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Introduction. Let = = f mydu(y) be an irreducible decomposition of a repre-
T

sentation 7 of a C*-algebra M over a measure space (I, u). Since traditionally
we identify the representations within unitary equivalence, it comes into con-
sideration whether the above decomposition can be regarded as a decomposition
of the unitary equivaience class of 7 into the unitary equivalence class of m(y).
Besides it is desirable from the view point of the duality that the decomposition
can be constructed upon the structures which are completely determined by
only M.

So G.W.Mackey, in [14], introduced the concept of the Borel structure in
the dual space of the separable C*-algebra and that of the separable locally
compact group, in order to describe the behavior of the representations, especially
the decompositions, on the dual space and this trying succeeded for the so-
called C*-algebras of type I with some well behaved (i.e., smooth) dual spaces.
However we can not avoid some measure theoretic pathology for the C*-
algebras having rather badly behaved dual spaces.

Recently, the dual space of a C*-algebra has been studied successively by
several authors: J.Dixmier [2, 3], JM.G. Fell [6, 7, 8], J.Glimm [9], M.A.
Guichardet [10, 11], J.Tomiyama [26] and J. Tomiyama-M. Takesaki [25]. Among
them, J.Glimm [9] obtained the extremally fruitful results for the relation
between the dual space and the structure of a separable C*-algebra, which says
that a separable C*-algebra has the well behaved (smooth) dual space if and
only if it has only representations of type I, and that a separable C*-algebra is
of type I if and only if it is GCR-algebra.

It seemed to be the second step to see what happens for the representations
of C*-algebras with badly bahaved dual spaces. M.A.Guichardet [10] showed
that the representations of type I behave well in their irreducible direct integral
decompositions. Moreover, in [11], he gave an example of the C*-algebra having
disjoint factor representations of type II, with same kernels.

Thus the present paper is devoted to show that for a separable C*-algebra
with badly behaved dual space there exists a continuum jfamily of disjoint
factor representations of type 11 and of type 11 respectively with the same
kernel and moreover there are representations ¢ of type i,i = Il, 111, with the
Sfollowing properties: there exist irreducible direct integral decomposition of &',
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G = f 0}’1 du(y) and &1 = f Hgldum('y)
r r

where 6§ and 07 are unitarily equivalent for every vy € T' and for any null
subset N of 1" there exists some pair of v,y & N such as 6, =6y, and
w({y|6y =6, v € T}) =0 for each v, € T.

Before going into discussion the author must express his thanks to Mr.
J. Tomiyama for many conversations with him in the presentation of this paper.

Preliminary. Let M be a separable C*-algebra with the unit element and

@ a representation of M on a separable Hilbert space 9. Let &, be a generating
(unit) vector of 9 for @(M), that is, [p(M)E] = 9 where [E] means the closed
subspace generated by E for any subset E of . Then &, is a separating vector
for @(M),” the commutant of @(M). Let A be a commutative C*-subalgebra of
@(M) whose spectrum space is I'. If we define the linear functional e, on the
full operator algebra B(9) on by wg,(x) = (xE, 7), then w;,| A, the restriction
of wg, on A, defines a Radon measure y;, in I' and for every &7 € 9, pg,

is absolutely continuous with respect to ug, ;. We fix the measure ug, ¢, and denote
it by u. Suppose that M, = {x,} is a countable dense self-adjoint subalgebra of
M on the complex rational number field. Putting &, = @(x,)€, {£.} forms a
vector subspace & of 9 over the complex rational numbers field. Let A, be the
density of the measure e, with respect to u. The countability of & implies the
existence of a null set N, in I' such that for v & N, the function: (&, ) — he,,(v)
is a positive hermitian conjugate bilinear functional on & X 9. Let $(v) be the
completion Hilbert space of the space " by the inner product A ,(y). Putting
N, = {y &EN,| H(y) =0}, we can easily verify w(N,) =0. Let T(y) be the
canonical mapping of £  into H(y). Putting T(y)E = &(y) for & ¢ H’ and
v& N, U N,, {&(y)} becomes a dense subset of H(vy). £  determines uniquely
the structure of measurable field on $(y) that contains . § is represented as

the direct integral f H(y) duly). In this direct integral each operator @(x) of
r

