ON ENTIRE FUNCTIONS OF INFINITE ORDER

Qazi Ibadur Rahman

(Received January 27, 1956)

1. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function of infinite order and let $M(r), M^{\prime}(r), M\left(r, f^{(p)}\right), \mu(r), \nu(r) \equiv \nu(r, f)$ and $\nu\left(r, f^{(p)}\right)$ have their usual meanings. It is known [3, (80-1)] that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\log \mu(r)}{\nu(r)}=0 . \tag{1.1}
\end{equation*}
$$

A result better than (1.1) viz.,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\log M(r)}{\nu(r)}=0, \tag{1.2}
\end{equation*}
$$

for every entire function of infinite order has been proved by Shah [4, (1134)]. Later on Shah and Khanna [5, (47-8)] proved that for an entire function of infinite order

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\log \left\{r M^{\prime}(r)\right\}}{\nu(r, f)}=0, \tag{1.3}
\end{equation*}
$$

- a result better than (1.2) since [6, (116)]

$$
r M^{\prime}(r)>M(r) \frac{\log M(r)}{\log r}, r \geqq r_{0}=r_{0}(f) .
$$

Clunie [1] has gone still further to prove that if s is any function of ν such that $s(\nu)=o\left(\frac{\nu}{\log \nu}\right)$, then

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\log \left\{r^{s} M\left(r, f^{(s)}\right)\right\}}{\nu(r, f)}=0 . \tag{1.4}
\end{equation*}
$$

In §2 of this note I give an alternative proof of (1.4). In § 3 I prove still another result better than (1.1).
2. We have

$$
r^{s} M\left(r, f^{(s)}\right) \leqq \sum_{n=s}^{\infty} n(n-1) \ldots(n-s+1)\left|a_{n}\right| r^{n}
$$

in the notation of G.Valiron, [7, (30)] for $n \geqq p$

$$
\begin{aligned}
n(n-1) \ldots(n-s+1)\left|a_{n}\right| r^{n} & \leqq n(n-1) \ldots(n-s+1) e^{-G_{n} r^{n}} \\
& \leqq n(n-1) \ldots(n-s+1) \mu(r)\left(\frac{r}{R_{p}}\right)^{n-p+1}
\end{aligned}
$$

$$
\begin{aligned}
r^{s} M\left(r, f^{(s)}\right) \leqq & \sum_{n=s}^{p-1} n(n-1) \ldots(n-s+1) \mu(r) \\
& +\sum_{n=p}^{\infty} n(n-1) \ldots(n-s+1) \mu(r)\left(\frac{r}{R_{p}}\right)^{n-p+1} \\
& <\mu(r) p^{s+1}+\mu(r) p^{2 s}\left[\frac{r}{R_{p}-r}+\frac{r^{2}}{\left(R_{p}-r\right)^{2}}+\ldots \ldots+\frac{r^{s+1}}{\left(R_{p}-r\right)^{s+1}}\right] .
\end{aligned}
$$

Take now

$$
p=\nu\left(r+\frac{1}{r \nu^{2}(r)}\right)+1
$$

so that

$$
R_{p}-r \geqq \frac{1}{r \nu^{2}(r)}
$$

and we have

$$
\begin{align*}
& r^{s} M\left(r, f^{(s)}\right) \leqq \leqq(r) p^{s+1}+\mu(r) p^{2 s}\left[r^{2} \nu^{2}(r)+\ldots+\{r \nu(r)\}^{2 s+2}\right] \\
&<\mu(r)\left\{\nu\left(r+\frac{1}{r \nu^{2}(r)}\right) r \nu(r)\right\}^{2 s+2}, \\
& \log \left\{r^{s} M\left(r, f^{(s)}\right)\right\}<\log \mu(r)+(2 s+2)\left\{\log \nu\left(r+\frac{1}{r \nu^{2}(r)}\right)+\log r+\log \nu(r)\right\} . \tag{2.1}
\end{align*}
$$

Since $f(z)$ is of infinite order

$$
\varlimsup_{r \rightarrow \infty} \frac{\log \nu(r)}{\log r}=\infty .
$$

Hence

$$
\varlimsup_{n \rightarrow \infty} \frac{\log \nu\left(R_{n}\right)}{\log R_{n}}=\infty
$$

There will exist therefore a sequence $n_{q}=N$ such that

$$
\frac{\log \nu\left(R_{n}\right)}{\log R_{n}}<\frac{\log \nu\left(R_{N}\right)}{\log R_{N}} \quad \text { for } n=1,2, \ldots, N-1
$$

