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Introduction. Let π = \ πydμ(y) be an irreducible decomposition of a repre-
J Γ

sentation π of a C*-algebra M over a measure space (Γ, μ). Since traditionally
we identify the representations within unitary equivalence, it comes into con-
sideration whether the above decomposition can be regarded as a decomposition
of the unitary equivalence class of π into the unitary equivalence class of τr(y).
Besides it is desirable from the view point of the duality that the decomposition
can be constructed upon the structures which are completely determined by
only M.

So G.W.Mackey, in [14], introduced the concept of the Borel structure in
the dual space of the separable C*-algebra and that of the separable locally
compact group, in order to describe the behavior of the representations, especially
the decompositions, on the dual space and this trying succeeded for the so-
called C^-algebras of type I with some well behaved (i.e., smooth) dual spaces.
However we can not avoid some measure theoretic pathology for the C*-
algebras having rather badly behaved dual spaces.

Recently, the dual space of a C^-algebra has been studied successively by
several authors: J.Dixmier [2, 3], J.M.G. Fell [6, 7, 8], J.Glimm [ 9 ], M.A.
Guichardet [10, 11], J.Tomiyama [26] and J.Tomiyama-M. Takesaki [25]. Among
them, J.Glimm [ 9 ] obtained the extremally fruitful results for the relation
between the dual space and the structure of a separable C*-algebra, which says
that a separable C*-algebra has the well behaved (smooth) dual space if and
only if it has only representations of type I, and that a separable C^-algebra is
of type I if and only if it is GCR-algebra.

It seemed to be the second step to see what happens for the representations
of C^-algebras with badly bahaved dual spaces. M.A.Guichardet [10] showed
that the representations of type I behave well in their irreducible direct integral
decompositions. Moreover, in [11], he gave an example of the C*-algebra having
disjoint factor representations of type l\γ with same kernels.

Thus the present paper is devoted to show that for a separable C*-algebra
with badly behaved dual space there exists a continuum family of disjoint
factor representations of type II and of type III respectively with the same
kernel and moreover there are representations dι of type i, i = II, III, with the
following properties : there exist irreducible direct integral decomposition of θι,
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W(Ύ) and θm = [ θψdμ

1Ώ(y)

where 6|T

y

τ and θ™ are unitarϊly equivalent for every y £ Γ and for any null
subset N of Γ there exists some pair of γ, 7' ^ N such as θ\ ̂  ΘΊ,, and
μ\{y\θy ~ &ιy0 y € Γ}) = 0 for each y0 € Γ.

Before going into discussion the author must express his thanks to Mr.
J. Tomiyama for many conversations with him in the presentation of this paper.

Preliminary. Let M be a separable C*-algebra with the unit element and
φ a representation of M on a separable Hubert space ξ>. Let ξ0 be a generating
(unit) vector of § for φ(M), that is, [φ(M)ξ0] = § where [£] means the closed
subspace generated by E for any subset E of ξ>. Then ξ0 is a separating vector
for φ(M)/ the commutant of φ(M). Let i be a commutative C*-subalgebra of
φ(M)' whose spectrum space is Γ. If we define the linear functional ω^ on the
full operator algebra B(ξ)) on § by ωξiV(x) = (xξ, η), then ωξ>η\ A, the restriction

of a>ξtη on A, defines a Radon measure μ^v in Γ and for every ξ, η £ ξ>, μξ,η

is absolutely continuous with respect to μ^0 ξ0. We fix the measure μξo ξo and denote
it by μ. Suppose that Mo = {xn} is a countable dense self-adjoint subalgebra of
M on the complex rational number field. Putting ξn = φ(xn)ξo, {ξn} forms a
vector subspace £>' of ξ) over the complex rational numbers field. Let hξ>η be the
density of the measure μξ^ with respect to μ. The countability of ξ)' implies the
existence of a null set Nλ in Γ such that for γ Ξ̂ Nx the function: (ξ, η) —> hξ^(y)
is a positive hermitian conjugate bilinear functional on & X ξΛ Let ξ)(γ) be the
completion Hubert space of the space §' by the inner product hξtη(y). Putting
N2= [y^Ni] &(y) = 0}, we can easily verify μ(N2) = 0. Let T(γ) be the
canonical mapping of ξ)' into ξ)(γ). Putting T(y)ξ = ξ(y) for ξ ^ & and
γ Ξ̂ iVi u iV2, {fW(Ύ)} becomes a dense subset of &(y). ξ>' determines uniquely
the structure of measurable field on ξ)(y) that contains £)'. ξ> is represented as

the direct integral I Φ(y)dμ(y). In this direct integral each operator φ(x) of

φ(M) is decomposable and A becomes the algebra of all continuously diagonali-
zable operators. By [1 : Chap. II, §2, Prop. 6,p. 163] the map φ(x) —> φ(x)(y) beco-
mes a representation of C^-algebra φ(M) onto ξ)(y) except for γ of some null set
N3 of Γ. Putting φy{x) = φ(x)(y) for x € M and γ ή= JV3, we get a direct in-
tegral decomposition I φydμ(y) = φ. Moreover as in the proof of [1 : Chap.II,