@(M) is decomposable and A becomes the algebra of all continuously diagonali-
zable operators. By [1 : Chap. II, §2, Prop. 6,p. 163] the map @(x) — @(x)(y) beco-
mes a representation of C*-algebra @(M) onto £(y) except for v of some null set
N; of T'. Putting @y(x) = @(x)(y) for x € M and v & N;,, we get a direct in-

tegral decomposition f @vdu(y) = @. Moreover as in the proof of [1: Chap.Il,
o

§2, Prop.6] @, is given as the unique extension of uniformly continuous repre-
sentation of M,. Now we shall explain briefly how @, is given. Putting &,(x)
= Ry@tnt, Tor each x € M, the function &,(x) belongs to L=(T', u) and the
mapping & of M to L=(I', u) has the following properties: 1° () = I: 2°



ON SOME REPRESENTATIONS OF C*-ALGEBRAS 81

E x*x) = 0 for every x € M : 3° there exists a null set N, such that %(x)
= &y(x)(y) is a state for each y & N,: 4° if the weak closure of A is maximal

abelian in @(M), there exists a null set N; of I" such that o is pure for every
v & N;. Since

f a(y)he, oonMAR(Y) = 0, p(@) = (a&, gx)n)

— (p(x)*ak, m) = (ap(a®)E, 1) = f A hgiamn Auly)

for every a € A, every x € M and every pair of & 7 of £, we have
Enly), EV)) = hen (V) = howat oo (V)

= Ro@ornte 6(¥) = 0UTi*Tn).
for every v & Cj N, and every &,, &, € §’. Since @(a)€, belongs to £’ for each
a € M, and -
(D)), En(¥)) = ho@pnen(V) = Po@ante, owma(y)

= of(xn azx,)

- b
for every vy & UNi and every &.,&, € 9’, the representation @y of M is the

i=1
cyclic representation induced by ®? for almost every v € I. Thus we get the
direct integral decomposition of $ and ¢:

H= f S(v)du(y)  and  @= f Prvu(y).

If in the above discussion @ is the cyclic representation induced by a state o
and if &, is the cyclic vector corresponding to o, we write & and »; in place
of & and o?.

For each non-zero projection e of ¢(M), putting @*(x) = ¢(x)e for x € M,
we get a representation @° on e called the (non-trvial) subrepresentation of
@. If two representations @ and Y have no unitary equivalent subrepresen-
tations, then they are called disjoint representations. On the other hand, if
they have no disjoint subrepresentations, we call them quasi-equivalent. By
[13: Chap. I], o + @ and oo « 4 are unitary equivalent if and only if they are quasi-
equivalent, where oo - @ means the product representation on § @ P, the direct
product of $ and an infinite dimensional Hilbert space §., defined by @ and
the trivial representation of scalar field on $.. Hence @ and y are quasi-
equivalent if and only if there is an isomorphism 7 from the weak closure of
@(M) onto the one of Y(M) such that ¥ = mop. As we can define the iso-
morphism from @(M) onto Yy(M) by me(x) = Y(x) for £« M for the represen-
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tations @ and Y with the same kernel, @ and v are quasi-equivalent if and
only if 7 is o-weakly continuous. Define the subspace of M¥*, the conjugate
space of M as Banach space, by

V, = {!@(p), p is a o-weakly continuous linear functional
on the weak closure of (M)},

then V, is an invariant closed subspace of M* in the sense that the functional
o(a + b) also belongs to V, for every o € V, and a,b € M. Then we can see
that @ and Y are quasi-equivalent if and only if V, = V,. Moreover if @ is
the cyclic representation induced by a state o, then V, is the norm closure of

the set{ > a(a;*b,): a;, b, € lehich is denoted by V..

=1 }

1. Some examples. Let I" be a compact space, G a discrete countable
group of homeomorphisms of I'. Let 4 be a Borel measure defined on I' with
total measure 1. For each @ € G and Borel set S of T, the measure u, defined
by pa(S) = u(Sa) is also a Borel measure on I". Suppoee that u is quasi-invariant
under the action of G or equivalently u and u, have the same family of null

sets for every a € G. Putting p(y, a) = CZZ" (y), we have p(y,a) > 0, p(y,e) =1

and p(y, aB) = p(ya, B) » p(vy, ) for every a,B € G, where ¢ means the unit of
G. Let § be the Hilbert space of all square summable functions over I' x G,
that is,

H= {E;Zf |&(v, @) *du(y) = EI° < + oo} = LT, )®I(G).

