
INTEGRABILITY OF NONNEGATIVE TRIGONOMETRIC SERIES

RALPH PHILIP BOAS, JR.*

(Received June 20,1962)

1. Introduction. It is known that if a trigonometric series converges every-
where to a nonnegative sum f(x) then / is integrable and the series is a
Fourier series [5, p.328], whereas when a trigonometric series converges to a
nonnegative sum only in an interval (a, b), its sum is integrable over interior
intervals, but is integrable over (α, b) if and only if the integrated series converges
at the end points of the interval [5, p.372, no. 14]. However, the sum belongs to
Lι~8, for every positive δ, over the whole interval (α, b) [5, p.371, no.13]. I shall
give a simple proof of this last result by showing first that (x — df (b — x)af{x)
is integrable over (α, b) for every positive a.

There is another natural sense in which a nonnegative function f can be
associated with a trigonometric series, namely that the coefficients in the series
are the Fourier coefficients of f in a generalized sense. If we consider the case
when f is integrable except in the neighborhood of one point, which we may
take to be 0, we can obtain necessary and sufficient conditions for the integrability
of xaf(x) for certain nonnegative values of a. These may be considered as
analogues of the known results that connect integrability of xaf(x) with the
convergence of Σcnn~a~ι when a < 0 (see, for example, [1], [2], [4], where further
references are given).

2. Convergent trigonometric series.

THEOREM 1. If a trigonometric series Σcne
inx converges in some (0, δ)

to sum f{x) and f{x) ^ 0 in this neighborhood then xaf{x) £ L in a right-hand
neighborhood of 0 for every positive a.

PROOF. Since the series converges in an interval, cn-+0. We know that /
is integrable on every (a, b\ 0<a<b< δ. (Cf. [5], pp.328 and 371, no.13.) Since
the Fourier series of the function equal to f(x) on (a,b) and to 0 elsewhere is
equiconvergent with Σcne

ιnx over any closed subinterval of (a, b) ([5], p.330), we
can integrate Xcne

ιnx formally over (x, £), where 0 < x < £ < δ, and obtain an
integral of / . Since the series Σcne

inx/{in) is a Fourier series, and indeed the
Fourier series of a function that belongs to every Lp(p< oo)5 by the Hausdorff-

Young theorem, I f(t)dt £ Lv for every p. Then by Holder's inequality
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or1 \ taf{t)dt = I f{i)dt I xa~ιdx = \ xa~ιdx \ f(t)dt
J Q *l 0 Q v ( ] %J x

lx[fχf(t)dt < o o

provided that p' = ρ/(ρ - 1) > I/a.

THEOREM 2. With the hypotheses of Theorem 1, / £ U~η in a right-hand

neighborhood of 0, for every positive η.

We have

Γf(ty-*dt = f' f(ty
Jo *-'o

Γ
by Holder's inequality, provided that 0 < λ < η.

3. Generalized sine iseries. We now consider generalized Fourier series of

nonnegative functions. We discuss sine and cosine series separately.

THEOREM 3. Ifθ<a<l, χaf(χ)eL, and

2 Γ*
(1 ) bn = — I f(x) sinnxdx,

7Γ JQ

then

(2) Σn-'-'K

converges.

This is a well-known elementary fact for a = 0. For a = 1, see Theorem 6.

We have

-1 11X -tL
 ΛIC

~ΓΓ TΓ / ?ϊ~abn

 z=z / n~a \ f{x
2J J n

m m υ

= I / ( χ ) Σ n"α~1 sinwxifa: = I + I = /x + /2.

In Iu we have

s m n x
[Ίlx]

smnx x
nx n

+ Σ smnx

n

[l( a j
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where A is independent of m and M. Hence

A f \f{x)\x«dx.
Jo

In 72, we have

We obtain

M

n ^ Σ n'a~ι ̂

^Am~« Γ \f(x)\dx.

If we take £ small and then m large we can therefore make Ix + 72 arbitrarily
small, and so (2) converges.

Theorem 3 assumes nothing about the sign of f(x). When f(x) ^ 0, it
has a converse.

THEOREM 4. IfO<a<l, f(x) ^ 0 on (0, π), xf(x) z L, bn are defined
by (1), and Σn~a~ιbn converges, then f(x)xa £ L.