Jr

§2, Prop.6] <py is given as the unique extension of uniformly continuous repre-
sentation of Mo. Now we shall explain briefly how φΊ is given. Putting Sφ(x)
— hφ(x)ξQ,ξ0 f° r e a c n oc ^ M, the function Sφ(x) belongs to L°°(Γ, μ) and the
mapping Sφ of M to L°°(Γ, μ) has the following properties: 1° θφ(Γ) = I: 2°
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8φ(x*x) Ξg 0 for every x € M: 3° there exists a null set NA such that ω^(.r)
= 8φ(x)(y) is a state for each y Ξ̂ iV4: 4° if the weak closure of 4̂ is maximal
abelian in φ(M)\ there exists a null set iV5 of Γ such that ω£ is pure for every
7 έp N5. Since

J a = ωξιφ{x)η(a) = (aξ9 φ(x)η)

= (φ(xfaξ, η) = (aφ(x*)ξ, η) = J a(y)hφ{x*)ξiη dμ(y)

for every a € A, every x € M and every pair of ξ, η of | ) , we have

(ξm(y\ ξn(y)) = λf.,fc.(γ) = hφ

for every γ ^ \^/ iSTi and every | m , | n e ^^ Since φ(ά)ξn belongs to $' for each
i = l

a £ Mo and

5

for every γ ^ \^/ JVt and every f TO, f n € $', the representation ?̂γ of M is the
i = l

cyclic representation induced by ωψ

Ί for almost every y £ Γ. Thus we get the
direct integral decomposition of ξ> and φ:

= I $(y)du.(i) and 9? = Γ φydμ(y).

If in the above discussion <p is the cyclic representation induced by a state σ
and if | 0 is the cyclic vector corresponding to σ, we write £σ and ωy in place
of Sφ and 6>γ.

For each non-zero projection e of φ(M)\ putting φe(x) = φ(x)e for x € M,
we get a representation <pe on ^^ called the (non-trvial) subrepresentation of
φ. If two representations φ and ψ have no unitary equivalent subrepresen-
tations, then they are called disjoint representations. On the other hand, if
they have no disjoint subrepresentations, we call them quasi-equivalent. By
[13 : Chap. I], °o . φ and 00 ψ are unitary equivalent if and only if they are quasi-
equivalent, where 00 . φ means the product representation on ξ) ® £)oo, the direct
product of ξ> and an infinite dimensional Hubert space $«, defined by φ and
the trivial representation of scalar field on <£)oo. Hence φ and ψ are qua si-
equivalent if and only if there is an isomorphism IT from the weak closure of
φ(M) onto the one of ψ(M) such that ψ = πoφ. As we can define the iso-
morphism from φ(M) onto ψ(M) by τrφ(x) — ψ(x) for x € M for the represen-
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tations φ and ψ with the same kernel, φ and ψ are quasi-equivalent if and
only if iτ is σ-weakly continuous. Define the subspace of M*9 the conjugate
space of M as Banach space, by

Vφ = {*<?(/>), p is a σ-weakly continuous linear functional
on the weak closure of φ(M)},

then Vφ is an invariant closed subspace of JIf* in the sense that the functional
σ(a b) also belongs to Vφ for every σ € V ,̂ and α, δ £ M. Then we can see
that φ and -ψ are quasi-equivalent if and only if Vφ = Vφ. Moreover if φ is
the cyclic representation induced by a state <r, then Vφ is the norm closure of

( M )
t h e set I Σ σ(ai * ̂ «) : α*> &i ^ M [ w h i c h is denoted b y V σ .

f«=l

1. Some examples. Let Γ be a compact space, G a discrete countable
group of homeomorphisms of Γ. Let μ be a Borel measure defined on Γ with
total measure 1. For each a € G and Borel set S of Γ, the measure μa defined
by μa(S) = μ(Soί) is also a Borel measure on Γ. Suppoee that μ is quasi-invariant
under the action of G or equivalently μ and κα have the same family of null

sets for every oί £ G. Putting p(γ, cc) = ~ ./^ (Ύ)> w e have p(γ, α:) > 0, p(γ, e) ^ 1

and p(y, aβ) = p(γ#, /β) /o(γ, Λ) for every a,βe G, where e means the unit of
G. Let φ be the Hubert space of all square summable functions over Γ x G,
that is,

f ll£ll2 < + -} = L\τ,μ)®l\G).

