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[n previous papers [3,4] we have studied affine connections in manifolds
with almost complex, quaternion or Hermit'an structure. As to the almost
Hermitian manifold with quaternion structure, some considerations have been
given [3], but results are rather complicated and a more explicit form of the
connection has been required. In the present paper we shall determine, in
an explicit form, all affine connections with respect to which the structures
are all covariant constants in a Hermitian manifold with quaternion structure
(8§2). Complex coordinates are chosen and the determination of such connections
is reduced to solving linear equations.

Possibility of introducing some special affine connection is in intimate
relation with the integrability of the quaternion structure or with the Kihler’s
condition on the Hermitian metric. These relations are discussed in §3.
Transformations preserving the quaternion structure are always considered
as affine transformations with respect to some affine connection [4]. In the
Hermitian case more precise results are obtained (§4).

Since we are considering a complex manifold, which is of complex =

dimensions, we suppose that the Latin indices a,b,¢,...., ¢ 7 &, .... run over
the range 1,2,...., », 1, 2,...., n and the Greek indices a, B, v, ....,
£, A, i,.... run over the values 1, 2,...., # and consequently the indices
o B, %Y ...., £, \, p, .... the range of symbols 1, 2, ...., . In case of a

complex manifold with quaternion structure » must be even.

1. Preliminaries. We consider a differentiable manifold with quaternion
structure ($." {r:*), where a quaternion structure is, by definition, a pair of
two almost complex structures ¢:*, ¥~;* such that

pitbat + Piogpal = 0.
In a differentiable manifold there always exists a Riemannian metric v;,.
Then the tensor defined by
1
hip = 5 (Vin + PiPPuYua)
is also a Riemannian metric and we have

hih. = ¢ibq5h.ahba:
i.e. hy, is an almost Hermitian metric with respect to ¢;». Furthermore the
tensor defined by

1
Gin = 2 (hih + d)ihd)h.ahbd)

is an almost Hermitian metric with respect to both ¢:* and ;" :
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1.1 Jin = $i"Ppgva = V"V gua.
We call a manifold with ¢:*, Y", gi, satisfying (1.1) a Hermitian manifold
with quaternion structure. If, furthermare, g;, is Kédhlerian with respect to
both ¢;* and 4" such a manifold is called a Kaihlerian manifold with
quaternion structure.

In this paeper we assume that the almost complex structure ¢:" gives a

complex analytic structure and we choose a complex coordinate system (2%, z*).
Then ¢;", Y¥:* and g, take the special forms

A z'B,(‘ 9) Yy — 0 Py« « . — S«
@= (o0 i) =g TG) e =8
0 - ol .
(o) = (- ”*0), gax = Vaf ¥gga; Conj. v,

and they are, of course, self-adjoint. Throughout this paper all quantities are
assumed to be self-adjoint and also to be real analytic.
Now, on putting

Vin = Vi%a, Yt =g ‘a‘l"ah,
we have

Vi = Yk = 0, Yo = —VPun; conj.
The condition ¥Yr;"Yr* = —§,* is equivalent to the condition

Vi = Phifrg; = —i"; conj.

Now, given a tensor P;" we put
IT, Py = % (P — Py ™), I1.Py" = ;‘ (Pii" + P Yadr).
By straightforward calculations we have
LEMMA 1 HJL = Hl, H;»H-_» = Hg, Hlnz = HzHL = 0, H1 =+ Hz = z'dentity.

LEMMA 2. Given a tensor Qj", we have 11,Q;* = 0 if and only if there
exists a tensor Pj" such that I1.P;" = Qs". We have 11,Q,:"™ = 0if and only if
there exists a tensor Py" such that 11, Py"* = Q"

Proor. If II.P;" = Q;", by Lemma 1 we have II,Q;" = II,II.P;" = 0.

If, conversely, II,Q;" = 0, by Lemma 1 we have
I1.Q;" = IL.Qy" + I1.Qs" = (II, + 1I,) Q" = Q"

LemMma 3. If I1,@;" =0, an equation II.P;"* = Q" (P;" unknown) has a

solution and the general solution is given by
Py = Q" + II A",

where A" is an arditrary tensor.

