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Introduction. In the development of the extension theory of rings of oper-
ators on a Hilbert space, the study of the direct product of factors® initiated
by Murray and von Neumann [6], [7] has been developed successively for
general rings of operators by Dixmier [1] and Misonou [5]. In recent years, we
have brought the notion of the crossed product of division algebras or simple
algebras into rings of operators, more particularly, finite factors and established
the foundation of the theory of the crossed product. Subsequently it has been
examined by Saitd [10], [12] and the other authors. The initial impetus which
led us to these investigation was provided by the so-called factor construction
created by Murray and von Neuman [6], [8]. Making use of the crossed pro-
duct, we have seen that the factors of different algebraical types from the
original one are constructed by varying the groups of automorphisms® [11],
[14].

The purpose of this paper is to present a unified account of these develop-
ment and to study the more general types of extensions of finite factors. Let A be
a finite factor on a Hilbert space, then a factor M containing A as a subfactor
is called an extension of A. The first class of the extension M of A which is
called the discrete extension was indicated by the classification of the dimension
type for rings of operators, in particular, the class of type I. In the first step
it will be shown that the discrete extension involves not only the 7z X z matrix
algebra over A, but also the crossed product of A by a certain group of auto-
morphisms.

The second class of the extension M which is called the splitting extension
of A by a group G is, roughly speaking, as follows; M is decomposed for the
suitable topology in the form

M = ZJEGA Um

where {Uslwe is a unitary representation of G in M such that U¥AU c A.
This class of the extension was inspired from the group extension theory and

1) A W-algebra means a weakly closed self-adjoint operator algebra with the identity on a
Hilbert space and a factor means a W#*-algebra whose center consists of scalar multiples

of the identity.
2) By an isomorphism}between W*-algebras, we always understand a *-isomorphism, i.e. an

automorphism of a factor means a *-automorphism.
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the theory of the crossed product is completely covered by the theory of the
splitting extension. Actually, the theorems on the crossed product are extend-
ed to those on the splitting extension. In the final step our observation will be
concentrated on the special splitting extension in which G is a cyclic group of
order n. In the case where n=2 or 3, it is fully investigated by the employ-
ment of the concept of discrete extension.

1. Fundamental concepts and notations. Throughout this paper, we shall
deal with only finite factors. Let M be a finite factor on a Hilbert space H and
A a subfactor of M, ie., the identities of M and A coincide and we denote
it by I, then we say that M is an extension of A. That is, by an extension M
of a factor A, we always understand that M is a finite factor and A is a sub-
factor of M, without confusions. It is very important to keep this convention
in mind in what follows. The elements of M are, in general, denoted by A,B,
------ , and in particular the elements of A are denoted by a, b, . An extension
M of a factor A is said to be finite (infinite) dimensional if the commutant A’
of A is finite (properly infinite) resp. and is simply called a finite (infinite)
extension of A resp.. For a finite extension M of a factor A we shall define
the so-called degree of the extension by C,/Cy where C,, Cy is the spatial
invariant of A, M, resp., and denote it by [M; A]». A subfactor B of an exte-
nsion M of a factor A such that A B C M is called a subextension of the
extension M of A. Let M, N be two extensions of a factor A, we say that the
extensions M and N are equivalent to each other if there exists an isomorph-
ism of M and N which coincides on A with the identity automorphism.

Let M be an extension of a factor A, then for each element A in M,
there exists uniquely an element A° in A such that

T(Ab) = 7(Ab)  for all b € A,

where 7 is a (normalized) faithful normal trace of M. The mapping & has been
described largely in [2], [15] and is occasionally called the conditional expecta-
tion of M relative to A. The mapping € has the following fundamental
properties :

(i) The mapping & is a faithful, normal, positive linear mapping of M

onto A.

(ii) a°=a for all a € A.

(iii) (aAby = aA®b for all a, b ¢ A, A < M.

(iv) (ABf=(BAy forall AeM Be A'NM
Since the faithful normal trace 7 of M is unique, such a mapping € is unique-
ly determined by M and A. Using the mapping & we shall introduce the

3) For the spatial invariant Ca of a W*-algebra A, see [9]. It is called “fonction de liaison”
in [1].
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notion of “inner product type” on M associated to A as follows :
[A, B] = (AB*y.

Then we say that A and B in M are mutually orthogonal over A if [A, B]
= 0 (trivially [B, A]=0), and the set {A ¢ M; [a, A]=0 for all @ € A} is
denoted by A*. In connecti>n with this, we mention the fact that M is uniquely
decomposed in the form M = A@ A" as seen in [2].