Define the operators {(a), #(a), W, (a) and ?(a) on § for a € L=, u) and
a € G as follows:
[L(@)€)(y, @) = a()E(y, ), [ala)Ely, a) = p(y, o) *E(va,, aay),
[WEI(y, @) = ply, @) *Eya™', a™), [Ny, @) = alya)E(y, @),
[(ao)Elly, @) = E(y, ay'a).
As in [17], & and ¥ are unitary representations of G on § and wr=w"=w,
Wu(a)w = () and wl(a)®w = r(a). Moreover we have
u(a) " Ua)u(a) = l(a®), [l(@Qu(a@)]* = L(a*)i(a™),
Ha)y ' H(a)bi@) = ra), @)@ = r@™)ia™),
w(a)r(a) = r(@)ila), v()l(a) = la)i(a),
Ua)r(b) = r(B)l(a), W)(B) = u(B)v(a)
for a, b ¢ L=, p) and a,B € G, where a* is the function defined by
a*(y) = a(ya™"). Now, the operators of the form > Il(ayi(a,) for a, € L=(T', w)

k=1
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and a; € G,k = 1,...,n, constitute a *-algebra of bounded operators whose
weak closure becomes the crossed product L>(T',u) ® G in the sense of [27].
Its commutant is the weak closure of the *-algebra consisting of the operators

of the form ) 7(ay)d(ax). As in [17], every element x of L=(I', u) ® G is ex-

k=1

pressed in the form x = > I(z.)i(a) under the strongest operator topology on

ae@

$. This construction of L=(I", ) ® G is discussed precisely in [17].
In the following we shall consider the C*-subalgebra of L=(I', ) ® G which

is the uniform closure of the *-algebra CO G = { >~ l(ap)iay), ar € C(I') and
k=1

a, € G, k=1,..0,nm }where C(I") is the algebra of all continuous functions of

I". We denote this algebra by C(I") @) Gor C @ G which becomes the uniform
crossed product in the sense of [27].

LEMMA 1. If G is the union of increasing sequence {G,} of finite groups,
then the expression x =) ., l(x,)ila) for x « C @) G, is uniformly convergent.

PROOF. Let $. be the subspace of $ consisting of all elements in § va-
nishing at 8 # «a and e, the projection onto §,. We have #(a)egic(a)™ = ega—1.
Since |a| = [{(a)] = |i(a)es| for every a € C, we have |e.xe] = [[l(xa)esit() ||
= |z4|. Hence |x,| = |x|, which implies x, ¢ C for every x € C @ G. Put

e(G,) = 2 ea, then ¢(G,) commutes with x = > I(x.)i(a) and |x| = |xe(G)].

aeG, acG,

In fact, let

M,={zcCRG: xz=3 Ux)ia)).

atG,
M, is a C¥-subalgebra of C %) G which is isomorphic to C 6/5 G,. Since #(a)Dg
= 9pa—1, u(a) commutes with e(G,) for a € G,, so that x € M, commutes with
e(G,). Moreover, ¢(G,)x =0 impliesxt =0 for x € M, hence the mapping
x € M,— xe(G,) is an isomorphism. Take an arbitrary element x of M. There
is an element z° of C () G such that |z — x°| < &. Since x° is expressed as finite
sum Y I(z))a(a;), we can find a subgroup G, such as z° € M,. Putting

i=1
x' =) lxu)i(a) and e = (G,), we have
acGy
Jx =2 =z — 2| + |2° — 2| = | — 2°| + Je(z® — 2)e]
= Jx — 2| + le(z’ — x)e|| <26,
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because exe = ex’e. This implies the uniform convergence of the summation
> _sl(x)i(cr).
Thus, we have the following formulas in C @) G:
If x =, l(z,)ia) and y = > I(ya)i(at), then
(T + Ma = Ta + Yo, (@F)a = (@¥a2)" and (@y)a = 2 pTays—1a’

where the last summation is uniformly convergent over I' by Lemma 1.
Now, put u(a) = f a(y) du(y) and y(a) = a(y), then obviously u(a) and y(a)

are states on C, besides vy is a pure state on C. For each o € C* (the dual
space of C) and z = S, l(za)ia) € C® G, define (x) = o(x.): & is a state if
o is a state.

