ON FRACTIONAL INTEGRATION

Sumryuk: Korzumi
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1. Introduction. The present paper is devoted to give certain results
for fractional integration which are related to the work of I.I. Hirschman,

Jr.

Let #%(6) be a function in the class Z?(0,27),p = 1 with mean value zero
and its Fourier series be
u(0) ~ 3 an e’
where — oo <7< o and »n =*=0.
The fractional integral #.(8) of #(@) of order « is defined by
#a(0) ~ 3'an (in)~* "8
and let the Abel mean of #(d) and u.(0) be
u(r, 0) = 3/ anr'™! ™
u(7, 0) = S/ay(in)~® 1" ¢"®
We consider the following functions, the first due to I.I. Hirschman, Jr.
[1] and the remains to G.Sunouchi [3],

9 0) = { f (1 — 72| ua_y (r, 0)]2 dr }”2

0

1 27
2 1)2

9¥a, B; 0) = {f (1 — r)e- drf quijllﬂ(—r’ri‘jl_?:)l dt}
0 v

sk 0= | [ 1aksuao e ar|”
0 ’
where
Al 2,(0) = ua(f + t) — w0 — 1)
A u(0) = AYAY ua(6))
tk) = t/2(k + 1).
The main purpose of this paper is to prove the following :

THEOREM 1. ZLet u(6) € L¥0,27), p > 1, then we have
18, & Oll» < Asllnll»
where 0L a<b+12<p<®),2p—1<a<k+1<p<2)andk is a

Dositive imteger or zero.
The constant A, depends only on p, and not on the function u(6).
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We shall use constants, not necessarily the same at each occurrence,
which depend only on indicated indices. The case £ = 0 is due to I.I. Hir-
schman, Jr., but his result is not quite right, as G.Sunouchi [3] indicates.
The author thanks to Professor G.Sunouchi who gave him valuable sug-
gestions and advices and also to Mr. C. Watari.

2. For the proof of theorem 1 we need the following two lemmas.

LEmMA 1. Let w(0) € L(0,27), and its mean wvalue be zero, then we have
for aa >0

8a,0;0)< Awg*(c, 1; 0) + Bu g™a, (@ + 1)/2; 0) a.ed.

LEMMA 2. Let w(0) € L0, 21), and its mean value be zero, thern we have

Sat, k;0) < Aurg*(at —k,1;0) + Buxg¥aa —k, (@ —k+2)/2;60) a.eb,
Jor a« >k —1, and

8a,k; 0) < Aurpg¥a —5,1;0) + Byrg¥a —j,(a —j+ 2)/2; 6) a.e.0,
for j—l<a<i+1G=1,2,...., B—1) and k is any positive integer.

Proor oF LEMMA 1. The proof runs on the line of A.Zygmund [4].
Let

A}/2 %a(0) = {A},Z u(0) — A%/z w7, 0)} -+ Al #a(13, 0)
=V+W . say,

where 1 —7; =1 —#/47 and then 1/2 <7 <1 are mapped on 0 < # < 27w, We
shall first estimate the W. We have

113
W = f Un—1 (72,0 + v) dv
~t)2

/2
W‘gAtf |2%a-1 (75, 8 + 0)|% dv
~t)2
and so

L2 /2

f W21 df < Af 12 dtf |%a—1(7:, @ + 0)|? dv
0 0

—t)2
1/2 278

_S_Amf o8- d8f |#a—1 (7,8 + v)|% dv,
0 —2n8

where 6 =1 —7. Since in the region: 0<§=1—~7r=<1/2, || <k =< it
holds that |1 — 7e¥*|-1 ~1/8, and hence

2 1/2 278
f W22l dt < Ag f 8-+ 43 f |41 (7,0 + ©)|2P(7, v) dv
0 0

—2728
= As(9¥a, 0; 6))
We have next
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1
V=f A%fzua—l(r,o) dr

3t
S@1 DAL, gy (7, 0) dd
0
and so, for a > 0 by Schwarz’ inequality, it follows that

T
V< A8 f 874+ [Alya a1 (7, O)]* B,

2z

Ve -te-ldt

<

27

= Awf gt dt‘f 8~ (| theyy (7,0 + £/2)|2 + |thav (7,0 — £/2)]|2)dS
0

= Awf S+t d5f (thas(7,0 4+ )2+ |%he—y (7,0 — E)|2) 221 dt
228
Since, in the region: 0 < § < 1/2, 8 < [t| <=, it holds that |1 — re®|—! ~ 1/¢,
we have

f Vil gt
1]

<Amf 8_w+1 dsf luu 1(1’ 0+ t)[z—*' Iuﬂ—](ri _t)l2 dt

[1 — 7 eft|2(@+Di2

s
= Au(9*(a, (a + 1)/2;0))

We have thus proved Lemma 1 completely.

ProoF oF LEMMA 2. We prove the case 2 = 1, and for the remaining case
we only sketch the proof.

