P is the bundle of unitary frames over a Hermitian space
M and o defines a connection in P, then the generalized Ricci curvature is
nothing but the classical Ricci curvature and the Chern class coincides with
the classical one.

The generalized Ricci curvature vanishes identically if and only if the
restricted holonomy group of the connection in P/SU(m) contains only the
unit element ([1],[10]). The natural homomorphism of U(m) onto U(m)/SU(m)
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maps the (restricted) holonomy group of the connection in P onto the (rest-
ricted) holonomy group of the connection in P/SU(m) ([10]). Hence the rest-
ricted holonomy group of the connection in P is contained in SU(m), if and
only if the restriceted holonomy group of the connection in P/SU(m) is
trivial. Thus we have generalized the theorem of Iwamoto [9] and Lichne-
rowicz [11],[12].

THEOREM 6. The generalized Ricci curvature of aconnection in a principal
fibre bundle P over M with group U(m) vanishes identically if and only if the
restricted holonomy group is contained in SU(m).

Now we shall prove the following

THEOREM 7. The 2-dimensional Chern class of a principal fibre bundle P
over M with group U(m) is zero if and only if there exists a connection
in P whose restricted holonomy group is contained in SU(m).

Proor. The sufficiency is an immediate coinsequence of the theorem 6.
Suppose that the Chern class is zero. Let o be a connection form on P.
Then the Ricci curvature form is cohomologous to zero. Let g and ) be the
Lie algebras of U(m) and SU(m) respectively and let ¢ be the center of g.
Then

g=bh+c
According to the above decomposition of the Lie algebra g, we decompose

the g-valued linear differential form o into the direct sum of an H-valued
form w; and a c-valued form w;:

w = w; + w:.
Now we shall modify the second component of w in order to obtain a
required connection. Since the characteristic class of P/SU(m) is zero, there
exists a connection in P/SU(m) whose restricted holonomy group is trivial
(Theorem 2). Let »’ be the form on P/SU(m) which defines such a connection.
Then v*(w’) is a form on P, where » is the natural projection of P onto
P/SU(m). It is easy to see that the form w; + v*(w’) defines a required
connection in P. Q.E. D.

7. Bundle §*"*! over the complex n-dimensional projective space

Consider the complex (# + 1)-dimensional Euclidean space C"*!, whose
coordinate system is given by 2% 2!, ....,2". The set of points 2 = (20, 2!, ....
2"*) satisfying

[2]2= 22"+ 22t + .... + 2" =1
forms the (2n + 1)-dimensional sphere S?**!. We shall identify two points z
and 2z’ of S**+! if there exists a complex number e such that

2 = g™z,

Then the set of equivalence classes is the complex n-dimensional projective
space, which we shall denote by M in this section. The sphere S***! is a
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princirpal fibre bundle over M with group {e*"; » € R}, which is isomorphic
to T'. We shall study the relationship between this principal fibre bundle
and the second cohomology group of M.

It is well known that, if M is the complex n-dimensional projective
space,

H(M,Z)=Z.

Furthermore M is simply connected; hence the group of all principal fibre
bundle over M with group T" is isomorphic to the additive group of integers.
Let P be the principal fibre bundle over M with group 7* which corresponds
to 1€ Z. Suppose the bundle S:**! corresponds to an integer k. Since S#*+1

is simply connected, we have only two possibilities, namely 2=1 or —1.
(See the theorem 5 and the corollary).

THEOREM 8. The group of all principal fibre bundles over the complex n-
dimensional projective space M with group T: is isomorphic to the additive
group of integers Z. The bundle S**+! over M corresponds to 1 € Z for a proper
orientation of M.

ReEMARK 1. This theorem has been proved in the case where # =1 by
Steenrod [15].