An extension M of a factor A is regarded as a module over A with the
A-valued inner product [ , ] and so we use the term ‘“base” as follows. By a
base of M over A, we understand a family {U,}s of unitary elements in M
containing the identity I such that U, are mutually orthogonal over A and for

each element A in M there exists a family {@.}aex in A such that A = >~ saaaUs,

where 3~ is taken in sense of the metrical convergence®”. Here it is easy to

see that a family {a.}ws is unique for each A € M. In connection with this, there
arises a significant problem whether there exists a base or not for any exten-
sion of a factor, but we do not concern with this in the present paper, beca-
use we study only the certain class of the extension. We shall provide a lemma
by which the natural connection between the base and the degree is illustrated
and which will be of use to us later.

LEMMA 1. If a finite extension M of a factor A has a base, the follow-
ing statements for a family U = {U.laes of unitary elements in M are equi-
valent to each other.

(1) U is a base.
(2) The elements in U are mutually orthogonal over A and the number
of A equals to [M; Al.

PrROOF. Note first that the degree [M; A] is invariant by the ampliation
of M, we may assume to be Cy = 1. Now, select a projection E° of M’ such
that D(E) = 1/Cy for the dimension function D" of M’, we have from [1;
Chap. III, p.282] that Cyp =Cy-D(E)=1and C.y=C, - D(E)=[M; Al
Thus we may confine ourselves to the case where Cy =1 and Ca = [M; Al
Let « be a separating trace vector of M (that is, of A), and let D,D’ be the
dimension functions of A, A" resp. in what follows then, since D ([A’z])
=1, Cy, = 1/D'([Ax]). If the elements in ¥ are mutually orthogonal over A,
[AU,xl.s are evidently mutually orthogonal, and further mutually equivalent.
In fact, Cy = 1 yields that there exists a unitary element U, in M, that is, in
A’ such that U.xr = U, x for each a € A. From the above comments the equi-

4) Let = be the faithful normal trace of M, we define [[A)l=,/7(A%A) for each AeM.
Then M becomes a new topological space with a purely algebraical metric [[ 1]
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valence of our statements is easily deduced. (1)—(2); The fact that  is a
base implies that [AU.x],y are mutually equivalent, orthogonal and H = > s
[AU.x], since x is generating for M. Namely, since A’ is finite, the number of

A is finite and equals to 1/D'([Ax]) = Cy = [M; A]. (2) > (1); D" (3 aes[AUux])

= sas D[AUx))=[M;A].D'([Az])=CsD'([Ax])=1 yields H = 3 . [AULx],

and so I is a base.

We make use the notion indicated from the minimal projection of a factor
of type I. A non-zero projection E in M is called an A-projection if there
exists an element a in A such that EAE = aE for each A € M. In this case,
obviously EAE = EaE = aE and there exists, of course, an element a in A
such that EAE = Ea. We shall take a special interest in the extensions having
such a projection which is expounded in the following section.

Among the special extension there exists the direct product of factors. This
extension will occupy the basic réle in our exposition. For this, we refer to
[1], [5], but certain notations are used on this account. Let A be a factor on a
Hilbert space H and let S be an arbitrary set, then each vector of the direct

product ¥ = H ) I,(S) of H and /,(S) is expressed in the form D gesta & &a,

where x. are vectors of H such that ) ses [[2a|* is finite and {&,}acsis a complete

orthonormal system of [,(S). An operator a &) I(a € M) means an operator on

¥ defined by
(Cl ® I) (Z aes Lo ® 85() = Zaesd.rw ® Eu.

Then a—a X Iis an isomorphism of A into the full operator ring on X
which is called the ampliation of A, and a set of operators a @ I is a W*-
algebra on ¥, denoted by A & I. Furthermore, A @ B is frequently denoted by
A &I, in the case where B is a factor of type I,. Let r be a faithful normal
trace of the direct product of two factors A and B, then there exist faithful
normal traces 7, 7, of A, B resp. such that v(a & b) = 7,(a)r, (b) for a € A,
b € B. According to this fact, the following lemma relative to the mapping &
in A &Q B is directly verified.

LEMMA 2. Let A,, B, be subfactors of A, B respectively and let &, &,, &, the
conditional expectations of A& B, A, B relative to A, Q B,, Ay, B, respectively,
then for all a € A,b ¢ B

(@& by =a* b

2. Discrete extensions. The present section is devoted to introduce an

extension of discrete type which is taken an interest in the simple structure.
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Actually, it will be shown that the » X # matrix algebra over a factor is the
special case of such an extension.