LEMMA 2. If v #nva for every a € G, a # ¢, then y is a pure state of
C8G.

PROOF. Let @y be the cyclic representation of C @ G defined by vy and $7

. . . N .
the representation space. Let 7 be the canonical mapping of C ® G into @7,
that is,

Fy(@m(a) = naz) for z, a < CE G,
¥a) = @@, &) for a € CRG,
where & = #7(1). Define the mapping « of 7(C % G) into %(G) by
[un(@))(@) = zulya™)  for x = 3 l(z,)ia).

Since (2*x). D= a(@®)ada1"" = D alx* . -)* (Xa—)* =3 a(xixa)*, we have

F(@*x) = 34 (x5 2a)*(v) = D_a(@iza)ya™) = 3ol xalya™)|%
It follows that « is an isometry of #(C @ G) into /*(G) which can be extended
to the isometry of £7 into [*G). For any function f{«) vanishing at all @ € G

except finitely many elements, we define an element x of C @ G by x = Zafla)u(a).
Then x, = fla)+ I and we have

[un(x)@) = z,(ya™) = fla) « I(ya~) = fla),
that is, un(x) =f. Hence « is an isometry of £y onto /(G) and u~'f =>_.fla)n[i(a)]
for every f € I*(G).
Therefore, we have
upyliao)lu=f = ugylida,)13", flamlia))
= u D u flomlide)ila)] = u 3 flaylida,a))
= u Yo flag'a)nlia)] for f < IXG),



ON SOME REPRESENTATIONS OF C*-ALGEBRAS 85

which implies

{ugnlia)lu™ fi(@) = f(ar'a).
Hence the representation uzy[#(+)]u" is the left regular representation of G.
Now for a € C,

upyll(@)™f = upyl(a)] + 3, flanlida)]
= u o flayli(a)ida)),
so that
{ugll(@lf ) = alya™) fla)  for f e IG).

Now, for any pair of different elements «,, a, in G, there is an a € C such
as a(ya;™) # a(ya;') because yai'a, # v. Hence the weak closure of ugy[/(C)lu!
coincides with the algebra [=(G) consisting of all multiplication operators by
bounded functions on G, which is a maximal abelian algebra in the full operator

algebra on *)(G). If x < [ug,(C é\ G)u~'], x belongs to [*(G) and x is invariant
under the left translations of G, hence x must be a scalar. That is, u@yu™" is

N
an irreducible representation of C ® G. This completes the proof.

Put
a=¢e€

1
bl @) = {O a e

We have, for x = S l(za)u(a) < C& G,
(T twideen, &) = T Uik £ )

=Z¥ f [ )i,y By B)du(ry)
> f LERTCNRCAEMC)

> f 2 i), )y, ()

> j a)Esvet, @)py, @) *duly)

= f zdv) du(y) = p(x) = wx).
That is,
(S twiden &) = 3.
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. . . /\
Moreover we can easily show that &, is a generating vector of § for C ® G.

N
Therefore, the identity representation of C ® G on $ may be identified with the
cyclic representation @; induced by i, so that we shall denote the identity

representation of C @ G by @, and § by 5#.

Next, we take 7(C) as a commutative C*-subalgebra of &.(C @ GY. We
shall apply the arguments of the first paraphrase of the preliminary for 7(C)

. . N
and the cyclic representation 3, of C ® G. Then the spectrum space of 7(C)
is I and the basic measure g, ¢ on I' coincides with the original measure u.
Under the notation of the preliminary, we have

LEMMA 3.
& [ S U(zni(@) ] —rx)  for all x =3 I(zida).
PROOF.