Further, for $R_{n} \leqq r<R_{n+1}$ and therefore

$$
\frac{\log \nu(r)}{\log r}<\frac{\log \nu\left(R_{N}\right)}{\log R_{N}} \quad \text { for } R_{1} \leqq r<R_{N}
$$

Given an arbitrarily large K there exists a sequence r_{1}, r_{2}, \ldots such that

$$
\frac{\log \nu\left(r_{n}\right)}{\log r_{n}}>K, \quad(n=1,2, \ldots)
$$

Hence for every sufficiently large R_{N}

$$
\frac{\log \nu\left(R_{N}\right)}{\log R_{N}}>K
$$

Also for $x=R_{N}$ we have

$$
\log \mu(x, f)=O(1)+\int_{R_{1}}^{x} \frac{\nu(r, f)}{r} d r
$$

$$
\begin{aligned}
& <O(1)+\int_{R_{1}}^{x} r^{\frac{\log \nu(x, f)}{\log x}-1} d r \\
& <O(1)+\frac{\log x}{\log \nu(x, f)} x^{\frac{\log \nu(x, r)}{\log x}} \\
& =O(1)+\frac{\log x}{\log \nu(x, f)} \nu(x, f)
\end{aligned}
$$

and so for a sufficiently large $x=R_{N}$

$$
\frac{\log \mu(x, f)}{\nu(x, f)}<o(1)+\frac{1}{K} .
$$

Now let E denote the sequence of all positive integers $N=n_{q}\left(q \geq n^{\prime}\right)$ such that

$$
\begin{align*}
& \frac{\log \nu\left(R_{N}\right)}{\log R_{N}}>K \tag{i}\\
& \frac{\log \mu\left(R_{N}\right)}{\nu\left(R_{N}\right)}<\frac{1}{K}+o(1) . \tag{ii}
\end{align*}
$$

Either [CASE A] there is a subsequence of integers l_{t} say $(t=1,2,3, \ldots$) tending to infinity such that

$$
\begin{equation*}
R_{N+1}>R_{N}+\frac{1}{N^{2}} \quad\left(N=l_{t}\right) \tag{2.2}
\end{equation*}
$$

in which case

$$
\begin{align*}
& \nu\left(R_{N}+\frac{1}{R_{N} \nu^{2}\left(R_{N}\right)}\right)=\nu\left(R_{N}\right), \\
& \log \frac{\left\{R_{N}^{s} M\left(R_{N}, f^{(s)}\right)\right\}}{\nu\left(R_{N}\right)}<\frac{\log \mu\left(R_{N}\right)}{\nu\left(R_{N}\right)}+\frac{2 s+2}{\nu\left(\mathrm{R}_{N}\right)}\left\{2 \log \nu\left(R_{N}\right)\right\}+\frac{2 s+2}{\nu\left(R_{N}\right)} \log R_{N} \\
&<O\left(\frac{1}{K}\right)+o(1) \quad \text { for } q \geqq n^{\prime \prime}>n^{\prime} \tag{2.3}
\end{align*}
$$

since $s=o\left(\frac{\nu}{\log \nu}\right)$, or [CASE B] for all large N, say $N>\mathfrak{R}$, of E

$$
\begin{equation*}
R_{N+1} \leqq R_{N}+\frac{1}{N^{2}} \tag{2.4}
\end{equation*}
$$

in which case either $R_{N+1}=R_{N}$ and then $N+1 \subset E$, or $R_{N+1}>R_{N}$,

$$
\begin{aligned}
\frac{\log \nu\left(R_{N+1}\right)}{\log R_{N+1}} & \geqq \frac{\log (N+1)}{\log \left(R_{N}+\frac{1}{N^{2}}\right)} \\
& =\frac{\log N+\log \left(1+\frac{1}{N}\right)}{\log R_{N}+\log \left(1+\frac{1}{N^{2} R_{N}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \geqq \frac{\log N+\log \left(1+\frac{1}{N}\right)}{\log R_{N}+\left(\frac{1}{N^{2} R_{N}}\right)} \\
& =\frac{\log N}{\log R_{N}} \frac{1+\frac{\log \left(1+\frac{1}{N}\right)}{1+\frac{\log N}{N^{2} R_{N} \log R_{N}}}}{} \\
& \geqq \frac{\log N}{\log R_{N}} \quad \text { for } N \geqq n^{\prime \prime \prime}, \\
& >K, \\
\frac{\log \mu\left(R_{N+1}\right)}{\nu\left(R_{N+1}\right)} & \leqq \frac{1}{N+1}\left\{\log \mu\left(R_{N}\right)+\int_{R_{N}}^{R_{N+1}} \frac{\nu(x)}{x} d x\right\}
\end{aligned}
$$

since $\nu\left(R_{N+1}\right) \geqq N+1$. Now, from (2.4)

$$
N \log \frac{R_{N+1}}{R_{N}}<\frac{1}{N R_{N}}<\frac{\log \mu\left(R_{N}\right)}{N} .
$$

