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1. Let @(¢) be an even integrable function with period 27 and let

(1.1) p(t) ~ 2 an Cos nt, ay =0,

n=1

13
1.2) Da(t) = f‘&f o(u)(u —t)*du (a >0),
0
and S8 be the B-th Cesaro sum of the Fourier series of @(f) at ¢ = 0, that is,

(1.3) =2 A8 a, B> —1).

v=0

C.T.Loo [7] proved the following theorem.
THEOREM A. If a >0 and
) Sz = o(n*/log n) as n oo,
then
Pr+at) = 0(21+%),

This theorem is the converse type of Izumi-Sunouchi’s theorem [5].
Recently, we proved the following theorem [6]:

THEOREM B. If
pa(t) = O{tf’/ (log %)%} B,y >0) as t —0,

and
f d{ﬂ’ﬁﬂj"=0(t) (A>0, 0<t<n)
0 (logT
then
Sy = o(n®),
where a = (AyB — /1 + Ay).

In the present note we prove a theorem which is the converse type of
theorem B.

THEOREM. If
(1.5) an > —K (logn)*/n (a >0) as n— o
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where K is a constant and

1.6) S8 = o{nB/(log n)'} B,y >0) as n— o,
then

@put) = ot*) as t—0,
where

p=al+B)(y+ a).

This theorem is also related to G.Sunouchi’s theorem [8].

2. For the proof of theorem, we use the Bessel summability. Let J.(¢)
be the Bessel function of order p and put

2.1) aut) = 2¢D(p + 1] (8)/t*,

then

(2.2) Ara(nt) = O(te) for O0<nt<1
and

(2 3) A”a,L(m‘) — O(tP-}L-ll2n-M-—1/2) for nt > 1;

where A? (p =0,1,2,....) are the repeated differences of p-times. This pro-
perties are shown in the theorem 2 of K. Chandrasekharan and O. Szész [3].
If the series

2.4 2 a{a, b)Y = @X(t)

n=0
converges for some interval 0 < ¢ < £, and
(2.5) <pZ(t) = o(1) as t —0,

then the series 2 an is said to be summable (J,, 2 A) to 0.
LEMMA 1. If the series zan is summable (J.,1,n), that is Ji-summable,

tos, then t—(-'“m)gp () tends to s as t — 0, and vice versa, where p > ——%.

m+1/2

This is given in [3].
Let % denote a positive integer, and we write

A_ysn = A} Su = Snsp — Sn
and A? = A, A27! for p=1,2,...., where A)s, = s,. Similarlyl we write
A_uSn= AL, Sn = Sp — Sn_p,
and AP, = A_, A?;!, where A, sn = sa.
LEMMA 2. If k and p are non-negative intgers and 0 < § <1, then

I'(h + &)

(2.6) (k)

hPsa
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e85 Qpa (kR — vy + 8)
= A S+ _ 82 Th— V‘; 1) - 2 2 (Snsves.. . +vy — Su)

vo=1 vp=1

and, if n> P+ 1),

T+
@.7) _(I‘(Z) ) pivs,
T(h— v + ) .
gt 53 T Th—n+1) 2 SO S —1

vo=1 vp=1

This is proved in Bosanquet’s paper [2].
LEmMMA 3. If0<m<n,0<8=<1, then

m
lZA,S,:f, s,
v=0

This is proved by Bosanquet [1].

LEmmMA 4. If r>0,B>0, h >0 and
Si = o(nfW(n)) as n— o, then A, S, = on*W(n)) and 47, S;, = o(nPW(n))
as n — oo, where W(n) is positive non-decreasing function of n.

= - max IS31.
=u=n

Using Lemma 3, the proof is done analogous by that of Lemma 7 of
Bosanquet’s paper [2].

LeMmMA 5. If V(n) and W(n) are positive increasing for n, and
sn = Sy = O(V(n)), S, = oW(n)) (r >0),
then

Sz = o((Vm) " (Wm)") O<a<n.
This is the Dixon and Ferrer theorem [4].

LemMA 6. Let V(n) and W(n) are positive and satisfy the following
conditions :
(i) there exists a real number d > 0 such that n®V(n) is non-decreasing;
(2.8) (ii) Wi(n) is non-decreasing;
(iii) W(n) = O(V(n)) as n —.
And if
1) sp = ON"V(n)) and (2) S% = o(n°W(n)) as n— o,

where a+b=c > —1, then

’

(2 9) S’;’ = o(n(a-a’)b/aﬂ'z’c’a (V(n)) T, (W(n)) )

Proor. We can prove this easily by the simple modification of Bosanquet’s
paper, but for the sake of completeness we prove the lemma.