The complex projective space M, considered as a homogeneous space
U(n + 1)/U(n) x U(Q1), admits an invariant Kaehlerian metric, which is unique
up to a constant factor. We shall define the canonical Kaehlerian metric on
M as follows ([4]),

dst = 3 dzldzt — (3 2d2) (3 2'd2).
Then the fundamental 2-form of the Kaehlerian space M is given by
d = 3 dzt A d7.
On the other hand, the linear differential form » on S***! defined by
o = 3 2dz!

gives a connection in the bundle S**+! over M. Its curvature form is therefore
given by

Q = do = Sdz A dZ.
It is known that, if p is the Ricci curvature form of the canonical Kaehlerian
connection on M, then ([4])
p=(n+ 1.
The following theorem follows from the theorem 2,5,6 and 8.

THEOREM 9. Let M be the complex n-dimensional projective space with the
canonical Kaehlerian metric. Let P be the bundle of unitary frames over M.
Then

(1) The principal fibre bundle S***' over M has the characteristic class
represented by the 2-form — ®, where O is the fundamental 2-form of the
Kaehlerian space M.

(2) The principal fibre bundle P|SU(n) over M is isomorphic to the bundle
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— (n + 1)S**1, 4. e., P/SU(n) corresponds to the integer — (n 4+ 1),

REMARK 2. In this section, we have identified the group {e*™¢; r € R}
with the group T!. Note that ®/2w,/ —1 and p/2m,/ =71 are integral
cocycles of M.

8. Submanifolds of a Hermitian space

Let M be a complex n-dimensional Hermitian space and M’ a complex
k-dimensional regular submanifold of M. M’ is also a Hermitian space with
the metric induced naturally from that of M. Let P be the bundle of unitary
frames over M. It is a principal fibre bundle with group U(n). We consider
the set P’ of all unitary frames (x; e, ....,, e,) € P such that

1) xeM,

(2) the first & vectors are tangent to M’ at x,

(3) the last (» — k) vectors are normal to M’ at x.

Then P’ is a principal fibre bundle over M’ with group U(k) x U(n — k).

The injection map of U(k) x U(n — k) into U(n) induces an isomorphism
of U(k) X U(n — k)/SUn)N(U(k) x Un — k)) onto U(n)/SU(n). Hence the in-
jection map j: P'— P|M induces an isomorphism

5P [SUm)N(Uk) x Un — k) = (P|M")/SU(n).

Let PX(resp. Pxy) be the bundle of tangent (resp. normal) unitary frames
over M'. Then Pr (resp. Py) is a principal fibre bundle with group U(k)
(resp. U(n — k)). We shall show that

Pr/SU(E) + Pn/SUn — k) = P'|SUn)N(Uk) x Uln — E)).
First of all, we note the fact that
Pr=P /1) x Un — k), Py=P'|UE) x {1}.
Let A(Pr x Py) be the set of all points (v, w) € Pr X Py such that 7(v) =
7x(w), where 7T and 7y are the projections of the bundles Pr and Py onto
M’ respectively. A tangent frame v at x and a normal frame w at x give
a unique frame u of M at x, if x € M'. The mapping
n: APT x Py) D, w)—>u & P
induces an isomorphism
n* . Pr/SU(E) + Px/SUn — k)= P'[SUn)(Uk) x Un — k)).
In fact, if s € U(k) and s’ € U(n — k), then
n(ws, ws') = (u(s x s))
and s x S €SU(E) x SUn — k)=SUn)N(U(k) x U(n — k)). Hence the mapping
n* is well defined and it is easy to see that #* is a bundle map. The com-
posed mapping n*oj*~! gives an isomorphism of (P|M')/SU(n) onto Pr/SU(k)
+ Py/SU(n — k).
THEOREM 10. Let M be a complex n-dimensional Hermitian space and M’

a complex k-dimensional regular submanifold of M. If P is the bundle of
unitary frames over M and Pr and Py are the bundles of tangent and normal
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Jrames over M’ respectivaly, then
Pr/SUk) + Pn/SUn — k) = (P|M)/SU(n).

Consider the case where 2 =7 —1. Then a cross-section in the bundle
Py = Py/SU(1) is a normal vector field to M’ and conversely, a non-singular
normal vector field is a cross-section. Since Py is a principal fibre bundle,
it is trivial if and only if it admits a cross-section. Hence

COROLLARY. Swuppose M’ is a complex (n — 1)-dimensional submanifold.
Then there exists a non-singular normal vector field to M’ if and only if

Pr/SUn — 1) = (P|M")|SUn).