Hence

$$
\underbrace{\log \mu\left(R_{N+1}\right)}_{\nu\left(R_{N+1}\right)}<\frac{\log \mu\left(R_{N}\right)}{N}<\frac{1}{K}+o(1),
$$

and so $N+1 \subset E$. Similarly $N+2, N+3, \ldots \subset \subset$. Let $N>\Re$. Then

$$
R_{N+p} \leqq R_{N}+\sum_{n=N}^{N+p-1} n^{-2}<\mathrm{a} \text { constant }
$$

which leads to a contradiction since R_{N+p} tends to infinity with p. Hence aiternative (B) is not possible and (2.3) holds and the theorem is proved.

Remarks. (i) It is obvious from our proof that if S and s be any functions of ν such that $s(\nu)$ is an integer and $S(\nu)=O\left(\frac{\nu}{\log \nu}\right), s(\nu)=$ $o\left(-\frac{\nu}{\log \nu}\right)$ as $r \rightarrow \infty$, then

$$
\lim _{r \rightarrow \infty} \frac{\log \left\{r^{s} M\left(r, f^{(s)}\right)\right\}}{\nu(r, f)}=0 .
$$

(ii) It is known [2] that for any function of finite or infinite order

$$
\nu(r, f) \leqq \nu\left(r, f^{\prime}\right) \leqq \ldots .
$$

Hence it follows that for an entire function of infinite order

$$
\lim _{r \rightarrow \infty} \frac{\log \left\{r^{s} M\left(r, f^{(s)}\right)\right\}}{\nu\left(r, f^{(i)}\right)}=0
$$

where S and s are as defined already and i may have any integer value.
3. If $f(z)$ is of infinite order, we have for any (arbitrarily large) positive constant $H, \lim _{x \rightarrow \infty} \frac{\nu(x)}{x^{B}}=\infty$. Hence we can choose a sequence of points $\overline{\boldsymbol{r}}_{n}$
($n=1,2,3, \ldots$) such that

$$
\frac{\nu(x)}{x^{H}} \leqq \frac{\nu\left(\bar{r}_{n}\right)}{\bar{r}_{n}^{B}} \quad \text { for } a(=\text { constant }) \leqq x \leqq \bar{r}_{n}
$$

Then

$$
\begin{aligned}
\frac{\overline{\boldsymbol{r}}_{n}^{n}}{\nu\left(\bar{r}_{n}\right)} \int_{a}^{\bar{r}_{n}} \frac{\nu(x)}{x^{m+1}} d x & =\frac{\bar{r}_{n}^{m}}{\nu\left(\overline{\boldsymbol{r}}_{n}\right)} \int_{a}^{\bar{r}_{n}} \frac{x^{H-m-1} \nu(x)}{x^{H}} d x \\
& \leqq \frac{1}{\overline{\boldsymbol{r}}^{H-m}} \int_{a}^{\bar{r}_{n}} x^{H-m-1} d x \\
& <\frac{1}{H-m}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{r^{m}}{\nu(r)} \int_{a}^{r} \frac{\nu(x)}{x^{m+1}} d x=0 \tag{3,1}
\end{equation*}
$$

for every real finite m. For a finite positive m (3.1) is sharper than (1.1), since

$$
\begin{aligned}
r^{m} \int_{a}^{r} \frac{\nu(x)}{x^{m+1}} d r & \geqq \frac{r^{m}}{r^{m}} \int_{a}^{r} \frac{\nu(x)}{x} d x \\
& =\log \mu(r)-O(1)
\end{aligned}
$$

References

[1] J. Clunie, Note on integral functions of infinite order, Quart. J. of Math. (Oxford Series), 6(1955), 88-90.
[2] Q. I. Rahman, On the derivatives of integral functions, Math. Student, (to appear).
[3] S. M. Shat, The maximum term of an entire series, Math. Student, 10 (1942), 80-82.
[4] S. M. ShaH, The maximum term of an entire series (IV), Quart. J. of Math. (Oxford Series), 1(1950), 112-116.
[5] S. M. Shah and Girja Khanna, On entire functions of infinite order, Math. Student, 21(1953), 47-48.
[6] T. Vijayaraghavan, On derivatives of integral functions, J. London Math. Soc., 10(1935), 116-117.
[7] G. Valiron, Lectures on the general theory of integral functions, Toulouse (1923).

Muslim University.