DEFINITION 1. An extension M of a factor A is said to be discrete over
A if there exists a family of mutually orthogonal A-projections {E;} (=1,
2,, n) in M such that I = Z?_l E and (E,aE,) = (EyaE,f == (E,aE,)
for all a € A.

Here, n is called the order of the discrete extension M and a family {E,}
is called a discrete base of M over A.

Before being shown an example of the discrete extension, there will be
deduced the basic properties of the discrete base {E;} (( =1,2,.... n) which is
of frequent use. Let D, be a W*-algebra generated by elements in M comm-
uting with all E,(i =1, 2,-, n), then we obtain

LEMMA 3. Let {E;} (i =1,2,...,n) be the discrete base of the discrete
extension M of A, then an element a, € A such that EAE, = a,E; is uniquely
determined for each A€M and for each i, and lies in A N D,.

PROOF. First we shall prove the uniqueness of a;. In fact, if a,E; =0,
EafaE, =0, and so (E.afa,E.Y = 0 for all £ under our assumption. Since the
mapping & is faithful, E.afa;E, = 0. Hence, for the faithful normal trace =
of M,

n

wafa,) = ZZZIT(a?‘aiEk) =2 ., 7(Edfa,E,) = 0,
so that afa;, =0, a;, = 0.

Next, let A be an element in A. Using the assumption (E, AE,f= - =
(E,AE,) and in particular Ef = E} = - =k, = —711—[, we see that the equa-
lity (E,AE,)f=a.E; implies a, =a, = - = a, (denoted by a). Thereby E,AE,
= aqkE, for all .. Summing up for i =12, ,7n, we obtain a =Zr=1 E AE,
e D, N A. Now, let A be any element in M. Applying the above fact for an
element a; in A such that E,AE, = a,E;,, we know that there exists an element
a; in A N D,. such that a,E, = Ea,E, = a;E,. By the first part of our proof,
a, =a; € A N D, This completes the proof.

Clearly, the projections E; of the discrete base except the trivial case

n =1 do not belong to A and it will be easily seen that E; are minimal
with respect to A in the sense that there is no non-zero projection e in A such

that e < E,.

LEMMA 4. A projection E==1 in M such that E° =N (A <1) is minimal
with respect to A.
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PROOF. Assume that there exists a projection e in A with e < E, then
E—e>0 implies (E—e))=FE — ¢ = M — e > 0. This means<lex, x >=<Ax, x>
for all vector x € H, and so [lex|?=<\ ||z||* for all vectors x € H. Since
A < 1, this contradicts to || e]|] = 1.

Now, we shall observe that the #» X » matrix algebra over A is the most
special discrete extension of A.

THEOREM 1. Let A be a factor, then an extension A @ I, is discrete
over AR with the order n.

PRrROOF. Choose a family of mutually orthogonal minimal projections {e;}
(i=1,2,,n) in factor B of type I, and put E, = I ) e, then it may be
shown that {E;} ({ =1,2,,n) is a discrete base over A @ I. For any element
a@bin AQYB, we obtain [Qe) @RI Re)=a Rebe, =a QNe, =
raQe, = Ma @ (I Qe;) where N is a scalar and Aa® I lies in AL It
follows that there exists an element a; in A such that E,AE, = a,E; for each
A € A®B and for each i. Moreover, using Lemma 2,

[(1® e) (@@ DI e) = (a ® ey =a"Qe=a ,7];* I

where &, & means the expectation of A, B relative to A, the center (AI) of B
respectively. Hence it holds that (E,aE,f = (E,aE,f = - = (E,aE,’ for all
a € A QI Therefore, we have seen that {E;} (1= 1.2,,n) is a discrete base
of A QL over AQL

Now, although we have seen a typical example of the discrete extension,
it is exceedingly desirable to show the existence of the discrete extension
which is defferent from the extension as in Theorem 1.

LEMMA 5. Let M be an extension of a factor A with [M; A] = 2, then
there exists a projection E in M such that E° = %I and A" = AQ2E — I).

