INTEGRABILITY OF NONNEGATIVE TRIGONOMETRIC SERIES

Ralph Philip Boas, Jr.*

(Received June 20, 1962)

1. Introduction. It is known that if a trigonometric series converges everywhere to a nonnegative sum $f(x)$ then f is integrable and the series is a Fourier series [5, p.328], whereas when a trigonometric series converges to a nonnegative sum only in an interval (a, b), its sum is integrable over interior intervals, but is integrable over (a, b) if and only if the integrated series converges at the endpoints of the interval [5, p.372, no.14]. However, the sum belongs to $L^{1-\delta}$, for every positive δ, over the whole interval (a, b) [5, p.371, no.13]. I shall give a simple proof of this last result by showing first that $(x-a)^{\alpha}(b-x)^{\alpha} f(x)$ is integrable over (a, b) for every positive α.

There is another natural sense in which a nonnegative function f can be associated with a trigonometric series, namely that the coefficients in the series are the Fourier coefficients of f in a generalized sense. If we consider the case when f is integrable except in the neighborhood of one point, which we may take to be 0 , we can obtain necessary and sufficient conditions for the integrability of $x^{\alpha} f(x)$ for certan nonnegative values of α. These may be considered as analogues of the known results that connect integrability of $x^{\alpha} f(x)$ with the convergence of $\Sigma c_{n} n^{-\alpha-1}$ when $\alpha<0$ (see, for example, [1], [2], [4], where further references are given).

2. Convergent trigonometric series.

THEOREM 1. If a trigonometric series $\Sigma c_{n} \mathrm{e}^{i n x}$ converges in some $(0, \delta)$ to sum $f(x)$ and $f(x) \geqq 0$ in this neighborhood then $x^{\alpha} f(x) \in L$ in a right-hand neighborhood of 0 for every positive α.

Proof. Since the series converges in an interval, $c_{n} \rightarrow 0$. We know that f is integrable on every (a, b), $0<a<b<\delta$. (Cf. [5], pp. 328 and 371, no.13.) Since the Fourier series of the function equal to $f(x)$ on (a, b) and to 0 elsewhere is equiconvergent with $\Sigma c_{n} \mathrm{e}^{i n \cdot x}$ over any closed subinterval of (a, b) ([5], p.330), we can integrate $\Sigma c_{n} \mathrm{e}^{i n x}$ formally over (x, ε), where $0<x<\varepsilon<\delta$, and obtain an integral of f. Since the series $\Sigma c_{n} \mathrm{e}^{i n x} /(i n)$ is a Fourier series, and indeed the Fourier series of a function that belongs to every $L^{p}(p<\infty)$, by the Hausdorff-
Young theorem, $\int_{x}^{\varepsilon} f(t) d t \in L^{p}$ for every p. Then by Hölder's inequality

[^0]\[

$$
\begin{aligned}
\alpha^{-1} \int_{0}^{\varepsilon} t^{\alpha} f(t) d t & =\left.\int_{0}^{\varepsilon} f(t) d t\right|_{0} ^{t} x^{\alpha-1} d x=\int_{0}^{\varepsilon} x^{\alpha-1} d x \int_{x}^{\varepsilon} f(t) d t \\
& \leqq\left\{\int_{0}^{\varepsilon} d x\left[\int_{x}^{\varepsilon} f(t) d t\right]^{p}\right\}^{1 / p}\left\{\int_{0}^{\varepsilon} x^{(\alpha-1 ; p)} d x\right\}^{1 / p \prime}<\infty
\end{aligned}
$$
\]

provided that $p^{\prime}=p /(p-1)>1 / \alpha$.
THEOREM 2. With the hypotheses of Theorem $1, f \in L^{1-\eta}$ in a right-hand neighborhood of 0 , for every positive η.

We have

$$
\begin{aligned}
\int_{0}^{\Sigma} f(t)^{1-\eta} d t & =\int_{0}^{\varepsilon} f(t)^{1-\eta} t^{\lambda} t^{-\lambda} d t \\
& \leqq\left\{\int_{0}^{\varepsilon} f(t) t^{\lambda(1-\eta)} d t\right\}^{1-\eta}\left\{\int_{0}^{\varepsilon} t^{-\lambda^{\prime} \eta} d t\right\}^{\eta}<\infty
\end{aligned}
$$

by Hölder's inequality, provided that $0<\lambda<\eta$.
3. Generalized sine series. We now consider generalized Fourier series of nonnegative functions. We discuss sine and cosine series separately.