Define the operators l(a), u(ct\ zv, r{ά) and v(ά) on φ for a € L°°(Γ, μ) and
cc ^ G as follows:

9 α\ [u(αo)ξ](y, α) = p(γ, αoy*ξ(yαo, αα0),

'ξfror1, or1), [r(α)ξ](γ, α) = α(yorι)ξ(y, α\

As in [17], u and v are unitary representations of G on § and w* = W1 = w ,

wύ(cc)w = £(Λ) and wl(a)w = r(α). Moreover we have

ύ(a)-ιl(a)u(a) = l(a% [l(a)u(a)Y = l{da)u{crι\

v{aY'Ka)v{a) = r{μ% \r{a)v(a)\* = r(a*)v(crl\

ύ{a)r(a) = r(a)ύ(μ), v(a)l(a) = l(μ)v(a),

l{a)r{b) = r(έ)/(α), ώ ^ ί ; ^ ) = ά(,β)ί<rt)

for a, b £ L°°(Γ, /i) and a ,β £ G, where αα is the function defined by

αα(γ) = ^(γα"1). Now, the operators of the form ^ l(ak)ύ(ak) for α^ € L°°(Γ, )LI)
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and ak € G,k = 1, ,n, constitute a ^-algebra of bounded operators whose
weak closure becomes the crossed product L°°(Γ, μ) (g) G in the sense of [27].
Its commutant is the weak closure of the ^-algebra consisting of the operators

n

of the form Σ r(ak)v(oc}c). As in [17], every element x of L°°(Γ, μ) ® G is ex-

pressed in the form x = Σ l(xa)u(pL) under the strongest operator topology on

|>. This construction of L°°(Γ, μ) (g) G is discussed precisely in [17].
In the following we shall consider the C^-subalgebra of L°°(Γ, μ) ® G which

is the uniform closure of the ^-algebra C © G = ] ^ lia^uipij^, ak € C(Γ) and

cik € G, £ = 1,. , n \ where C(Γ) is the algebra of all continuous functions of

Γ. We denote this algebra by C(Γ) (g) G or C (g) G which becomes the uniform
crossed product in the sense of [27].

LEMMA 1. If G is the union of increasing sequence {Gn} of finite groups,

then the expression x =Σ<* Kχa)u(cc) for x € C ® G, is uniformly convergent.

PROOF. Let φΛ be the subspace of ξ) consisting of all elements in φ va-
nishing at β Φ a and eΛ the projection onto φa. We have u(a)eβu(a)~ι τ= eβa-u
Since ||α|| = ||/(α)|| = ||Z(α)^α|| for every a € C, we have \\eaxe^\\ — \\l(x»)eaύ(cc) \\
= \\xoc\\. Hence ||^:α|| ^ \\x\\, which implies xα € C for every r e C ® G. Put

<?(Gn) = 2Z e<χ, then (̂GTO) commutes with x — ^ l(xΛ)u(cc) and

In fact, let

ccεGn

Mn is a C^-subalgebra of C (g) G which is isomorphic to C ® Gw. Since ύ{pί)ξ>β

= §β«-», M(Λ) commutes with e(Gn) for α: e Gn, so that x € Mn commutes with
e(Gn). Moreover, e(Gn)x = 0 implies x = 0 for α: ^ Afn, hence the mapping
.r € Mn —• xe(Gn) is an isomorphism. Take an arbitrary element r of M. There
is an element x° oί C Q G such that \\x — α:°|| < 8. Since x° is expressed as finite

m

sum ^ l(xQ

aϊ)ύ(oLi), we can find a subgroup Gn such as ^c0 € Mn. Putting
i = l

Λ:' = 2Z l{x*)u(pi) and ^ = e(Gn), we have

J r - Λ 'II ^ | Λ - x°|| + ||x° - x'\ = [x ~ x°l + \e(xn - x')e\

= \x- x°\ + \e{x" - x)ei < 2£,
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because exe — exe. This implies the uniform convergence of the summation

£./(*.)*(«).
Thus, we have the following formulas in C ® G \

If x = Σ « l(x«)ύ(°t) and y = ΣΛy«)&(<*), then

O + 30* = ^« + >> (x*)* = (^--t)"""1 and ( cy)* = ΣβZβyβ-1**"1'

where the last summation is uniformly convergent over Γ by Lemma 1.

Now, put μ(a) = I α(γ) dμ(y) and γ(α) = α(γ), then obviously μ(α) and γ(α)

are states on C, besides 7 is a pure state on C. For each σ € C* (the dual

space of C) and α: = ΣΛ l(xa)ύ(ά) £ C ® G, define σ(j:) = σ(xe) : σ is a state if
σ is a state.

LEMMA 2. If η Φηa for every a £ G, oiφ ey then γ is a pure state of

C®G.