(a) the case k=1. As in Lemma 1, let us put

A} ua(0) = {A] uare, 0) — A %, (72, O)} 4+ AL s0a(73, 0)
=V+WwW say.
Concerning W, we have
/4
W= f A}H Ua—1 (0 + 1)) dv

—t/4
t/4 t/d

= dﬂf Up—2 (0 -+ U]) dl)l
“t)4 Zis

and then
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t/4 t]4
W< At*f dvf 4oz (6 + v1)[% do.
—t/4 —t/4
Changing the order of integration, we have

2
w2 < A |#u—2(0 + v)|? dv,

—tj2
t2

27 2%
f Wit ldt < A f t2+2 g f [#a-a(72, 0 + v)|? dv
0 0

—t/2
2718

1/2
gAf S—m+2 db‘f |#a—z (7,0 + 0)|* dv
0

—278
< A(g*¥a —1,1; 0))
By integration by parts, we have

2

1
2
V=07 8% A%y Ualre, 0) + f 1—r) % A}y a7, 0) dr
Tt

=Vi+ Ve say.
Since 0<8:=1—7<1/2 for 05t < 2w, we get
Vi = 85 7;7% (A} tha—1 (72, 6))?
t/4
= At2< f Al tha_z (rs, 0 + v) dv)2

—t/4
/2

§At3f |%a—y (rs, 8 + )2 dv.
—1/2

Similarly as for W, we obtain
27
f Vig-2- g < Alg*(a — 1,1; 6))=.
0

We have for V,,

1
= sz A =772 A sas (7, 8) dr

a3

Ag[ (I —-7) (st (7,0 + t/2)] + 2|ta—s(r, )| + |ty (7,0 — t/2)|) dr

= AWVa + Vs + Vi) say.

For V., if we write § = §@-1/2§@-912 and apply the Schwarz inequality,
then we have for a > 0
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12
sz é e f 83—w lua-z (r, 0)'2 dB,
0

and so,
St

2 4 2
f Vit dt < f t-o-1 gt f 55| sa_(7, 0)|2 dd
0 v

0

éf 8% |ta—z (7, 6)|* d8f =t dt
0 478
1/2

= A.mf 8% |sta—y (7,6)]* db
0

SA@la—-1;0)r=sAgHa—1,1;0)~

For V,;, we have similarly as for Vas,
t
Vi<te f 8% Ua_o(7, 0 + £/2)|* 5,
and so,

k23 27 L3
f Vit @t < f tiv gt f &= (sha—s (v, 60 + t/2)* dt
0

7T

f Sawdg‘[ luu 2(1’9—}-1‘)] =% dt

f Sa—a dgf |'Ila¢ z(?’ €+t)[‘ dt

11— re“l‘(‘*"‘)

S A(gMa —1, (a+1)/2;0)
Similarly, we have

f VLt dt < Au(gMa — 1, (a+ 1)/2;6)).

Thus, we have established completely the Lemma of typical case.

(b) general case 2 =2. First we prove for « > %, — 1.
Let

AL #al0) = {AFG) #a(0) — AlG) %ha(rs, 0)) + Al #a(73,0)

=V+W say.
For W, we have
(k) 1+t (k) v+t (k)
W= f dv, dvs.... Un—r—1(71, 0 + Vks1) AUk 1.

—t(k) . o1—1(k) vr—t(k)



ON FRACTIONAL INTEGRATION 303

Here if we apply Schwarz’ inequality and then change the order of inte-

gration repeatedly, we have
(k) v1+0(k) D+t (k)

W2 << Aptb+1 f dv, dv,. ... |tha—r—s (72,0 + Vpar)|? Avrsy
—~t(k) v1—t(k) vE—t(k)
2t (k) v+ 1 (k)
= Ay to+2 dv,.... |uw_k_1 (7’;, 0+ 'l)m.l) |2 Av1
—28 (k) vp—t(k)
creeans "

é Ak t%+1f lua—k—l (7’t7 0 + v)l"dv,
—t/2
and we obtain

271
f W2 1dt < Ay, (9¥a — &k, 1; 0))2.
0

For V, we have
L(k) 1+ (k) v, _p+L(E)
V= f d”lf av;. .. f Af(,c) {um—k+1 (0 + vi-1) — Ba—r+1 (77, 0
—t(k) v1—t(k) Ve atiie) -+ pb_l))} dvk-l-
Integrating by parts the integrand as in the case (a), we have
t(k) w1+t (k) V—o+1(K)
V= f dv, dv,.. .. Avie—1

—t(k) v1—t(k) Vgp—a—t(k)

1
32
. {(1 - 7’:)2 Ay Baiorr (72, € + v—y) + f 1 - f)%ﬁAfm Ugr+1 (7, 0 + V5—y) dr}

or
7
= V1 -+ Vz, say.
We have
1 (k) v1+1(k) vk_2+t(74) uk‘1+2t(k)
¢
Vi=A- = f dv, f dv,. ... f Ave— f Ay ha-k—1(7t, 0 + ) dvk,
-tk w=tk) Vgt W) k-1
t/2
Vf = Ay 1 f lua—-k—l (Tz, 4+ ﬂ)lz av,
—ti2
and
2

f Vit~ ldt < Ao (gXa — k,1; 0))2.

o
For V,, we have

(k) P1+L(K) gt 1K)