Proor. The condition II,@;;* = 0 implies that @;" itself is a solution of
the equation. The general solution Pj;" is written as

1) The sign “conj.” denotes the complex ccnjugate of the formulas already written.
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Pt = Q" + Bj",
where 11.B;" =

By Lemma 2 B;" is written as Bj;" = II,A;" for some tensor Aj". Further-
more for an arbitrary Aj;", @;" + II,A;™is a solution of the equation. Thus
the general solution is given by

Py = Q" + ILA",
A;" being an arbitary tensor.
2. Affine connections. Let us assume that an affine connection I
is a metric (¢, ¥)-connection, i.e., v, = V" = Vg =0 -
The condition v;$:* = 0 implies I™;; = I, = 0, so that I'}, must have com-
ponents I, = (I, I‘J‘i ). It is to be remarked that the components (I‘;E”\, =

define a self-adjoint tensor.
The condition v,};* = 0 is written as

Ve = 0,95 + ¥\l — Lizra® = 0; conj,,
Vivi® = 0u¥* + ¥xoT%, — T2 Yra* = 0; conj,

from which we see

2.1) s, = —(©@urae o — Y I gra ;s conj.

From v,9:, = 0 we find

2.2 Vil = Oulrxc — F”;K Ixa — Pos gae = 0; conj..

Substituting (2. 1) into (2.2) we get
Ougix — % gia + (Qu¥a P g + Vi TE ¥ "0ax = 0,

from which

2.3) ©ugialg™ — T + (0¥ Wy garg ™ — Iy draxipfe = 0.
Here from Yrg"{ry® = —38,% we have
24 @u¥e Wy = — Vp¥oudry®
and from +vryx = Yry%ga,r we have
(2.5) (au‘!’vm) Jax = aﬁ‘l’vx - ‘I’v“a# Jan.
From (2.4) and (2.5) we get
(@uVs W “arg™ = —Vrg(F2¥")gargP

= =P (@Yo + Yy, 9a )P
= —0.4.a Y™ — (0ug.a)g™.

By using this formula we have from (2.3)

(2.6) I, + D2 o = —0, YaaP™; conj..

On putting 7% =I'\ and Pu* = — é @u¥raa)¥r®; conj., Ty = (TwS Tux)
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and Pj" = (P*, P,i¥) are components of tensors. (2.6) is then written as
m
2.7) II,T5\* = Pa\*; conj..

We have, however, II,P*= — i ((@ar. s — (3, Nrga ) VP yaPrfe)

= — § (@l + (@, Fe)¥) = 0; conj,
and other components of II,P;" also vanish. Therefore (1.7) implies
(2.8) T = Pp< + I A,

where A" = (A%, A.i*) is a tensor.
Substituting (2. 8) into (2.1) we get

- @ 1 1 5
I, =— @ N — \If,\ﬁPMB Yok — 9 vafA 'Iﬁu‘l"a" + 9 ‘l"fAM;;‘I’p/i‘I’W‘I’a"
. _ c B 1 _
= — (@ Wra” + % VAP (Ouray) ¥ o — ";"l"\ﬁ Aug Vo = o5 Auggarghe.
By (2.4)and (2.5) we have
‘P‘Aﬁ(au‘)’;iv)‘ﬁi‘lfw"z VB0, gY) gv—p‘l"ﬁ‘l’d * + YaBYp (O gy Yz

= (0 ¥ra®)Vra® + (Opdre) g%,
so that we obtain

2.9 Is = ; ((3,9ra)a% — (Dpra®) Yra®) — % (WaPAE"Ya" + 02zA 5% ") ; conj.,

2.10) T% = — L @hnad ¥ + 5 (A= — AV ¥™); coni.

Thus we see that a metric (¢, Yr)-connection 1"} is given by (2.9) and (2. 10).
Conversely, it is easy to verify that given any tensor field A;" = (A%

A, the quantities I, = (I, T% T T%) given by (2.9) and (2.10) define

a metric (¢, Yr)-connection.