Suppose that & is any real number and assume the theorem with b, ¢
replaced by &+ 1, c+ 1. Then, by (ii) of (2.8), ¢ > —1 and (2),
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St = s = 0.{2 ch(v)} = o(n*+ W(n)).
v=0 v=0

If we put 7%= > A%-lvs, then we get

v=0

(2.10) T = (a+ n)S: — (@ + 1) SP* = o(n*W(n)).

From (2.10) and #s, = O(n**1V(n)), the hypotheses of the theorem are
satisfied, with s, replacad by #ns., b by a+1, ¢ by c+ 1. It follows from
the case assumed that

Ty = o(n”™ T ) T W) Y) (0 < @< a),
Now suppose that @' =0 and ¢ — 1 <a < a, then by (2)

Sy+1 = 2 A -a = 012(7‘ — ) -aye W(V)} o(ne+e’ ~a+1 Win))

v=10)

and so by (2. 10)
, a-a’)hfa+a’cla -l a’la —(a-a’)(h-c+a)|a 1-a’|a
Sy = o(n " Wy T Wen) @ + T Wy V) )
Since @ +b=¢ > —1 and (iii) of (2.8), we obtain
St = o(n ™ iy ™ (W)™,
Thus, if 0 < a <1, tha result follows by induction from Lemma 5. If @ > 1,
we suppose 0 < a' < @ — 1, and sssume the result with a’ replaced by a’ + 1.
Then
SY =(a + 1+ n)"YT) + (a +1)S'*'}
= ofnee-e masaein(vim) ™ (wim)").
Thus our result may be p-oved by induction.

LEMMA 7. If (2.8),

2.11) Snam — Sn > — Kn®V(n)m (K >0),
and

{2.12) S = o(n°W(n)) as n— oo,
where a>0and —1<c<a-+b-+1, we have

(2.13) Sy = ofnt-mrsecrey @) T )T

Jor 0<d =<a.

Proor. First suppose that 5=0, ¢ > 0. Let a small positive € be given,
and lst g =p + 8, where 0< 8 <=1 and p is a non-n2gative integer. Then,
for all sufficiently large #n, by (2.6)

Dr+8) 5 s L=+ D«
lﬂ(h) hpn—Ar:, S!g _‘82 l\h'—‘vo ‘!_1) 2 E(S’H'VM- _s”)

vo=1 vi=l1 vp=1
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h n n
Ik — vy + d)
2 I‘(hl—v::Tl;E ""znbV(”)(”o‘f‘ v top)

vo=1 vi=1 vp=1

< EP+ 1 e Win) + (p + 1) KhP+3+1 V(n),
provided that (p + 1)h < Hn and K > K. Also, by (2.7), for all sufficiently
large n,

< Ep+3+l yeWin) + K§

'k + 8)
I(Rr)
for (p + 1Dk < (1 + H)~'Hn.
Taking h = &nW(n)/n*V(n)M*+3+1> we get, for sufficiently large »,

1Sa] < (1 + (P + 1)KI)8(”¢:—(p+8)(c-b)l(n+6+1)(W(n))1’E-Tl(V(n»ﬁl),
that is,

h? Sn > __gp+8+1 ncW(n) — (p + 1) K/hp+8+1nh V(n),

c+ab _1 1
(2.14) sn=o(n™ T (Vm) = (Wm)™") as 7. oo,
From (i) and (ii) of (2.8), there exists a number 4 >0 such that

1 1 :

1
n( V(n))l_““( Wn)"*' = n"V(n)Wi(n)/V(n))**' is non-decreasing for sufficiently
large n. Hence, using Lemma 7, we have

1 v o
(Von) " (Wim)) ~®) (W)™ )
a’+1 2’ +1

(V) ™™ (Wn) ™ ),

for 0 < @’ < a, by (2.12) and (2.14).
The rest of the proof is analogous to that of Lemma 7.