9. The case where M is a homogeneous space

H.C. Wang proved in [16] that every simply connected compact homo-
geneous complex manifold (C-space) is a fibre decomposition space of a
certain homogeneous space with torus as the fibre. Following his idea, we
shall determine . geometrically the group P(G/K,T'), where G is a simply
connected Lie group and K is a connected compact subgroup of G.

Since G is simply connected and K is connected, the homogeneous space
M = G/K is simply connected. Since K is compact, K is locally the direct
product of the connected component of the center (which is the k-dimesional
toroidal group 7T%) and a connected semi-simple closed subgroup H = [K, K]
(the commutator subgroup of K). It is well known that P=G/H is a
principal fibre bundle over M = G/K with group T%® = K/H. Let T%;' be the
normal subgroup of 7% defined by

Ti'=TX .... xTx{e}xTx .... xT,
where ¢ is the unit element of the 7-th component of T%. Then P; = P/T{;}

is a principal fibre bundle over M with group 7T'. We shall prove the
following

THEOREM 11. ZLet G be a connected and simply connected Lie group and
K a connected compact subgroup of G. Then the group P(G|K,T") is spanned
by Py, ...., P, with integer coefficients, i.e.,

PG/IKT')=Z-P, + .... +Z- P;.

Prour. First of all, we note that (i). =(G) = 0, (ii). =7(H) = finite (The-
orem of Weyl), (iii). 7(G) = 0 (Theorem of E. Cartan) and (iv). 7(G/H) =
finite. The last fact follows immediately from the exact homotopy sequence
of the bundle G over G/H with fibre H. Consider now the following exact
homotopy sequence of the bundle P:

0 = T 5wl G/ H) > mA G K) = m(T*) — (G H) = 0.
Let ¢; be the natural homomorphism of 7% onto T = T%/T%;' and @} the
induced homomophism of 7r(T%) onto 7(T"). Put A; = @joA. Then each A;
is the boundary operator for the exact homotopy sequence of the bundle P;
and the homomorphisms A, ....,A; of m(G/K) into = (T!) = Z are linearly
independent, i.e., if
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MmN+ . M Ac=0 (my, ....,m; are integers),
-then m, = .... = m:; = 0. This follows from the fact that A induces an
isomorphism of 7.(G/K)/m(G/H) onto = (T%). If we prove that A, ...., A

span Hom (7«G/K), 2), i.e.,

ZA F .... +2Z:Ay = Hom(m(G/K), Z),
‘then our theorem follows immediately from the corollary to the theorem
3. Let £ be an arbitrary homomorphism of 7,(G/K) into Z = 7(T*). Evidently
.£ maps every element of finite order into zero. Since 7 G/H) is finite, &
induces a mapping of 7(G/K)/m(G/H) into Z = 7r(T*). Therefore £ is a
linear combination of A, ....,As With integer coefficients®. Q.E.D.

10. Application to surfaces

Let P be the bundle of oriented orthogonal frames over a 2-dimensional
.oriented Riemannian space M. Then P is a principal fibre bundle with
group SO(2), which is isomorphic to T?. The Riemannian connection on M
is given by a matrix differential form

0 o

—w 0)'
There exists a unique 2-form Q* on M such that dow = 7*(Q*). If we identify
SO(2) with T* and consider P as a bundle with group T, then the charac-

teristic class of P is represented by Q*/27. If is well known that if M is
.compact, then

fﬂﬂ*:Zw—-X(M’),

where X(M) is the Euler characteristic of M.

On the other hand, the Betti part H*M, Z), of the second cohomology
group of M is isomorphic to Z and a closed 2-form & which represents 1 €
Z = H¥(M, Z), satisfies the following equality:

[o=1
M

‘Therefore the homomorphism of P(M, Z) onto H*(M, Z), maps P into X(M) €Z.
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