Thus we have

THEOREM 2.1. In a Hermitian manifold with a quaternion structure in
order that an affine connection I, be a metric (¢, V¥)-connection it is necessary

and sufficient that 1"}, be given by I'; = (I'5,, 1”;;-):
I, = 1 ((Bua)g™ — @u¥ra®)Yra*) — ;- (PaPAL % a" + g.aAup “9P%); conj.,
=y @b Vo + & (At — Agg i 4793 coni.,
where A" = (A<, Au*) is an arditrary tensor field.
Since Aj" is arbitrary, we may put Aj"* =0, and then we have

THEOREM 2.2. In @ Hermitian manifold an affine connection Iy = (I,

F}(x) given by
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Ts = 5 (uora) 5 — @b ™Na®); coni,
A 1 79 1
v = — 5 @abia)¥™; conj.

is a metric (¢, yr)-connection.

3. Integrability of the quaternion structure and affine connections.

0 0 0 -
In a Hermitian manifold, an affine connection It = (I'y, I'ix) defined by
n -
I5, = (3u9xa) 9™ ; conj.

0 0
is a metric ¢-connection, i. €. Vjgi, = V" = 0. The Hermitian metric g:, is

0
then Kihlerian if and only if the connection I is symmetric, i.e. Sug.; =
O i +

1 1 1
In a quaternion manifold, an affine connection 1% = (I',, I';,) defined by
1
I, = —@“a"; conj.
1 1
is a (¢, V)-connection, i.e. V;¢p;* = y; Y, = 0. The almost complex structure
Yr;" is integrable,i.e. it gives another complex structure, if and only if the
1
connection I} is symmetric, i.e. 9,¥* = 9% = 0 [3,4].

On the other hand in a Hermitian manifold with quaternion structure
the condition

3.1 Ou¥ae = 0; conj.
is equivalent to the condition that the tensor field Vi, = (Y a, ¥ix) is comp-
lex analytic. Furthermore (3.1) is equivalent to
(GaVa®) gax + Va% 0 gax = 0
or to
3. 2) (ap g.3) g% = —(au‘[’\a)"l’"w"~
Since in a Hermitian manifold with quaternion structure it is possible to
0 1
introduce the metric ¢-connection I and (¢, ¥;-connection I';, (3.2) means
that the two connections coincide with each other.

THEOREM 3.1. In a Hermitian manifold with quaternion structure we in-

] 1
troduce a metric $-connection T and a ($, V)-connection T'y;, each defined by

Ji
0 _ .4 .
F'fm‘: (B ga) 9% 5 conj., I, = —(0,¥\*)¥* ; conj,

other components being zero. Then the following four conditions are equivalent

with each other :
1) The tensor Vi, = (Yae, ¥ix) is complex analvtic: 9, V. = 0; conj..

0 1
2) The two connections coincide with each other : 1"}, = I'j.
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N —

3) The metric ¢-connection i‘]’L is a {r-connection : éj\h =

4) The (¢p,r)-connection IQ?L- is @ melric connection : e,- gin = 0.

Proor. The equivalence of 1) and 2) has been established above.

That of 2) and 3) will be seen as follows. Since f‘}'; is a metric ¢-connec-
tion and f‘;‘i is a (¢, vYr)-connection, the condition I“‘j.‘t = i‘g‘i implies that i)"“i
is a Yr-connection. If, conversely, l':jfi is a +r-connection, from the special

0
I'.) we have
MA

0 . 0
VM‘\],)\K = r'-;\p)\'( - le\’\,’/'ak = Ov

0 n
Yo __ v,
form of I}, = (I's,,

from which we see
0 1
I‘:.)\ = —(8,;\]/‘,\“)1[/*““ =TI :,y
In an analogous way, the equivalence of 2) and 4) can be established.