1
V_. = f dvl dl)g. - dvl.:_]_f (1 - r')r"" Atz(k) Ug—x—1 (ry 0) dr
4

-t (k) v1—t (k) Vo HE)
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= Va + Vaz + Vi, say.'
It follows that
£k D1+10K) Py—a TR 1
Va = f dv, f dvs. ... dvay f A =7 u*"*(r, 0 + v dr
—t (k) v1=t(k) v, g +i(E) rt

and

tj2 1
2
Vi< As tZk_g‘/‘ dv(f (1 - 7)tbg-r-1(7,0 + v) dr) .
—t/2 o :
If a>k—1 we write 6= §C-*+a)/2 §k—a+n2 and applying the Schwarz
inequality, we have
/2 1
Vi< Aox t"*‘”‘zf dvf (A — 7y yy_y. (r,0 + v)|% dr.

—tj2 e

Hence, we have

2z
0

2 £/2 3¢
= f gh-a=3 dtf dvf S8+ gpp x (7,0 + v)|2 dd
1] -2 0
1/2 2 t/2
§f Se-o+2 de t"—“‘3dtf |#a—1—1 (7,0 + v)|* dv.
0 4nd —t/2
Since a > %k — 1, integrating by parts the second integral, we have

21
f Vg’l $-20-1 gp
0

1/2 278
= A"’”f o~ 2@—k) de VUg—x—1 (7,0 + v)|2dv
1}

—278
1/2 k3

+ Br f et dd f (%011 (7,0 + D* + |#a—r2 (7,0 — D)[?) £+~ dt
1] 278

S Avolg¥a —k,1;0)) + Bra(g¥a — &, (a —k + 2)/2; 0)).
The same argument may be used for the estimation of the V., and V.
Combining these estimations we obtain the lemma in general case for a >
k—1.

Now the remaining case 0 < o < k& — 1 is estimated easily by the following
inequality.

Letj—1<a<j+1(G=12...., B—1), then

5 e = | A AV e
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k—f
SAc X AL w8 + EHR))|2
I=—(k—5) .
We now need the following lemma due to G.Sunouchi [3].
LeEMMA 3. Zet u(0) € L(0,27), and its mean value be zero, \then we have
for B>a > —o
9¥a,B;0) = Aupg 90, B; 6)
Combining Lemmas 1,2 and 3, we get the following lemmas.

LEmMMA 4. Let w(0) € I0,27), and have mean value zero, then we have
for0<a<1
8, 0;0) < Aug¥(e, 1;0) + Bag*(0, (@ + 1)/2; 8) a.e0.
LemMa 5. Under the same assumptions, we have
e, k; 0) < Aw g™ —7,1;0) + Bawg*(0, (@ —7+2)/2;6)
where j—1<a<j+2 (=12 ...., k), k is a positive integer.

In order to complete the proof of the Theorem, we quote the following
results due to G.Sunouchi [2], [3].

TaeEOREM A. Let ul0) € L?(0,27), p > 1, and its mean wvalue be zero,
then we have

) l9*0, B; O)ll» < Avllul|»
where 1)2 < B 2<p< ), 1/p< B (1<p<2). We have also
lo*(e, 1; O, < Asllulls
where — o < a < 1.

Now we c;m now complete the proof of the Theorem 1 combining Theorem
A, Lemmas 4 and 5.

ReMARK. The difference AFL} #.(d) in our theorem, may be replaced by
AF*1u,(0), since the [contribution for the integral is influenced only by the
behavior of #(€) in the neighbourhood of the point ¢ = 0.

Finally we prove a converse theorem of Theorem 1.

THEOREM 2. Let u(6) € L*(0,2%), p > 1 and its mean value be zero, then

we have
By, ullu|» = |8, 1; O)l»
where 0 < ¢ < 2.

We begin to prove the following lemma.
LEMMA 6. Under the assumption of Theorem 2, we have
Bugla —1;0)<&a,1;6)

Proor or LEMMA 6. Let

2

ua—z(f, 0) = é::;'f uu(t)Poo(r, g — t) dt

0
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then, since P.(r,?)is even function and |Pu(r,¢)| < A|l — 7€'’|~3, we have

2
[#a—xr,O)|* = '?3? f Al %a(0) Pulr, t) dt "
0

27

gAf IA?,Zuu(é’)[“ll——re"[‘ff—“dtf 11— 7ef?| == gt
0 0

S r)a—zf [AZ) ua(0)|2|1 — reft| % dt,
[
provided that a < 2. Hence it follows that

27

1
|g(a—1;0)|2§f (1~—r)'“+‘drf |8, #a(0)]2]1 — 7| = at
0

v
27 1
<A f [AL, ua(O)|* dt f (1 — 7)1 [1 — re¥| = dy.
, J J

Since
1

f A —r)y* 1 — 7| 2 dr < At (a < 2),
0
we have

27
(Ga—-LOr=sA f A2, #al0) |22 dt
0

S A, L 0)).
This is the required. Theorem 2 follows now immediately from Lemma 6
and the following theorem [1]:

THEOREM B. Under the assumption of Theorem 2, we have
By olul» = llgte ; O)in
for —1<a< w,
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