PROOF. Let φy be the cyclic representation of C ® G defined by 7 and ξ>?

the representation space. Let η be the canonical mapping of C <g> G into φy,
that is,

φy(a)η(x) = ίy(αx) for x, a € C ® G,

γ(α) = (φy(α)^o, ξo) for α ^ C ® G,

where f 0 = η{ I ) . Define the mapping u of η(C ® G) into /2(G) by

[uη(x)](ά) = Xaiyoc'1) for x = ΣJ(xa)u(ά).

Since ( A ^ Σ - W Λ - " 1 = Σ-C^-O""1^—)""1 =Σ.*(X**X")"> w e h a v e

It follows that u is an isometry of η(C ® G) into /2(G) which can be extended
to the isometry of ξ)γ into 12(G). For any function f(a) vanishing at all a € G

except finitely many elements, we define an element xoίC ® G hy x = Σaf(ά)u(pc).
Then xa = fipi) / and we have

[uη(x)](a) = xJifcr1) =f(μ) /(TOT1) =/(«),

that is, uη(x) —f. Hence u is an isometry of ξ>j onto l\G) and vrλf— y^.a f(ά)η[ύ(ά)]
for every / e l\G).

Therefore, we have

uφy[u(<xo)]u-ιf =

for / €
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which implies

{uφy[u{aQ)\u-1 f](ά) = / W t f ) .

Hence the representation uφy[ύ{ )~\urι is the left regular representation of G.
Now for a e C,

so that

{uφy\l(a)\u-y} (a) = atocr*)fla) for / € Z2(G).

Now, for any pair of different elements oίu oί2 in G, there is an a £ C such
as a(yoί7λ) Φ a(yoL7ι) because yoί7ιa2 ~Φ γ. Hence the weak closure of upy[l(C)]ur1

coincides with the algebra l°°(G) consisting of all multiplication operators by
bounded functions on G, which is a maximal abelian algebra in the full operator

algebra on Z2(G). If x € [uφ/(C ® G)u^Y, x belongs to 1°°{G) and x is invariant
under the left translations of G, hence x must be a scalar. That is, uφyu"1 is

an irreducible representation of C ® G. This completes the proof.

Put

I 0 Λ ^ 6.

We have, for :r = 2JJ(Λ:«)M(^) ζ C ® G ,

= Σ Σ ί [ (̂̂ )w(«)lo](%

= Σ f [^(^)"(«)lo](Ύ, β)
α ./Γ

= Σ f ^(γ)[«(α)lol(γ
a "Γ

a Jv

= I xli) dμ(y) = μ(xe) = μ(x).
Jr

That is,
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Moreover we can easily show that ξ0 is a generating vector of φ for C ® G.

Therefore, the identity representation of C ® G on φ may be identified with the

cyclic representation φμ induced by μ9 so that we shall denote the identity

representation of C ® G by φμ and φ by φμ.

Next, we take r(C) as a commutative C*-subalgebra of ψμ.{C ® G)'. We
shall apply the arguments of the first paraphrase of the preliminary for r(C)
and the cyclic representation ψμ of C ® G. Then the spectrum space of r(C)
is Γ and the basic measure μ%0 ξ0 on Γ coincides with the original measure u.
Under the notation of the preliminary, we have

L E M M A 3.

r\ I V ^ 7 / \ A / * \ l / \ f* 77 V. ^ 7 / \ A /" \

a a

PROOF.

( Σ /(^)«(«)r(α)|0, f,) = Σ d(xMa)ύ(ά)ξo, ξo)

= Σ

= Σ f xJ
a J

= Σ f ̂ (

= J Xe(y)a(y)dμ(y) = (r(j:0r(«)f o, So),

for all α € L°°(Γ, /x). This implies the assertion.

From this lemma, we have

f° r x = Σ ί(-^«)ά(α), that is, ω? = γ for every γ € Γ. If we construct the direct
α

integral decomposition of ψμ with respect to r(C) as follows :

and ^= f
then the arguments in the preliminary imply that each component Hubert space

is the cyclic Hubert space constructed by C (g) G and by the state y and
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that ψy is the cyclic representation induced by γ. If ηa Φ γ for all γ £ Γ and
a € G, a Φ e, then r[L°°(Γ, μ)] becomes a maximal abelian subalgebra of

ψμ(C (g) G)' and by Lemma 2, <JDy is irreducible for every γ € Γ. Now we should
notice that each irreducible component representation <£>y of the above direct
integral decomposition of φβ does not depend on the choice of the measure μ,
while the representation ψμ depends completely on μ. Indeed, according to the
choice of a measure μ, φ^ becomes of type I, type II or type III whereas the
component representations φγ's remain unchanged.