(a—=a’)(c+ad)/a(a+1)+a’cla

Sy = o(n

{('=a’)b+(a’+1)c}/(1+1)
(n

3. Proof of the Theorem. By lemma 1, it is sufficient to prove that
the series 2 @n is J.- summable to 0, where p = a(B + 1)/(v + a).
First we shall prove that

(3.1) > lap—l = O((log n)*/n).

v=n

Under the assumption (1.5)
|anl —an< 2K§1—Ognﬁ ,

thus we have
n

2 (la.| — a,) = O{(logn)*}.

v="n
On the other hand, since we may put in lemma 2 V(z) = n<logn)® and
Wi(n) = n</(log n)Y, where & is any positive number, by (1.5) and (1.6),

(3.2) Si = o(n*(logn)
Especially,

{(B—h)a—(h+1)Y}/(8+1)
8 # ). fork=012 ... k-1
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- (Ba+7)/(B+1)

S? = sy = o{(log n) } = o((log m)®),

for

a—Ba+y/B+1)=(@+7y)/B+1)>0.
Thus, we have

‘n n
2 la,| = E(IaVI — @) + Son — Sn—; = Ol(log n)®).

Hence
n 1 2n
2rvtlal=n 2 lal = O{(logn)*/n},
1;7:4-1_1 .
2 v-lla,| = O{(log 2¢)*/2¥},
v=2Kk
and
2l i
1 i\
S vilal = 0] 2 L | =om
v=1 k=0
Consequently

o Rl _y .
-1 - 0] 5 (log n2*)*
> vilal =0 30

nezk k=0

o © ne
2”_1Iaul = 2
y=n k=0

(l n)® s (log 2")“
_ 0{"9gnfiﬁ > e } = O{(log n)*/n}

k=0

which is the desired inequality (3.1).

Let
3.3) Pt = i Gn -1 (nt) = (ﬁ + 21>an a,--t(nt) = () + Yu(t),
say, where v is ::)0 be chosen present=1(;. -
Using the inequality (3.1)
(3.4) Yty = o{ > n‘*lanl(nt)"‘n} = Ot 1(log vy .
n=vl

This shows that the series > a., a,-1(nt) converges for fixed ¢ > 0.

n=0

For a given positive number C, we put

1 \%/m _
(3.5) v = p(t) = [c(logT) t1].
Then from (3.4), we obtain

Vft) = 0{ c-#( log })( log S(logf%t)} = O(C»).



ON THE CESARO SUMMABILITY OF FOURIER SERIES (III) 33

Thus if we take C sufficiently large, we get
(3.6) Pry(t) = o(1) as t—0.
Now there is an integer 2 =1 such that 2 —1 < 8 <%k. We suppose that
k—1< B <k, for the case @ =k can be easily deduced by the following
argument.
Now

n

3.7) St= D Ak-6-181 = o{ S'n — vy-£-1p(log v)"} = o{n* (log n)-7}.

v=0 v=2

Concerning v, (¢), by Abel’s lemma on partial summation k-times we have

v v—(k+1)
Yn(t) = Z()a,, -1 (nt) = 2“ Sk A, L(nt) + 2 Sl Atat, 1 (v = ht)
+ Sl s AF - (v — k) = Ys(t) + Yu(t) + Pslt), say.

Using (2.3), (3.5) and (3.7), we have
Vo(t) = SE_, A, (v — kt) = o{vM(log v)~7 ¥+ p=r}

{t (k=p) - u(log i)a(k_uw (logv}; _y}

(3.8) = o{< log—lt—y(k—ﬁ_])"‘} = o(1) as t—0,
Also, by (2.3), (3.5) and (3.2)

St AR al-‘-"‘!T(y —h t) = 0{1/‘“" (log y)(Pw—v—n(mw)}/(su)th_,‘}

v=h

— o{th—nt—(h—u)<10g %)“" i 'M"'(”“—‘/—"(w+7))l(ﬂ+1)}}.

Since the exponent of log -}r is

a , Ba—y—hla+vy _ha _ Ba—vy a, _a+vy
b=+ B+1 B Y B B iy T
we have
(3.9) Y (t) = o(1) as t—0.