Theorem 3. If $0<\alpha<1, x^{\alpha} f(x) \in L$, and

$$
\begin{equation*}
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x, \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum n^{-\alpha-1} b_{n} \tag{2}
\end{equation*}
$$

converges.
This is a well-known elementary fact for $\alpha=0$. For $\alpha=1$, see Theorem 6 . We have

$$
\begin{aligned}
\frac{1}{2} \pi \sum_{m}^{M} n^{-\alpha-1} b_{n} & =\sum_{m}^{M} n^{-\alpha-1} \int_{0}^{\pi} f(x) \sin n x d x \\
& =\int_{0}^{\pi} f(x) \sum_{m}^{m} n^{-\alpha-1} \sin n x d x=\int_{0}^{\varepsilon}+\int_{\varepsilon}^{\pi}=I_{1}+I_{2} .
\end{aligned}
$$

In I_{1}, we have

$$
\begin{aligned}
\left|\sum_{m}^{M} \frac{\sin n x}{n^{\alpha+1}}\right| & \leqq \sum_{m}^{\mathrm{i} 1: x]}\left|\frac{\sin n x}{n x} \frac{x}{n^{\alpha}}\right|+\sum_{|1| x \mid}^{M}\left|\frac{\sin n x}{n^{\alpha+1}}\right| \\
& \leqq x \sum_{m}^{\mathrm{i} \mid x]} n^{-\alpha}+\sum_{\mathrm{i}_{1}, x_{\mathrm{j}}}^{M} n^{-\alpha-1} \leqq A x^{\alpha},
\end{aligned}
$$

where A is independent of m and M. Hence

$$
\left|I_{1}\right| \leqq A \int_{0}^{\varepsilon}|f(x)| x^{\alpha} d x
$$

In I_{2}, we have

$$
\left|\sum_{m}^{M} n^{-\alpha-1} \sin n x\right| \leqq \sum_{m}^{m} n^{-\alpha-1} \leqq A m^{-\alpha} .
$$

We obtain

$$
\left|I_{2}\right| \leqq A m^{-\alpha} \int_{\varepsilon}^{\pi}|f(x)| d x
$$

If we take ε small and then m large we can therefore make $I_{1}+I_{2}$ arbitrarily small, and so (2) converges.

Theorem 3 assumes nothing about the sign of $f(x)$. When $f(x) \geqq 0$, it has a converse.

THEOREM 4. If $0<\alpha<1, f(x) \geqq 0$ on $(0, \pi), x f(x) \in L, b_{n}$ are defined by (1), and $\Sigma n^{-\alpha-1} b_{n}$ converges, then $f(x) x^{\alpha} \in L$.

We have

$$
\begin{aligned}
\frac{1}{2} \pi \sum_{1}^{M} n^{-\alpha-1} b_{n} & =\sum_{1}^{M} n^{-\alpha-1} \int_{0}^{\pi} f(x) \sin n x d x \\
& =\int_{0}^{\pi} f(x) \sum_{1}^{M} n^{-\alpha-1} \sin n x d x
\end{aligned}
$$

Since $\sum n^{-1} \sin n x$ has nonnegative partial sums, partial summation shows that $\Sigma n^{-\alpha-1} \sin n x$ also has nonnegative partial sums. Hence by Fatou's lemma

$$
\begin{equation*}
\int_{0}^{\pi} f(x) \sum_{1}^{\infty} n^{-\alpha-1} \sin n x d x \leqq \liminf _{M \rightarrow \infty} \frac{1}{2} \pi \sum_{1}^{M} n^{-\alpha-1} b_{n} \tag{3}
\end{equation*}
$$

Now

$$
\sum_{1}^{\infty} n^{-\alpha} \cos n t \sim A t^{\alpha-1}
$$

and so

$$
\sum_{1}^{\infty} n^{-\alpha-1} \sin n x=\int_{0}^{x} \sum_{1}^{\infty} n^{-\alpha} \cos n t d t \sim A x^{\alpha} \quad(x \rightarrow 0)
$$

Hence (3) implies that $\int_{0}^{\pi} f(x) x^{\alpha} d x<\infty$. We have not used the full force of
the hypothesis that $\Sigma n^{-\alpha-1} b_{n}$ converges; it would be enough for this series to have a sequence of bounded partial sums.