In the following, we shall treat the special compact space Γ. Put Γn = {0,1},

Γ = H Tn equipped with weak topology, μn({0}) = p, un({l}) = 1 — p where

oo

0 < p^ 1/2 and μ = (^) μn(= μp). Let G be the subset of Γ consisting of the

elements a — (ctn) where an — 0 except for finitely many n's. We define the
action of G on Γ by (γ ά)n Ξ yn -f- <χn (mod 2). As in [19], μ becomes a quasi-
invariant measure and the representations φμ induced by μ becomes of type Hi
and III according to p = 1/2 and 0 < p < 1/2.

Next, we shall consider the infinite C^-direct product of 2 X 2 matrix
algebra. Let Mn be the 2 x 2 matrix algebra and {enij: i,j = 0,1} the matrix

units of Mn. Let Π ®*Mn be the infinite C*-direct product of Mn in the sense
71=1

of [24]. In the following, we shall denote Π ®aMn by Mo. Putting u% = / and
n=l

it? = en

uo + en

0 u we define a unitary element u(a) for a € G by u(ά) = β (g) un

Un.
' n ln = l

For (au , an) and (/9χ, ,/3w) α4, /8i = 0,1, define the element w(ccl9 9ocn:

/?i, βn) by

«;(#!, •••,««: A , . , βn) = ^ l β l ® 4,0. ® (g) ̂ n β n ® 7 <g) . . . .

Let %(^i, ,ocn) be the characteristic function of the subset of {γ £ Γ : yt =
z"=l ,2 , ,w}. Consider the mapping of C0QG into 3/0 defined by

W(Λ) and

τr[l(χ(au , αn))] = w(al9 , α:w : / 5 1 ? . . . , βn),

where Co means the subalgebra of C that is the totality of finite linear com-
binations of %(<2i, , tfn)'s.

LEMMA 4. π is an isometric isomorphism ofCQQG onto ϋ QMn, the algeb-

rate infinite direct product of Mn. So TΓ can be extended to the isomorphism
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of C ® G onto Mo. Moreover, we have
oo

g + (1 -

for the measure μ on Γ defined above, where &l means the state of Mn de-
fined by σ\(e\,,) = Sjδf.

The proof is essentially contained in von Neumann's paper [14: pp. 71-77],
so we omit the detail.

LEMMA 5. Two irreducible representations φΊ and φy, o/M0 are unitarily
equivalent if and only if y = y mod G, where φy means the cyclic represen-

oo

tation induced by σΊ — (Ϋ) σyn.
n=l

This is a reformulation of the statements of [9: p.585].

LEMMA 6. There is a continuum family of disjoint factor representation
of Mo of type /„, for i = I, II, III.

PROOF. The existence of disjoint factor representations of type I is the
conclusion of Lemma 5. So we shall give the families of representations of type

II and III. Put Mι = Π ® J!f2n and M2 = Π ®aM2n-.l9 then we have naturally

Mo = Mι ®uM2.
oo

Define the state μι of Mι and σy of M2 for y £ Γ by μι = (g) [pσln + (l-p)σίn]

and σ'γ = (̂ ζ) σψ"1 respectively. We denote the cyclic representations of Mι and
n=l

M2 determined by jϋ1 and σ\ by ^ and φ\ respectively. Then φ\ is a factor
representation of type IIX if /> = 1/2 because μ1 is the trace of Mι and ?̂μ is of
type III from [19] if 0 < p < 1/2. By Lemma 5, φy ^ ψyf if and only if y = y'
mod G and φy is irreducible. Putting ψy = φl ® φΊ, we see that ψy becomes a
factor representation by[l: p. 103, Cor. of Prop. 14]. The type of ψy is the same
as the type of φ\ by [1: p. I l l , Ex. 10 and p.250, Ex. 4] and [20].

Suppose ψy and ψy, are quasi-equivalent. Then ψy\M2 and ψy,\M2 are
quasi-equivalent. But ψj\M2(resp. ψy,\M2) is quasi-equivalent to φy (resp. φ\,).
Hence φy and φι

y, are quasi-equivalent, so that they are unitary equivalent,
which implies y = y mod G by Lemma 5. Conversely, it is clear that ψy and
ψy are unitarily equivalent if y ΞΞ γ" mod G. Therefore, the family {ψy\y £ Γ}
contains the required one if we assume that p = 1/2 or 0 < p < 1/2 cor-
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responding to the case of type II or type III. This completes the proof.