Concerning Vr;(¢;, we split up four parts

v-(k+1) v—(k+1) v=(k+1)

Vat) = 2 A*la, i(nt) EAn-m 1Sp= X S, 2 AL A, 1(nt)
n=() . m=0 m=0 n=m

1] m=+[1/t] v=(k+1) m<+[1/t] v—(k+1)-[1/t1-1 y=(k+1) v—(k+1) m+[1/t]
=2 2T+ 2 X + X = - 2 p

m=) n=m m=(1/t]+1 nem m=0 n=m+[1/t]+1 m=v—(k+1)=[1/t] n=v-(k+1)+1
(3.10) = Ygt) + Yi(t) + Ys't) -- Y(2),  say.
From (1.6) and (2.2), we get

u/n m{1]t]

V() = 2 Ss 2 A:;:En-lAhla#-% (nt)

m=0 N=m
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170 m+(1/r] [1/t]

=0{Z 51 2 m—mprren) <ol mittog myv 1o |

m=0 n=m m=2
1\~
(3.11) _o( logT) )-o(l) as £ — 0,
From (1.6) and (2.3), we also get
v—-(k+1) m+[1/t]
Yolt) = 2 SE D> Al L(nt)
m=[1/r]+1 n=m
.,—-(k+1) m+[1]'] _g-1
= o{ milogm)" > (n— m) fer1-w n"‘}
m=(1 t]+1 n=m
v—(k+1) m+[1/t] —B-1
= o{ 2 mg(logm) m e thrl-e 2 (n — m) }
m=[1/t]+1 =m

V- (k+1)
=0 {t’ b+1-p m3-t(log m)—yt‘““«’” } = o{t3*1-#(log v)~Y v3+1-s}
m= 11/r]+1

for B+1— = 7B +81) > 0. Hence

(3. 12) ‘I"7/t) — o{tﬂ+l—“ t"(3+1'“)( log _}._)% (B+1—p-)—7} — 0(1) as t—)O,

by (3.5), for %(/8+1—;L)—'>'=0.

For the estimation of rs(¢), if we use partial summation in the inner
series, then

v—(k+1)=[1/t}-1 v—(k+1)
Vi) = 2 SL X AR A a1 (nf)
m=( n=m«+{1/:]+1
v—(k+2)—{1/1] —(k+1)
= > S 2 ALE AR ety 1 ()
m=0 n=m+{1]t]+2

v—(k+2)=[1]t;
+ 2 SLAGS At T+ 1)
m=0
v—(k+2)=[1/6]

- X SAVE L Aa, i(v— ki)

m=0
(3.13) = Y + () + ¥ (), say.
Iv-(k+2)-;1['] (kD)
Yy(t) = 01 > s D m-mpripe t"—'*}
m=0 N=m+{1/1]+2

v—(k+2)—[1't]

=0 {tk_“ 2 mq(log m)~Y mr t—‘(k—ﬂ—l)}

m=2

319  =of(log %) wen-nr ] o) as £ 0.
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v—(k+2)—{1/’]

¥i(t) = 0{ 2 mAlogm) Y £-¢=AD (mg 4 [£-1] + 1)k t’“—u}

me=2
= o{tF+1-#(log v)~Y v3+1-#}

i 1 \% gr1-p)-
3.15) = of(log L )i ®=01} = o1) as 10,
v=(k+2)=[1/t]
. (1) = o{ mf(logm) (v —k—1— m)-B-1(v — k)-#t’f—#}
m=2
= o{t*-+p~r+r-B-1(log »)~7 p3+1}
1\% howy-
3.16)  =o{(log—; )i ** 7} = o(1) as -0
Thus, from (3.14), (3.15), (3.16) and (3.13)
(3.17) Ps(t) = o(1) as t > 0.
Moreover, we get
y=k-1 m+(1/t]
Yot) = — > S3 > ALB-I A, 1 (nf)
m=v—(k+1)-[1/t] n=v-k 2
v=k-1 m=+[1/1]
= O{ 2 S? 2 (n — m)y—B-1p-» t"“"‘}
m=v-k—1-[1/t] n=p-k
v—k-1
= o{t’“'l—u 2 mB (log m)~Y v~ t—(k—B)}
n=v-k-[1/t)
= o{t?+ ' ~#(log v)~Y pB+1-k}
1\ ga1-wy—
(3.18) = of(log | )i #nw 7} = o) as £ —0.
Summing up (3.10), (3.11), (3.12), (3.17) and (3.18), we obtain
(3.19) Yr3(2) = o(1) as t—0.
Thus, from (3.1), (3.6), (3.8), (3.9) and (3.19), we have
Y(t) = o(1) as t—0,

which is the required.
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