We have

— I -f(χ) y^t n'a'1sinnxdx.
Jo i

Since Σ /2~1 simz r has nonnegative partial sums, partial summation shows

that Ί,n~a~ιsinnx also has nonnegative partial sums. Hence by Fatou's lemma

r i
(3) /(J:) Σ rraSmnxdx ^ lim inf ^- π

Now

M

Σ n~acosnt ()
i

and so

Σ n~a~ιsin nx = I Σ n~acosntdt — Axa (x-*0).
1 J 0 i

Hence (3) implies that / f(x)xadx < oo, We have not used the full force of
Jo
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the hypothesis that Σn~a~ιbn converges; it would be enough for this series to
have a sequence of bounded partial sums.

Theorem 4 is still true when a = 0 but the proof is slightly different.

THEOREM 5. Iff(x)^0 on (0,τr), bn are defined by (2), and U?n/n
converges then f{x) e L.

The reasoning leading to (3) is unchanged when a — 0, and the series on
the left is now equal to (π — x)/2. Hence

( 4 ) f{x){<π-
Jo

Since xf(x) £ L, (4) shows that f(x) € L.
When a = 1, Theorem 4 is vacuous and Theorem 3 fails as an example

we may take an odd function equal to x~2(\og x)~2 in a right-hand neighborhood
of 0. We have the following substitute.

THEOREM 6. If xf(x)\og(l/x) € L and bn is defined by (1) then Xn'2bn

converges if Xn~2bn converges and f{x) §: 0 then xf{x) \og{\/x) € L.

If xf(x)\og(l/x) £ L we have

— ITΣ n~2bn = Σn~2 \ f(x) sinnxdx

= ί Λχ) Σ n~2sinnxdx = [ + f = I, + 72.

3f

By the same reasoning as in Theorem 3 we see that ^ n"2sinnx is O(x
m

uniformly in m and M as J: —>0, and O(l/m) ίorx>€ as m —> oo. The
conclusion follows.

Conversely,

λ M % M

— 7r Σ n~2bn = I f(x) Σ n~2 si
Δ i J o i

and if Xn~2bn converges we have

Γ. Σ n 2 sinnxdx ^ — \
i Z

Now 2^ n~ιcosnx = — log (2sin^:/2) and hence ^ n~2 siτmx ^ x\og (1 / x) as
1 1

x —> 0. The conclusion follows.

4. Generalized cosine series. For cosine series the situation is somewhat
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different. If we assume f(x) g: 0 then the existence of the cosine coefficient a0

automatically makes f £ L. We shall therefore suppose that a0 = 0, and require
f(x) ^ 0 only in a neighborhood of 0. We can then work with a wider range
of a than in § 3.

T H E O R E M 7. If 0 < a < 2, χaf(χ) z L, and

2 f*
( 5 ) an = — I f(x)cosnxdx, n = 1,2,. . .,

then

(6) Σrc—X

We have

1 v^ α , / r , v ^-^ cos

since I f(x)dx = 0. Thus

1 * _a 1 ( Γε

 ] Γ*\ „ x ̂  2sin 2W2 , 7 , r

In 7i we have

\\\x\ M Λ \\\x\

m [1,x] TO

In/,,

as in the proof of Theorem 3. The convergence of (6) then follows.

THEOREM 8. If 0 <a<2, f <Ξ L in every (6, TΓ), θ > 0, f(x) ^ 0 in a
right-hand neighborhood of 0, an are defined by (5) with a0 = 0, and ^n'a~ίan

converges, then f{x)xa £ L.

Thus a = 1 is not an exceptional case for cosine series.

We have

TΓ- TΓ Σ n~a~'ιan = I f(x) Σ n'a~ιcosnxdx.
Zι .In



368 R. P. BOAS, JR

Now Σ n~β cosnx has its partial sums uniformly bounded below for β sufficiently
1

near 1 hence, by partial summation, so does Hn~a~ιcosnx, 0 < a < 1. Let — K
be a lower bound for the partial sums of the latter series since a0 = 0, we have

A * r* { x )

j τ r Σ r \ = f{χ) nΓ n-a~lco&nx + K\ dx.
Δ i Jo I i )

As in Theorem 4, it now follows by Fatou's lemma that

f{x)\TjrΓa-ιcosnx + K\ dx
Jo { i )

\
)

converges, and (again since a0 = 0) therefore so does

f
it

f{x) Σ, n-"-\l - cos nx) dx.
1

But

Σ n al(l - cosnx) = Σ > ~ α sinnx dx — Axa (x -> 0)
1 ^ Π 1

([5], p. 186), and so the conclusion follows.
In the case a = 0, conditions for the convergence of (6), i.e. of Σn~ !αn, are

known (cf. [5]. p.228, no.8 [3], p.96).
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