2. Consideration of general case and the main results. Now let Mbe
an arbitrary separable ΛΓGCR-algebra in the sense of [ 9 ], that is, M has no
non-zero GCi?-ideal. Let {sn : n — 1, 2, •} be a sequence of self-adjoint elements
of M which is dense in the self-adjoint part of M and s0 an arbitrary positive
element of M of norm one. Let {v(pLu , ctn) : cίt — 0,1} and (λ(#1? , cin :
βu •,£«) 0Luβι = 0,1) be the system of elements of M and 2n X 27i-matrix
as in [9: Lemma 4]. Put

<in) = Σ v(<*i> •> oLn)v(al9 , «„)*
α i t ••'CXn

and

Let 3R(w) be the subspace of M linearly spanned by v(al9 , aLn)v(βu 9βn)*'s
and aίi the subspace of Λ/ linearly spanned by 2R(/z)'s. We have

LEMMA 7. /f ίwo 5ίαί^5 σ and p of M have the value one at e{rί) for
all n and if σ \ Sΰlζn) = p \ 90ϊ(w) for all n, then σ and p coincides each other.

PROOF. By [9: Lemma 6], σ(x) = σ(e(n)xe(n)) and p(x) = ρ{e{n)xe(n)) for
all n. Let a be an arbitrary self-ad joint element of M. For each n there exists
an integer j > 2n such as ||α — s j < l/2n and an element tj € W(n) such as

\\e(j + ΐ)(ss - tj)e(j + 1)|| < l/(2/i + 1).

Then we have

|σ(α) - K«)l ^ \oisj) - p(s})\ + 2|α - Sj\

< \σ{e(j + l)Sje{j + 1)) - P(e(j +

^ \σ(e(j + l)tje(j + 1)) - P(e(j

2HJ + ϊfc, - tMJ + 1)11
< \<Ktj) - P(t3)\ + 2/(2n + 1) + l/»

= 2/(2« + 1) + l/« -^ 0 as M -> co.

Hence σ = p on Λf.

LEMMA 8. Let σ be a state of M -with σ(e(n)) = 1 for all n and θa the
cyclic representation on ξ)σ induced by σ. Let fσ(n) be the projection onto

[range of θσ(e(n))] and put fσ = inf fσ(n). Define the mapping ira of JJ. 0 Mn
n n . l

into θσ(W)fσ by
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7Γσ Σ λ ( # l > ' ' >an : βl>mm , β n ) w ( p L l 9 , OLn '. β l 9 , β n)]

Then Ίrσ is an isometric isomorphism o / f l 0 iWΛ onίo θσ(W.)fσ, and πσ can be

extended to the isomorphism of Mo onto the uniform closure of θσ(Sΰl)fσ.
Moreover if ξσ is the cyclic vector of φσ, then ττσ is the cyclic representation
induced by Vσ(ωfσ, ^) = μσ

PROOF. Since θσ(Wl(n)) leaves fσ(k) ξ)σ invariant for k ^ n + 1 by [9: Lemma
5]. θσ(yR(n)) is reduced by fσ. Moreover [9 : Lemma 5] shows us that ΘJ^Sl(n))fv

is 2n X 2n-matrix algebra with matrix units {θσ[v{al9 , <Xn)v(βu . , βn)*]fσ:
ahβί = 0 or 1). Hence the norm of

Σ K"i, * ,0Ln : βu . . -9βn)θσ[v(ctu , an)v{βu . . ., 0n)*]/σ

is the same as the operator norm of the matrix

λ(#!, , OCn'-βD •» βn)

which is the norm in Mx ®a ®a Mn. Since the canonical imbedding of
oo

Mi ®a ®* Mn into I I ®aMn = Mo is isometric, we have

!, . . , an : /?!,.. ., βn)θσ[v(al9 , an) v(βu . . . , βn)*]fσ

. . . , α n : &, , βn)w(au . 9an:βu , ̂ n

On the other hand, it is clear that iτσ preserves the algebraic operations, hence

7rσ is an isometric isomorphism. Moreover [θσ(M)ξσ] = ξ>σ implies

[fσθσ(M)fσξσ] =fMM)ξσ] =Mσ.

Thus ξσ is a generating vector for 7rσ(M0) since θσ(W)fσ is uniformly dense in
fσθσ(M)fσ, which implies the last half assertion.

THEOREM 1. Let M be a separable NGCR-algebra, then there exists
family {6γ :γ £ Γ and s £ S} of factor representations of type too, i — II, III,

such that Σ © 61* is faithful and the kernel of by = £/*£ kernel of ffΊ, for every

s e S and every pair of γ, γ7 € Γ, while 6* and 6*, are quasi-equivalent if
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and only if y = y mod G.

PROOF. Let s0 be an arbitrary positive element of M of norm one. Define
the linear functional py on 90Ϊ by

P>( I ) = 1 and py(v(al9. . *9an)v(βl9. . . , £„)*)

ρy is uniquely extended to the state of M by Lemma 7, which is denoted by
py too. Let 0γ be the cyclic representation of M induced by ρΎ. Following the

arguments in [9 : p. 585] we can easily show that the kernel of θy = {a e M :
lim \\e(n)xaye(n)\\ = 0 for all x, y € M], which implies that θz\θ) = θ^} (0)

for every pair of γ, y € Γ.