PROOF. From the proof of Lemma 1, we may assume that Cy =1
and C, = 2. Let x be a normalized separating trace vector of M, then

there exists a projection E in M such that D(E) = idand Ex is a separating
2

trace vector of A as seen in the proof of [3; Theorem 1]. Thus, for all ¢ € A,
there is a scalar A such that <Fax, x> = <aEx, Ex> = <\ax,x>. Here,

since D(E) = —;—, = é‘. On the other hand, < Eax, x> = <FEfax, x> for
all @ € A. Therefore < %ax, x>=<Fazx, x> for all a € A implis E° = % I

Since (2E — I¥ = 0, we see that the unitary elements Jand2E — I in M are
mutually orthogonal over A. It follows from Lemma 1 that {[,2E — I} is a
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base of M over A, that is to say, A™ = AQ2E — I).

THEOREM 2. Let M be an extension of a factor A with [M; A] = 2, then
M is discrete over A with the order 2.

PROOF. M is decomposed in the form M = A& A" as described in the
section 1. Choosing a projection £ in M such that E° = '%41 by Lemma 5, we

obtain M = A P ARE — I). That is to say, each A € M is uniquely written
in the form A = a, + a,E(a,,a, € A). Hence AE=(a, + a,)E for each Ae M.
This shows that there exists an element a € A such that EAE = aE for each
A € M by considering EA as the preceding A. That is, E is an A-projection

in M. Moreover, since (I — E) = —;—I, the same argument shows that /—E is

an A-projection in M. Now it remains only to show that [EaE|* = [(I — E)a
(I — E)J for each a € A. The following equality is directly computed;

a=[E+{— E)alE+{ — E)]l=(I — E)all — E)— EaE + aE + Ea.
Using the mapping & we obtain
a=a =[I— E)al — E)f — [EaEF + a.
Consequently [EaE] = [(I — E)a(I — E)J’ for each a € A. We now established
that {E, I — E} is a discrete base of M over A as desired.

We ought to mention that the discrete extension in Theorem 2 is different
from that in Theorem 1. This follows evidently from the fact that A'N M =
(A1) as regarded in the section 4. Proceeding as in Lemma 1, 2, we shall examine
the structure of the discrete extension.

LEMMA 6. Let A, be the intersection of A and D,, then the discrete exten-
sion M of A is isomorphic to A, & 1,.

This is quickly concluded from Lemma 3 and we see that the n X n mat-
rix algebra over A i.e. the discrete extension in Theorem 1 is nothing but the
case where A = A,.

PROOF. By Lemma 3, we have already known that EME, = A E,. If we
correspond for each E\AE, € M an element a € A, such that E AE, = aE,,
we get an isomorphism of E.ME, onto A,. However, EME, is isomorphic to
Mg and M is isomorphic to Mg & I, where My, is the restriction of M on the
range of E,. Consequently, M is isomorphic to A, &) I,.

COROLLARY. The discrete extension M of A s of type I, type II if A is
of type I, type II respectively.

In fact, a subfactor of type I, does not contain a subfactor of type II as
seen in the proof of Lemma 8(2)
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DEFINITION 2. An extension M of a factor A is solvable over A if there
exists a chain of subfactor A; of M with the following properties ;

(i) A=A cAcA,cC c M.

(ii) M is generated by Ay, A, - rteM=RA; :=0,1,...).

(iii) For each ¢, A, is discrete over A,.

In the final step of this section, we shall generalize Theorem 1 as indicated
from the above definition. It is essentially suggested by the following Lemma.

LEMMA 7. Let A,B be two factors of type I, I, respectively such that
A < B, then B is discrete over A.

PROOF. Let Di, Ds be the dimension functions of A, B respectively, then
D(E)= Dy (E) for all E €« A by the uniqueness of the dimension function.

Hence, the range {0, —;*, ------ , 1} of D, is contained in the range { 0, —37, —%—
------ 1} of Dy(E), so that p is a divisor of g,i.e. g=pr, r=1,2, . Now

choose mutually orthogonal minimal projections e, e, e, in A such that
I= le e;, and put C =B, C is of type I, and there exists a spatial isomor-
phism ® of B onto C& I, which maps A onto IQI,. By Theorem 1, C I,
is discrete over I& 1, since C is of type I,. Let us keep in mind that the
transposition {® (E,)} of a discrete base {E}(=1,2, ,q) of C & I, over
I 1, forms a discrete base of B over A, we conclude that B is discrete
over A.

THEOREM 3. Let A be a factor and let B a hyperfinite factor, then
A @B is solvable over A & 1.