Theorem 4 is still true when $\alpha=0$ but the proof is slightly different.
THEOREM 5. If $f(x) \geqq 0$ on $(0, \pi), b_{n}$ are defined by (2), and $\Sigma b_{n} / n$ converges then $f(x) \in L$.

The reasoning leading to (3) is unchanged when $\alpha=0$, and the series on the left is now equal to $(\pi-x) / 2$. Hence

$$
\begin{equation*}
\int_{0}^{\pi} f(x)(\pi-x) d x \leqq \lim _{M \rightarrow \infty} \inf \pi \sum_{1}^{M} n^{-1} b_{n} . \tag{4}
\end{equation*}
$$

Since $x f(x) \in L$, (4) shows that $f(x) \in L$.
When $\alpha=1$, Theorem 4 is vacuous and Theorem 3 fails; as an example we may take an odd function equal to $x^{-2}(\log x)^{-2}$ in a right-hand neighborhood of 0 . We have the following substitute.

THEOREM 6. If $x f(x) \log (1 / x) \in L$ and b_{n} is defined by (1) then $\Sigma n^{-2} b_{n}$ converges; if $\Sigma n^{-2} b_{n}$ converges and $f(x) \geqq 0$ then $x f(x) \log (1 / x) \in L$.

If $x f(x) \log (1 / x) \in L$ we have

$$
\begin{aligned}
\frac{1}{2} \pi \sum_{m}^{M} n^{-2} b_{n} & =\sum_{m}^{M} n^{-2} \int_{0}^{\pi} f(x) \sin n x d x \\
& =\int_{0}^{\pi} f(x) \sum_{m}^{M} n^{-2} \sin n x d x=\int_{0}^{\varepsilon}+\int_{\varepsilon}^{\pi}=I_{1}+I_{2} .
\end{aligned}
$$

By the same reasoning as in Theorem 3 we see that $\sum_{m}^{m} n^{-2} \sin n x$ is $O(x \log (1 / x))$ uniformly in m and M as $x \rightarrow 0$, and $O(1 / m)$ for $x>\varepsilon$ as $m \rightarrow \infty$. The conclusion follows.

Conversely,

$$
\frac{1}{2} \pi \sum_{1}^{M} n^{-2} b_{n}=\int_{0}^{\pi} f(x) \sum_{1}^{M} n^{-2} \sin n x d x
$$

and if $\Sigma n^{-2} b_{n}$ converges we have

$$
\int_{0}^{\pi} f(x) \sum_{1}^{\infty} n^{-2} \sin n x d x \leqq \frac{1}{2} \pi \sum_{1}^{\infty} n^{-2} b_{n} .
$$

Now $\sum_{1}^{\infty} n^{-1} \cos n x=-\log (2 \sin x / 2)$ and hence $\sum_{1}^{\infty} n^{-2} \sin n x \sim x \log (1 / x)$ as $x \rightarrow 0$. The conclusion follows.
4. Generalized cosine series. For cosine series the situation is somewhat
different. If we assume $f(x) \geqq 0$ then the existence of the cosine coefficient a_{0} automatically makes $f \in L$. We shall therefore suppose that $a_{0}=0$, and require $f(x) \geqq 0$ only in a neighborhood of 0 . We can then work with a wider range of α than in $\S 3$.