Let 7ry be the representation of Mo denned by py in Lemma 8. Let ξy be
the cyclic vector for the representation ΘΊ, that is, py(ά) = (βy(a)ξγ, ξy) for a £ M.
Then we have

]Γ \(au -- ,an : βl9..., βn)w(ρcl9 - -,an: βl9. ., βn) ξy, ξy)
J

(ττγ ]Γ

= (Sy Γ 2Z λ (^ l , * * «, CLn : /?!, . , βn)v(pCl9 , 0Ln)v(βl9 • ., ^ n ) * ξy9 ξy)

N Γ Γ * 1 / X T T *V

\(al9 , an : al9 , an) II />1-αw(l - />)"" 11 δi;M

π /

• M#l> 9CLn\ βl9 ,Λ)

Thus 7ry is unitary equivalent to ψy defined in the proof of Lemma 6, and
7rγ is a factor representation type II or of type III according to p = 1/2 or
0 < p < 1/2. It follows that 7ry(Λf0)' is a factor of type II or type III. Since
7Γγ(M0) is the uniform closure of 0y(2R)/y, 7Γγ(M0)' is considered as the commutant
of the weak closure of fyθy(M)fy on the Hubert space fyξ>y, where ξ)γ is the
representation space of θy and fy is the projection defined in Lemma 8. Since
ξy is a generating vector for θy(M), ξy is separating for θy(M)' and we get
θy(M)' = τry(Moy. Therefore θy is a factor representation of type II or type III
according to p = 1/2 or 0 < p < 1/2.
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Suppose that θy and ΘΊ, are quasi-equivalent, which is implemented by an iso-
morphism 7r of the weak closure of ΘΊ{M) onto the weak closure of ΘΊ,(M). Since
πθΎ(e(n)) = θy,(e(n)), τr(/r) = /γ /. Hence we have

• βnT)fy

= Σ \(au •••,#„ I βl9 , βr)θy,{v{au , 0L2)v(βl9 • • , βn)*)fy)>

which implies

Oil, ,0Ln - βu * *> βn)iv(θLι, , Oίn '. βl9 , /3w)

— πγ/\ Σ λ(rt 1 ? 9oLn:βl9 , βn)w(oLl9 9ctn:βl9 , /βn) .

Thus, 7r gives the quasi-equivalence of 7rγ and τry/, and by Lemma 6, 7 = 77

mod G. Therefore if 7 Φ 7' mod G, then #γ and 0y/ are disjoint factor represen-
tations.

Suppose 7 = 7' mod G, that is, y' = 7 tf for some a £ G. Let w(ά) be the
unitary operator of Mo defined by the similar manner in ρ.87, where ci is the
element of G defined by

&2i-i = ^ό ί = 1, 2,. . , ά2ί = 0, i = 1, 2,. . ..

Then there is an element Ϊ;(Λ) of 9JJ such that [θy(v(a))]fy=7ry[u(ά)l On the other
hand, we have

μ1 ® σ\(u(ά)xu(ay*) =μ' ® σ^(^) forμ1

by the direct calculations, where H1, σγ and σ̂ / are the states as in the proof
of Lemma 6. It follows that

(πy[u(ά)xu(ά)*]ξy, ξy) =

for all J: ^ il/0, so that we have for every x £ 30Ϊ,

where ^ is the element of Mo such that πΊ(x) = θΎ(x)fy, or equivalently ^/(^cO
= θy,(x)f7,. Hence we have

pr[ϊ<Λ)^(tf)*] = py,(x) for all J : € M

by Lemma 7. Therefore ρ7, is contained in the closed invariant subspace of M*
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generated by pΎ. By the symmetric arguments, pΎ is contained in the subspace
generated by py,, so that we have VPΎ — VP7,. This implies the quasi-equivalence
of θy and θ7/.

Finally, we can see that ΘΎ depends only on the choice of s0. Hence if we
denote this dependence on a positive element s with jjslj — 1 by Θ*Ύ, then the
family of representations {θy .y^T and s^S where S is the set of all positive
elements in M with norm one) is the required one.

THEOREM 2. Let M be as in Theorem 1. There exists a representation
θι of type i, i = II, III, such that we get a direct integral decomposition of 61*
into irreducible representations over measure space (Γ, μ*),

Jp Jp

with the following property :

1« fff ^ θ™ for all γ z Γ, say θy,

2° θy ~ 0γ/ z/ αwύ? on^y z/ 7 ΞΞΞ η mod G.