PROOF. It needs only to prove in the case where B is of type II. That is,
there exists a chain of subfactors B; such that B,c B, < - cB,B=R(B;
i=1,2,) and each B, is of type I». Thus, we obtain a chain of subfactors
ARB, inAXBsuchthat AQI=ARB, CcARB, c..cAYBand ARB
=RAXB;i=1,2,). Lemma 7 implies that B; is discrete over B;_, for
each 7. Hence, we can select a discrete base {E,, E,} of B, over B,_,, and
then it is directly verified that {I& E,, I E,} gives a discrete base of A Q B,
over AQB,_;.

Finally, we take an interest in the fact that our observation illustrate the
structure of the hyperfinite factor of type II.

THEOREM 4. For each positive integer n, the hyperfinite factor M of type
II contains a subfactor A of type I, such that M is solvable over A. Conv-
ersely, if a factor M of type 1l is solvable over a factor A of type I, for some
n, M is hyperfinite.
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PROOF. Let B be an arbitrary subfactor of type I, then we obtain by a
repeated application of [7; Lemma 4,2,2] a chain of subfactors B, such that
B=B,cB c - C M and (i) each B, is of type I, (ii) p... is divisible by
#:. Obviously, N=R(B; ¢ =0,1,2 - ) M and N is hyperfinite. Thus, since
there exists an isomorphism of N onto M (cf. [7; Theorem XIV]), we obtain
a chain of subfactors A; of M such that A=A, cCcA,C ... cM,M=R(A;
i=0,1,2,) and further the properties (ii) (iii) as above hold. By Lemma 7,
A, is discrete over A, for each i and so M is solvable over A of type I,.
Next, suppose that M is solvable over a factor A of type I, for some 7, then
there is a chain of subfactors B; of M such that A=B,cB, c - cM, M
=RB;; :=0,1,2, ) and Bi., is discrete over B, for each 7. By Lemma 6,
Cor., we see that B, is of type I,. Hence M is hyperfinite.

3. Splitting extensions. In this section, we shall study the certain class
of the extension, which is the more general extension than the crossed product
of rings of operators developed in [13], [14], The splitting extension we are going
to define was inspired from the extension theory of the group (cf. [4]). Some
of the elementary properties of such an extension are obtained as more general
theorems than those on the crossed product.

DEFINITION 3. An extension M of a factor A is called a splitting exten-
sion of A by a group G if there exists a faithful unitary representation {U,}ace
in M of G with the following properties ;

(1) {Ualee is a base of M over A.
(2) For each a € G and a € A there is an element a* in A such that
alU, = U.a®.
We note the basic properties of the splitting extension derived immediately
from the definition.

(1) Any element A in M is uniquely expressed in the form
A = ZaeG 22 U B

where {as}acs is a family of elements in A and }_ is taken in the sense of

the metrical convergence. The condition (1) may be replaced by the following
statement : U {a € G) are mutually orthogonal over A and M is generated by
A and {U.}ae. Indeed, this fact is seen by the similar proof to [13; Theorem 1].

(2) G is homomorphic to the group(? of automorphisms of A which are

induced by {U.}s.s by the property (2). In particular, if G is isomorphic to
G, such a splitting extension is called the crossed product of A by G, which
is not essentially distinct from one in [13] (cf. The section 4).

The initial stage in our discussion is to determine the type of the splitting
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extension. It is completely answered.

LEMMA 8. Let M be a splitting extension of A by a group G.

(1) Let A be a factor of type I
() If G is finite, M is of type I
(L) If G is infinite, M is of type II.
(I,) If G is countable and locally finite, M is hyperfinite.
2) If A is of type II, M is of type IL
PROOF. (I,) Choose a set of an ordinary matrix units {Wy} (4,7 = 1, 2,
...... ;n)of A, each element a € A is uniquely expressed in the form Z;l,f=1M" Wi;.
Namely, each element A € M is expressed in the form;

Z i Wi Uy (k € G).

Hereupon, the system {W;;U,} is linearly independent in M. In fact,>_ ;M

WU, = 0 yields (Z Nk Wi,-) U, =0 foreach k2 € G, and s0>_ ;M5 Wiy= 0,
Mx = 0, for each 77, k. Thus, M is of finite rank. Since M is a factor, this
means that M is of type L

(I,) Let S be any finite set in an infinite group G ,then {U.},.s is linearly
independent in M. Hence M is impossible to be of finite rank and so M is of type II.

(I,) We may consider only the case where G is countably infinite and
locally finite. Then G is generated by a family of finite subgroups G, such
that G, c G, < - C G. Therefore, it follows from (I,) that M is generated
by a family of subfactors M, of type I, such that M\, c M, < - c M. This
proves that M is hyperfinite.