(Z teoidar(@t, &) = = (@i, &)
= X [ @@t )r, Iduc)
= 3 [ canatlidat o, Odu)
= 3 [ 2dm)atnpr, @) v, a)duy)

= f xda)duly) = (r(zIr(@)ks &),

for all @ € L=(I", u). This implies the assertion.
From this lemma, we have

oi(x) = &x(2)(y) = Y(x)(y) = 2ly) = W)

for x = ) lxa)u(a), that is, o’ = 7 for every y € I'. If we construct the direct

integral decomposition of @, with respect to 7(C) as follows:
Bo= [Bendut)  and 7= [ Bdul),

then the arguments in the preliminary imply that each component Hilbert space
~ S
Hm is the cyclic Hilbert space constructed by C ® G and by the state ¥ and
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that @, is the cyclic representation induced by 7. If ya # v for all y € T" and
a <€ G, a+#e¢ then r{L=(I', u)] becomes a maximal abelian subalgebra of
g.(C @ G) and by Lemma 2, @y, is irreducible for every v € I'. Now we should
notice that each irreducible component representation @ of the above direct
integral decomposition of @, does not depend on the choice of the measure g,
while the representation @, depends completely on u. Indeed, according to the
choice of a measure u, @, becomes of type I, type II or type III whereas the
component representations @,’s remain unchanged.

In the following, we shall treat the special compact space I". Put I', = {0, 1},

r=IIr, equipped with weak topology, w.({0}) = p, w.({1}) =1 — p where

n=1
0<p=1/2 and u = @ w.(= u?). Let G be the subset of I' consisting of the
n=1

elements a = (a,) where a, = 0 except for finitely many #7’s. We define the
action of G on I'" by (y+a), =v, + a, (mod 2). As in [19], u becomes a quasi-
invariant measure and the representations @, induced by u becomes of type II,
and IIT according to p=1/2 and 0 < p <1/2.

Next, we shall consider the infinite C¥*-direct product of 2 X 2 matrix
algebra. Let M, be the 2 X 2 matrix algebra and {e";;: 7,7 = 0,1} the matrix

units of M,. Let Il @aMn be the infinite C¥*-direct product of M, in the sense

n=1

of [24]. In the following, we shall denote 11 @)aMn by M,. Putting «§ = I and

n=1
u} = e, + e",,, we define a unitary element u(a) for a < G by w(a) = [[ (%)1 uy..
For (a;,++«,a,) and (B, -+ .,8,) a;, B, = 0,1, define the element w(a,,«« « &
Bl” ° "Bn) by
w(“l)"'7an: /817"56”) = eznﬂl®eizﬂz® b ®82nﬁn®1® e

Let x(a,, « « «,@,) be the characteristic function of the subset of {y € I": vy, = a,
i=1,2,...,n}. Consider the mapping of C, () G into M, defined by

wl#(a)] = u(a) and

T[l(x(ala b ’ya’n))] = w(al) e, Uyt Bl’ M ) Bn)’

where C, means the subalgebra of C that is the totality of finite linear com-
binations of (&, s+, a,)’s.

LEMMA 4. 7 is an isometric isomorphism of C, () G onto II (OM,, the algeb-

n=1

raic infinite direct product of M,. So m can be extended to the isomorphism



88 M. TAKESAK!

of C @ G onto M,. Moreover, we have

w7 = (X) o5, for v € T and 'w'(w) = (X) [pot + (1 — plot],
n=1 n=1

for the measure u on r defined above, where " means the state of M, de-
JSined by ai(e™, ;) = 8.

The proof is essentially contained in von Neumann’s paper [14:pp. 71-77],
so we omit the detail.

LEMMA 5. Two irreducible representations @y and @y, of M, are unitarily
equivalent if and only if vy =v" mod G, where @y means the cyclic represen-

tation induced by oy = @ oy..
n=1

This is a reformulation of the statements of [9: p.585].

LEMMA 6. There is a continuum family of disjoint factor representation
of My of type i., for i = I, 11, III.

PROOF. The existence of disjoint factor representations of type I is the
conclusion of Lemma 5. So we shall give the families of representations of type

II and III. Put M' = H @)aMzn and M = 1[I @)aMM_l, then we have naturally

n=1 n=1

M,= M &.M:.