Theorem 7. If $0<\alpha<2, x^{\alpha} f(x) \in L$, and

$$
\begin{equation*}
a_{n}=\frac{2}{\pi} \int_{\rightarrow 0}^{\pi} f(x) \cos n x d x, \quad n=1,2, \ldots \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\Sigma n^{-\alpha-1} a_{n} \tag{6}
\end{equation*}
$$

converges.
We have

$$
\frac{1}{2} \pi \sum_{m}^{m} n^{-\alpha-1} a_{n}=\int_{0}^{\pi} f(x) \sum_{m}^{M} \frac{\cos n x}{n^{\alpha+1}} d x=-\int_{0}^{\pi} f(x) \sum_{m}^{M} \frac{1-\cos n x}{n^{\alpha+1}} d x
$$

since $\int_{0}^{\pi} f(x) d x=0$. Thus

$$
\frac{1}{2} \pi \sum_{m}^{m} n^{-\alpha-1} a_{n}=-\left(\int_{0}^{\varepsilon}+\int_{\varepsilon}^{\pi}\right) f(x) \sum_{m}^{m} \frac{2 \sin ^{2} n x / 2}{n^{\alpha+1}} d x=I_{1}+I_{2} .
$$

In I_{1} we have

$$
\sum_{m}^{m} \frac{\sin ^{2} n x / 2}{n^{\alpha+1}} \leqq \sum_{m}^{[1 \mid x]}+\sum_{[1, x]}^{m} \leqq \frac{1}{4} x^{2} \sum_{m}^{[1, x]} n^{1-\alpha}+\sum_{[1, x]}^{3} n^{-\alpha-1}<A x^{\alpha}
$$

In I_{2},

$$
\sum_{m}^{m} n^{-\alpha-1} \sin ^{2} n x / 2 \leqq A m^{-\alpha}
$$

as in the proof of Theorem 3. The convergence of (6) then follows.
THEOREM 8. If $0<\alpha<2, f \in L$ in every $(\varepsilon, \pi), \varepsilon>0, f(x) \geqq 0$ in a right-hand neighborhood of $0, a_{n}$ are defined by (5) with $a_{0}=0$, and $\Sigma n^{-\alpha-1} a_{n}$ converges, then $f(x) x^{\alpha} \in L$.

Thus $\alpha=1$ is not an exceptional case for cosine series.
We have

$$
\frac{1}{2} \pi \sum_{1}^{M} n^{-\alpha-1} a_{n}=\int_{0}^{\pi} f(x) \sum_{1}^{M} n^{-\alpha-1} \cos n x d x .
$$

Now $\sum_{1}^{\infty} n^{-\beta} \cos n x$ has its partial sums uniformly bounded below for β sufficiently near 1 ; hence, by partial summation, so does $\Sigma n^{-\alpha-1} \cos n x, 0<\alpha<1$. Let $-K$ be a lower bound for the partial sums of the latter series; since $a_{0}=0$, we have

$$
\frac{1}{2} \pi \sum_{1}^{M} n^{-\alpha-1} a_{n}=\int_{0}^{\pi} f(x)\left\{\sum_{1}^{M} n^{-\alpha-1} \cos n x+K\right\} d x
$$

As in Theorem 4, it now follows by Fatou's lemma that

$$
\int_{0}^{\pi} f(x)\left\{\sum_{1}^{\infty} n^{-\alpha-1} \cos n x+K\right\} d x
$$

converges, and (again since $a_{0}=0$) therefore so does

$$
\int_{0}^{\pi} f(x) \sum_{1}^{\infty} n^{-\alpha-1}(1-\cos n x) d x
$$

But

$$
\sum_{1}^{\infty} n^{-\alpha-1}(1-\cos n x)=\int_{0}^{x} \sum_{1}^{\infty} n^{-\alpha} \sin n x d x \sim A x^{\alpha}(x \rightarrow 0)
$$

([5], p. 186), and so the conclusion follows.
In the case $\alpha=0$, conditions for the convergence of (6), i.e. of $\Sigma n^{-1} a_{n}$, are known (cf. [5]. p.228, no.8; [3], p.96).

References

[1] Chen Yung-Ming, Some further asymptotic properties of Fourier constants, Math. Zeit. 69(1958), 105-120.
[2] J. M. Gonźalez-FernÁndez, Integrability of trigonometric series, Proc. Amer. Math. Soc. 9(1958), 315-319.
[3] G.H. Hardy and W. W. Rogosinski, Fourier series, Cambridge, 1944.
[4] S. O'Shea, Note on an integrability theorem for sine series, Quart. Journ. Math. Oxford (2), 8(1957), 279-281.
[5] A. ZYGMUND, Trigonometric series, 2d ed., vol. I, Cambridge 1959.
Northwestern University
Evanston Illinois

[^0]: * President's Fellow, Northwestern University.