Next we consider the relations between the integrability of yYr* and the
Kihler's condition on g;, with respect to both ¢;* and ;"

THEOREM 3.2. In a Hermitian manifold with quaternion structure the
following six conditions are equivalent with each other :

1) The Riemannian metric g, is Kdhlerian with respect to both ¢:* and
Prih,

2) The tensors i, = O and Vs = i vanish identically and the

almost complex structure V" is integrable : S, 4\ = o .~.

0
3) The connection 1", is a r-connection without torsion.

1
4) The connection I‘}‘, is a melric connection without torsion, i.e. Rieman-

nian connection.

5) The tensor ri;, = (Vrre, ¥rix) is complex analytic and the almost complex
structure " is integrable.

6) The metric g is Kihlerian with respect to ¢:* and the tensor vy, is
complex analytic.

Proor. The equivalence of 1) and 2) is well-known.
If gin is Kihlerian with respect to both ¢ and ;" the Riemannian
connection I'}, i.e. one defined by Christoffel symbols, is a (¢, ¥}-connection.

i

s . Py . - . . . 0
Since g, is Kihlerian with respect to ¢:", I'%, coincides with I}, so that

0

I'}, is a Yr-connection without torsion. If, conversely, f‘j’, is a +-connection
without torsion, it is a metric (¢, Yr)-connection without torsion and must
coincide with the Riemannian connection. Hence ¢;, is Kihlerian with respect
to both ¢;* and ;% Thus the equivalence of 1) and 3) is established. In an
analogous way the equivalence of 1) and 4) will be proved.
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The equivalence of 1) and 5) is proved by use of Theorem 3.1. In fact,
if gi, is Kédhlerian with respect to both ¢:* and * the Riemannian con-

0 1
nection coincides with both I'j; and I'}. It follows from Theorem 3.1 that the

1
tensor Yy, = (¥, ¥ix) is complex analytic. Since I, must be symmetric,
the integrability condition of yYr;* is satisfied. If, conversely, the condition 5)

1
is satisfied, the complex-analyticity of v, implies that I'}; is a metric (¢, V)-

1
connection by Theorem 3.1. The symmetry of I'}, follows from the integrabi-
lity of yri™.
1)—6) is obvious. If 6) is satisfied, the analyticity of +;, implies
(Oudra)g®* = —(@u¥nn*)¥ra*. Since gi, is Kdhlerian, the Riemannian connection

0 1
coincides with I'}, = I, and is a +r-connection, i.e. g, is Kéhlerian with
respect to both ¢;* and .

4. Transformations preserving the quaternion structure. We
consider a differentiable transformation f preserving the quaternion structure :
i = ¢ and f " = YP;» . The former condition means that f is complex
analytic (with respect to ¢:*). The latter condition implies that the field of
partial derivatives of ;" is also invariant by f. If the tensor Vi, = (Yr,x, ¥ix)

0 1
is complex analytic, the metric (¢, ¥)-connection I'}; = I'};, is defined only by

1
Y;" and its partial de-ivatives by complex coordinates: I', = — (G @)\, ;
1
conj., others being zero. Therefore I'j; is remained invariant by f. Thus we

have

THEOREM 4.1. In a Hermitian wmanifold with quaternion structure we
assume that the tensor \ri;, is complex analytic. Then a differentiable trans-
Jormation preserving the quaternion structure is always an affine transformation

0 1
with respect to the metric (¢p,¥)-connection T, ( = T').

If a Hermitian manifold with quaternion structure is Ké#hlerian, the
assumptions of Theorem 4.1 are satisfied, so that we have

THEOREM 4.2. In a Kahlerian manifold with quaternion structure, a dif-
Jferentiable transformation preserving the quaternion stvucture is always an affine
transformation with respect to the Riemannian connection.

Since, in a complete, connected irreducible Riemannian manifold, an
affine transformation is always an isometry [1,2], we have

THEOREM 4.3. In a complete, connected irreducible Kihlerian manifold
with quaternion structure, a differentiable transformation preserving the quater-
nion stucture is always an isometry.

2) As to the notation see [4].
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