Define the state u! of M" and o} of M?> for ye T by &' = (X) [poi® + (1— p)ai™]

n=1
and o} = OZ) a3~ respectively. We denote the cyclic representations of M' and
n=1

M? determined by f' and ¢} by @. and @} respectively. Then ¢, is a factor
representation of type II, if p = 1/2 because &' is the trace of M' and @, is of
type III from [19] if 0 < p<1/2. By Lemma 5, ¢ ~ ¢%, if and only if y =4’
mod G and @5 is irreducible. Putting ¥y = @l ® @}, we see that yry becomes a
factor representation by[l: p.103, Cor. of Prop. 14]. The type of ¥y is the same
as the type of @, by [1: p.111, Ex. 10 and p.250, Ex. 4] and [20].

Suppose Yy and Vy, are quasi-equivalent. Then +ry|M? and <y, | M? are
quasi-equivalent. But +, | M2(resp. vr,,| M?) is quasi-equivalent to @ (resp. @%).
Hence ¢y and ¢%, are quasi-equivalent, so that they are unitary equivalent,
which implies v =%" mod G by Lemma 5. Conversely, it is clear that ¥, and
Yy, are unitarily equivalent if v =1v mod G. Therefore, the family {y,|y € I'}
contains the required one if we assume that p=1/2 or 0 < p<1/2 cor-
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responding to the case of type II or type III. This completes the proof.

2. Consideration of general case and the main results. Now let M be
an arbitrary separable NGCR-algebra in the sense of [ 9], that is, M has no
non-zero GCR-ideal. Let {s,: n = 1,2,. . .} be a sequence of self-adjoint elements
of M which is dense in the self-adjoint part of M and s, an arbitrary positive
element of M of norm one. Let {v(a,,+..,a,): a; = 0,1} and (Ma;, ++ -, &y :
Bi,ee,B.): a;, B = 0,1) be the system of elements of M and 2" X 2"-matrix
as in [9: Lemma 4]. Put

e(n) = 3 v(ay, e a)v(ay, ., )

al s QApn

and

t'ﬂ = z )\‘(aly MRS Ay, Bb b4 ‘:Bn) ‘U(Cfl, AR ) an)v(leh e, Bn)*

Qgee s @niByy. et B,

Let M(n) be the subspace of M linearly spanned by v(a,, « « «, @, )v(B1, « + +, B)*’s
and M the subspace of M linearly spanned by M(n)’s. We have

LEMMA 7. If two states o and p of M have the value one at e(n) for
all n and if o|M(n) = p|M(n) for all n, then o and p coincides each other.

PROOF. By [9: Lemma 6], o(x) = o(e(n)xe(n)) and p(x) = ple(n)xe(n)) for
all n. Let a be an arbitrary self-adjoint element of M. For each n there exists
an integer j > 2n such as |a — s;] <1/2n and an element ¢; € M(n) such as

le(s + 1)(s; — 2)e(j + DI <1/(2n + 1).
Then we have

lo(a) — pla)| = |a(s;) — p(sp)| + 2]la — sl
< lale(j + D)sie(j + 1) — ple(j + Dsie(j + )| + 1/n
= |a(e(j + Dte(j + 1) — ple(j + Dtse(j + 1))
2le(j + 1)(s; — t)e(j + DI + 1/n
< lo(t;) — pt)| +2/Cn+ 1)+ 1/n
=2/@Cn+1)+1/n—0 as n—> oo.
Hence 0 = p on M.

LEMMA 8. Let o be a state of M with o(e(n)) = 1 for all n and 6, the
cyclic representation on £, induced by o. Let f,(n) be the projection onto

[range of 6.(e(n))] and put f, = inf f,(n). Define the mapping m, of ﬁ OM,
into 6,V by | )
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WU[ Z 7\’(6‘1)"',6571: Bl,""Bn)w(dl""7an:Bl)"'an)]

Alyees @n i Brye. Br

= Z )"<a17 e, Ayt By e, Bn)acr('v(al, L dn)‘v(,B,, see, Bn)*)fd

at, @31, Ba

Then w, is an isometric isomorphism of I © M, onto 6,(M) f,, and w, can be

n=1
extended to the isomorphism of M, onto the uniform closure of 0,(M)fo.
Moreover if &, is the cyclic vector of £., then w, is the cyclic representation
induced by 'm0, t) = o