PROOF. Let p be the functional on SDΪ defined by

K 7) - 1, ? [ * ( « „ . . . , aMβu - -, βn)*] = ψ-.βl Π ^ — ( l - />)"',

where we assume p = 1/2 or 0 < p < 1/2 according to the case of type II or
of type III. Then p can be uniquely extended to a state of M. Let θ be the cyclic
representation of M induced by p. Then θ becomes a representation of type II
or of type III according to the assumptions p — 1/2 or 0 < p < 1/2. In the
following, we shall treat the case of type II and type III simultaneously.

Let μ be the measure on Γ defined in p. 87. Let π be the isomorphism of

C ® G onto Mo defined in Lemma 4 and irp be the representation Mo on the

Hubert space fp$p defined in Lemma 8. Then the arguments of [9 : p.588 and

p. 589] show that the representation πpoηr of C ® G is unitarily equivalent to the

representation φμ appeared in p. 86 and this unitary equivalence is implemented

by an isometry u of <ξ)μ onto fpξ)p which carries the cyclic vector ξQ of ξ)μ to

the cyclic vector ξp of §p. Let A be the abelian subalgebra of φμ{C ® G)' defined

in p. 86 as r(C). Then uAu* is the abelian subalgebra of τrpoτr(C (g) G)' = [θp(Wί)fp]'.

Since the mapping: x —> xf is an isomorphism of ΘP(M)\ we get an abelian

subalgebra Ap of Θ(M)' such that uAu* — ApfP. Now we decompose θ into the

direct integral of irreducible representations relative to Ap whose weak closure

AP is isomorphic to L~(Γ, μ). Let £p be the mapping of M into Ap such as

(θ(x)aξo, ξP) = (βP(x)aξp, ξP)
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for all a € Ap and x € M'. Then, for each a € AP, we have

(θp[v(au ..., tfXft,. . . , βn)*]aξP9 fP)

= OM^l, , <*n)v(βί9 , βn)*]fpafpξP9 ξp)

L , . . ., ̂ M / ? ! + ad, β2 + tf*, , /8n + On, 0,0, . . 0

. . , an))ύ(βλ + a l 9 . . . , /8n + Λ», 0 , 0 , . . .)]u*afPuξ0, f 0 ) .

Therefore

^pt̂ C îj , ocn)v(βl9 , /Sw)*] = £/*[£(%(#!, , <Xn))ύ(βι Λ- ccl9 βn + Λn, 0, •)]

if we regard the both side of equation as the function over Γ, where 8^ is the
mapping defined in Lemma 3. It follows that

Sp[v(aί9..., an)v{βu ..., βn)*](y) = δj g; S?,1':;:,?.

Hence if we define the state p7 on M by pΎ(x) = 8p(x)(y)9 then pγ becomes
a pure state of M by the arguments of [9 :584], and ρΎ does not depend on
the choice of p. Moreover if we decompose the representation θ relative to Ap

as follows:

θ — \ θΊdμ(y) ξ>9 = I >&(y)dμ(y)
J J

then 6j is the cyclic representation induced by ρΊ9 which implies 1°. Besides
the arguments in [9 : p.585 and p.594] show that ΘΎ ~ ΘΎ, if and only if γ = η
mod G. This completes the proof.

Concluding remarks. 1° Theorem 1 does not hold in the case of type Hi.
Indeed, let φ be an arbitrary finite factor representation of Mo. If T is a trace
on the weak closure of φ(M0), then ιφ(τ) is also a trace on Mo. Since there is only

one trace (^) [l/2(o-n

0 4- <)] on Mθ9 we have ^ T ) = (^) [l/2(σj + of)]. Hence
= 1 n - 1

there is only one finite factor representation of Mo within quasi-equivalence.
2° In [10], Guichardet shows that the components of irreducible direct

integral decomposition of every multiplicity free representation is mutually
disjoint except a null set. However in the cases of type II and of type III, this
is imposible. In fact, if μ(Γ0) = 1 and Γo Π Toa = φ then μ(TQά) = 0 for every
subset Γo of Γ. Hence there is no subset Γo such that Γo Π Toa = φ and
μ(Γ0) = 1, which implies that there are some elements γ and γ7 in Γo such that
ΘΎ ̂  θy, if μ(T0) = 1. Moreover, yu({γ ^ T\ΘΎ^ θ7o}) = 0 for every γ0 ^ Γ.

3° If we define the measure in the dual space M of M by μ(β)
— μ({γ ^ T\ΘΎ £ S), where ΘΎ means the unitary equivalence class of 0γ, then
μ is not standard measure. And the identity mapping in M is not integrable
with respect to μ in the sense of [14].
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4° After writing this paper, the author find the papers [ 4 ] and [ 5 ] that
treat the factor decompositions. Comparing the results of [ 5 ] and this paper,
it seems the factor decomposition to be more natural object in the case of the
representations of type II or type III.
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