(2) Since A is of type II, we choose a strictly monotone decreasing infinite
directed set of projections {¢;}ir in A. If M is of type I, M is considered to
be the ring of all bounded operators on 7n-dimensional Hilbert space and then
{e;}:a is impossible to be infinite, strictly decreasing. Thus M is of type IIL

REMARK. Let B be a factor generated by the regular representations {U.}ace
of a group G with the unit ¢ whose non-trivial conjugate classes are infinite
(cf. [7]), then the direct product A & B of factors A and B is a splitting extension
of AQT by G.Indeed, let 7 be a faithful normal trace of A QB and let =, =,
faithful normal traces of A and B, then 7(@ @ DI QR wu.)) = aRQu,) =
7(a)r; (ua) = 0 (a=k=e) since 7, () = 0. Therefore, setting U, = 1 &) o, we know
that {Uslae is a base of A& Bover A Iand U,(@® 1) = (a & I) U, for all
a € G, that is, it is nothing but the case where all automorphisms of A & I
induced by Us are the identity one.

In examining the structure of the splitting extension M of A, it will be
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need to determine an intermediate subfactor of M and A. Actually, it is poss-
ible for a finite group G.

LEMMA 9. Let M be a splitting extension of a factor A by a finite
group G, then a subextension N of A is a splitting extension of A by a sub-
group G, of G.

PROOF. Each element A in N is uniquely written in the form; A = >_ .
a,U,. Denote by N, the set of a-components a, for A € N, it is immediately
verified that each N, is a two-sided ideal of A. However, A is algebraically
simple and so N, ={0} or A. Now, set G, ={a € G; N, =={0}}, N is expressed
as the direct sum of {AU,}acc,; N =2 awz, AU, which completes the proof
since G, is obviously a group.

4. Constructions of splitting extensions. Let A be a factor with the

spatial invariant C = 1 on a Hilbert space H and let G be a group whose
non-trivial conjugate classes are infinite. In addition, let us assume that there

is 2 homomorphism @ of G onto a group G of automorphisms of A. We shall
actually construct the splitting extension of A Q) I by G as a factor on H&/(G).
The method utilized is the slight generalization of the construction of the
crossed product in [13]. For this reason we shall frequently refer to [13]
throughout the present section. Using the unitary representation on H of a

group G of automorphisms of A in [13; Lemma 1], we obtain a unitary repre-

-~

sentation {#,}s (not necessarily faithful) of G on H such that u,*au, = a’
for all a € A where ¢ = @(0) for each o € G. Now, define unitary operators

U, on H & 1,(G) as follows;
Ua(ZweG Lo ® 804) = Zae(}' UsT ® Eoa

for each vector D e Zo Q) &« of H ) I,(G). Then ¢ — U, gives a faithful unitary

representation of G on H® ,(G) such that Uf(a QD U, = a° Q I(a € A)and
{(ARQ DU’ (x & &:)}ver are mutually orthogonal for each vector x &) &, (a fixed
a € G) as in [13; Lemma 2]. We consider a system & of all linear forms

Za eGAac le

where A, are elements of A& I and all but a finite number of them are zero.
Then the system & is a *-algebra. We shall denote by M a W *-algebra gene-
rated by the system &. Now, passing on the similar proof to [13; Thearem 1],
we arrive at the fact that M is a finite W*-algebra with C =1 on HK [, (G)
and each element A in M is expressed by a unique family {A.}we in the
form

A - Z«eGAuUw
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where Y, is taken in the sense of the metrical convergence. A W*algebra M
defined above seems to depend on the choice of the representations of G on H,
but the proof of [13; Lemma 5] holds in our case and shows that M is uni-
quely determined by A, G and ¢ within unitary equivalence, and we denote it
by (A, G, @). Since we confine ourselves to a factor in the present paper, we
must examine whether M is a factor or not. To do so [12; Theorem 2] will
be slightly modified in our case. In fact, for an arbitrary element A = > gl U,
(A, ¢ ARI) in the center of M, UfAU, = A for all ¢ € G. That is, keeping
in mind that setting A3 = a; Q I for A = aa @I, U* AU, = AJ, we obtain
ZHEG Au U¢ = ZaeG AE Ua—*'mr