PROOF. Since 6,(M(n)) leaves f,(k) H» invariant for 2 =n + 1 by [9: Lemma
5]. 6,(M(n)) is reduced by f,. Moreover [9:Lemma 5] shows us that 6,((n))f5
is 2" X 2"-matrix algebra with matrix units {6[v(ay, « -, @)v(B, « « +, B2)*1 1>
a;,B; =0 or 1}. Hence the norm of

Z )\'(al, e, 0yt /81’ e Bn)aa['v(al’ M) an)v(lely MRS Bn)*]fzr

Ayyees ;X3P B
is the same as the operator norm of the matrix
7\'(“1» MRS an:lBI, M) ﬁn)
A Ay
which is the norm in M, ®,+.. ®, M, Since the canonical imbedding of

(A /\ . 1 /\ . . .
M R RuM, into Il .M, = M, is isometric, we have

=1

! Z )\‘(aly LI A3 Bl, MR Bn)aa['v(al, .. ',an) v(Bl) M) IBn)*]f:T

!
lar,eee Gn

Biy.,Bn

. Z )\'(al,'"’an:Bu"';Bn)w(als°’ 'aaﬂ:BI," ':Bn)
| gll’y':";n’n
On the other hand, it is clear that =, preserves the algebraic operations, hence

. is an isometric isomorphism. Moreover [0, (M)E,] = D, implies
[ftfeﬂ(M)fFEa] :fa[b'cr(M)‘ftr] :fa‘ba.

Thus &, is a generating vector for 7,(M,) since 6-(IM)f, is uniformly dense in
f+6-(M) f,, which implies the last half assertion.

THEOREM 1. Let M be a separable NGCR-algebra, then there exists
Sfamily {65:v € I" and s € S} of factor representations of type i., 1 =11, III,

such that Y P ¢4 is faithful and the kernel of t3 = the kernel of 6y, for every

8eS
s € S and every pair of v,y € T, while 65 and ¢}, are quasi-equivalent if
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and only if y=v mod G.

PROOF. Let s, be an arbitrary positive element of M of norm one. Define
the linear functional p, on M by

p?(I) =1 and PY(v(al’ e an)v(ﬁla M) Bn)%)
] "]
=spunll p—p I &,
k=1 k=1

py is uniquely extended to the state of M by Lemma 7, which is denoted by
pr too. Let 6y be the cyclic representation of M induced by py. Following the
a.rguments in [9:p.585] we can easily show that the kernel of ¢" = {a € M:
ll_{g le(n)xaye(n)] =0 for all x, y € M}, which implies that 6;%0) =657 (0)
for every pair of v,y € I

Let my be the representation of M, defined by p, in Lemma 8. Let & be
the cyclic vector for the representation 6,, thatis, py(a) = (6,(a)éy, £,) for a € M.
Then we have

(777[ Z 7\‘(alr"'actrt:Bl;""671)7:0(6(17'",Czrz:Bla"U/sn):jgh&)‘)

gy ooy @ni Bryees,Bn

= (07[ Z 7\'(“1)' ";an:BI""’Bn)v(aly"';an)v(ﬁn‘ ) Bn)*]gﬁ Ev)

Qpyeney@nt Boyeos Bn

= Z )\'(al"" ’an:Bly" °)Bn)Py[v(al,' ",an)v(ﬁla' "7/971)*]
Cryeee@n; ByoeseBn

i ﬁl]

[T] 2
= 7\‘(ah CICICIN2 2902 SPRUIUICI an) H Pl—au(l - P)au H Sz:k—l
. k=1

. k=1

_ gg)[pagn + - pet o] @.;y—}( S Nttt B B

Qy e e@niBroene, B
'w(al"",an: Bla"‘;ﬁn))'