If A, <=9 for some ==e¢(e; the unit of G), the uniqueness of a family {Ax}ae
leads that A, = A%y for all o < G. Hence [[As]] = [[@sar—]] for all o € G. Since
the conjugate classes {¢~'ao}s¢ are infinite, this contradicts to D aes[[Aa]] < co.
Therefore, Az = 0 for all @ 4=¢, in other words, A lies in A & 1. Moreover,
since A commutes with all elements in A &I, A must be scalar multiples of
the identity and so M is a factor. Consequently, since {Us},« is a base of M
over A ) I as described above, M is a splitting extension of A &I by G.
When the restrictions of some kind are imposed on ¢, the splitting extension
we have obtained is simplified as follows :

The Case I. o(a) are the identity for all a<G. Let {vs}q,c be a regular

representation of G on [,(G), then the equality A,Us(D ace o Q) &) = 2 _acca> Lo &

Eou = D at@sZa Q Vote(Ar = a, Q I)  implies AU, = a, Qv,. Accordingly
(A,G, @) is isomorphic to the direct product A Q@ B of A and factor B generated
by {‘Ua}oea.

The Case II. @ is an isomorphism. In this case, it will be easily seen that
(A, G, @) is the crossed product of A&®I by G and nothing but the crossed
product (A, (?) of A by G defined in [13].

In closing this section, we shall point out that for amy group G homo-
morphic to a group of outer automorphisms of A, our construction is possible
(cf. [13]).

5. Cyeclic extensions. There will be considered the cyclic extension which

is the simplest and the most interesting splitting extension, and we wish to
study the structure of this extension. We first make the following

DEFINITION 4. A splitting extension M of a factor A by a group G is
called a cyclic extension of A by G if G is cyclic.

In the case where G is of order two or "three, we are able to answer
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completely for the question: What is the necessary and sufficient condition
under which M is a cyclic extension of A by G?

The case [M; A] = 2. If M is the cyclic extension A by a group G of
order two, evidently [M; A] =2 by Lemma 1. Conversely, if [M, A] = 2, we
have known by Theorem 2 that M is discrete over A with the order two.
Further it has been shown in [3; Theorem 3] that M is cyclic over A. Now,
we shall give the proof of this result by making use of Theorem 2.

THEOREM 5. Let M be an extension of a factor A, then M is a cyclic
extension of A by a group G of order two if and only if [M; A] = 2.

PROOF. It is sufficient to prove that if [M; A] = 2, M is a cyclic extension
of A by a group of order two. Suppose [M ; A]= 2, then we know by Theorem 2
that M is discrete over A with the order two. That is to say, there is a
discrete base {E;} (i =1,2) of M over A. Setting U= 2E, — I, U? = I and it
is directly seen from Lemma 1 that {I, U} is a base of M over A. Now, for
each a € A, we denote by a* an element in A such that EaFE;, = a*E, (i =
1,2) as regarded in proving Lemma 3, and then E,aE, + E,aE, = a*(E, + E,)
= a*. Moreover, the equality a = (E, + E,)a(E, + E,) = E,aE, + E,aE, + E,aE,
+ E,aE, yields EaL, + E,aE, = a — a*. Therefore, we obtain, for each
a <€ A,

UaU = (E, — E)a(E, — E,) = E,aE, + E,aE, — E,aE, — E,aE,
=a% — (a — a¥%) = 2a* — a.

This means that UaU belongs to A for each a € A. Thus we complete the
proof.

REMARK. In the preceding theorem, put a” = UaU for all a € A, o is a
non-identity automorphism of A and M is the crossed product of A by a
cyclic group {a} of order two. In fact, if a” = a for all @ € A, U commutes
with all A € M, this contradicts to the fact that M is a factor. Further, we
know that ¢ is outer. Because, if ¢ is inner, U=vw (v € A, w e A" N1 M)
and all A € M are written in the form A = a, + a,vw(a,,a, € A). Thus, w
commutes with all A € M and so w must be a scalar multiple of the identity,
which contradicts to U & A. Accordingly, as in [13; Theorem 3], A'N M =
{scalar multiples of the identity}.

The case [M; A] = 3. It has been shown in [3] that there are factors M,
A such that for any unitary element U € M, U*AU C A implies U € A. This
means that the similar theorem as before is not valid in our case. However,
with the aid of the notion of the discrete extension, we derive the following

THEOREM 6. Let M be an extension of a factor A, then M is a cyclic
extension of A by a group G of order three if and only if M is discrete
over A with the order three and [M; A] = 3.
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PROOF. Suppose that M is a cyclic extension of A by a group G of order
three. Let {I, U, U?} be a base of M over A and put E, = —:13—(1 + U+ U, E,=

(I 40U+ @U?), =5 (I+ U + oU?) where o is the primitive cu-
bic root of unity, then it is immediately verified that E(i = 1,2,3) are projec-
tions in M. Moreover, the equality

EiE,.=%(1+w+m2)(1+ U+UH=0  (i+J)
yields that E; are mutually orthogonal and in addition

TiE= g B+t o+ o) U+ U =1

Therefore we have shown that {E;} (z =1,2,3) is a family of mutually ortho-

gonal projections such that ZLI E =1
Now we shall assert that {E;} (z =1,2,3) is a discete base of M over A.
For each a € A, the direct computation yields

EaE = —+(a+a +a")E (i=1,23)

. 1 . . .
where a° = UaU?*. Thus, since—5- (a+a +a”) e A, E are A-projections in

M. Further U®* = 0 implies E; = -:1)71 for all 7 and so for each a € A

(EaEY =5 (@ta+a)B= o (a+a+a?) (i=123)

that is, (E,aE,) = (E,aE,)F = (E;aE,Y. Therefore, we conclude that M is
discrete over A with the order three, and it follows obviously from Lemma 1
that [M; A] = 3.

Conversely, suppose that M is discrete over A with the order three and
[M;A] =3. Let {E;} (= 1,2,3) be a discrete base of M over A and put

U=E + oFE, + o*E,,

where o is the primitive cubic root of unity, then U is a unitary element in
1

M such that U® = I and (U = 7%(1 + o+ o) =0 (z=1,2),since E; = ~3*I
for all k. Hence [U), U] =0 (id=j; 4,7 =1,2,3), that is, U(i=1,2,3) are
mutually orthogonal over A. Under the assumption [M; A] = 3 it follows from
Lemma 1 that {, U, U?} is a base of M over A. To complete the proof, it
remains only to show that U*AU  A. As seen in Lemma 3, for each a € A
there exists an element a* in A such that E.aFE, = a*E, (k= 1,2,3). Thus it
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holds that
Z::-I E.aE, = a#(zz.l Ek) = a*. (1 )
Now, making use of the equality
4B*A = (A + B(A + B)— (A — B(A — B) + {(A + iB)*(A + iB) — {A
— iB)*(A — iB), we obtain, for each a € A,
4E,a*aE, = 4{(aE,)*(aE,)} = (aE, + aE,) (aE, + aE,) — (aE,
— aE)(aE, — akE,) + i(aE, + iaE,)*(aE, + iaE,)
— aE, — iaE,)(aE, — iaE),)
= (E, + E)a*a(E, + E,) — (E, — Eﬁ)a*a(Ek - E,)
+ (E, + iE)a*a(E, + iE,) — {E, — iE,)a*a(E, — iE),).

Therefore, applying (1) and Z:L]E,c =1
A(E,a*aE, + E,a*aE; + E;a*aE)) = 4{a*a + (a*a)* — 2(a*a)*
+ > E,a*aE; + ¢ 3" E,a*aE, — i3y E,a*aE, = 4{a*a — (a*a)*

hak ke hsk

— iy E,a*aE,}

hk

where &, £ run over 1, 2, 3. Here, note that

> E.,a*aE, = a*a — 3 E,a*aE, = a*a — (a*a)*.

hoelo
We have

A(E\a*aE, + Ea*aE; + E,a*aE)) = 4{a*a — (a*a)¥ — ia*a — (a*a)*)}

= 4(1 — ){a*a — (a*a)¥} (2)
Now, U*a*aU = (E, + 0’E, + oE,)a*a(E, + oE, + «*E,)
=Y Ea*aE, + o (E,a*aE, + E,a*aE; + E,a*aE,)
+ {w(E,a*aE, + E,a*aE; + E,a*aE))}*.

Combining (1) and (2),

U*a*aU = (a*a)*+o(1 — i)(a*a — (a*a)¥) + o’(1 + i)a*a — (a*a)*).
Consequently, we have shown that U*a*aU € A for all a € A, that is to say,
U*aU € A for all positive elements a € A. Since any element in A is ex-

pressed as a linear combination of positive elements in A, we have that U*aU
€ A for all a € A as desired. This completes the proof.

The above theorems give us a method of examining the cyclic extension of
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A by a group of order n» and so it seems that Theorem 6 is perhaps true for
any positive integer n.
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