Thus 7, is unitary equivalent to v, defined in the proof of Lemma 6, and
my is a factor representation type II or of type III according to p=1/2 or
0 < p<1/2. It follows that =, (M, is a factor of type II or type IIL. Since
my(M,) is the uniform closure of 6,(M) fy, my(M,) is considered as the commutant
of the weak closure of fy6y(M)f, on the Hilbert space fv9,, where 9y is the
representation space of 6y and f; is the projection defined in Lemma 8. Since
& is a generating vector for 6,(M), g, is separating for 6y(M) and we get
6,(My = my(M,). Therefore 6y is a factor representation of type II or type III
according to p=1/20r 0 < p << 1/2.
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Suppose that ¢y and ¢y, are quasi-equivalent, which is implemented by an iso-
morphism 7 of the weak closure of 6,(M) onto the weak closure of 6y,(M). Since

wh(e(n)) = Oyle(n)), w(fy) = fy,. Hence we have

ko [ Z )'(ah cee, Oyt Bl, R ) Bn)a)‘(v(al’ e ',an)v(ﬁl» e "Bn)*)fY ]

yerey
Biye-- 1 Bn

= 22 Maty, e e, ani By e e, By (v, ¢+ o, )V(By, + + o, Ba)*) S1),

Qe
SRRy -1

which implies

arorry [ “Z'M My, s ooy Qni Bryoo o, Br)w(y, o oo,y Bryoee,Br) :l

B1,-+Bn

= Ty, [ Z 7\(6(1, .. ”an:lel, o ‘,Bn)w(aly e, Uy By ‘,B’n) ] .

AN
Thus, = gives the quasi-equivalence of my and my,, and by Lemma 6, y=1v
mod G. Therefore if v = v mod G, then 6, and 6,, are disjoint factor represen-
tations.

Suppose ¥ =1y’ mod G, that is, ¥/ = y-a for some a € G. Let u(&) be the
unitary operator of M, defined by the similar manner in p.87, where & is the
element of G defined by

é‘t2i—1 =da;, 1= 1;27" "&Zi :O$ i= 172," e.
Then there is an element v(a) of M such that [fy(v(@))] fy =my[u(&)]. On the other
hand, we have

i ® ay(w@)xul@)*) =" @ oy(x) for x € M,
by the direct calculations, where ', % and o}, are the states as in the proof
of Lemma 6. It follows that

(my[w(@)xu(C)*)Ey, &) = (my2)Ey, Ev)
for all x € M,, so that we have for every z ¢ M,
(Oy[v(@)zv(@)*)Ey, &) = (Blv(@)xv(@)*] f&y, &)
= (myle(d)x'u(@)* 16y, Ev)
= (W'Y/(x,)EY’s EY’) = (eY’(x)EY” EY')’
where z’ is the element of M, such that m,(x") = 6,(x) f,, or equivalently m,(z")
= 6,/(x) f,. Hence we have
plv(@)zv(a)*] = py(x) forall zx e M
by Lemma 7. Therefore p,, is contained in the closed invariant subspace of M*
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generated by p,. By the symmetric arguments, p, is contained in the subspace
generated by p,,, so that we have V,, = V,,. This implies the quasi-equivalence
of ¢, and 6,.

Finally, we can see that #, depends only on the choice of s,. Hence if we
denote this dependence on a positive element s with ls| = 1 by 6, then the
family of representations {#}:veI' and s€ S where S is the set of all positive
elements in M with norm one} is the required one.

THEOREM 2. Let M be as in Theorem 1. There exists a representation
6" of type i, i =1, IIl, such that we get a direct integral decomposition of 6
into irreducible representations over measure space (I', ub),

o = f H'(du(y), 6 = f 6. du'(y)

with the following property :
1° ¢~ g1 for all v € T, say 6,,
2° 6, ~4,, if and only if y=v mod G.

PROOF. Let p be the functional on I defined by
P( I) = 1’ P[v(al’ A '7an)v(ﬂl’ s Bn)*] = 8::;: II P‘—a‘(l - P)ak,
k=1

where we assume p =1/2 or 0 < p < 1/2 according to the case of type II or
of type III. Then p can be uniquely extended to a state of M. Let & be the cyclic
representation of M induced by p. Then 6 becomes a representation of type II
or of type IIl according to the assumptions p=1/2 or 0 < p<<1/2. In the
following, we shall treat the case of type II and type III simultaneously.

Let u be the measure on I' defined in p.87. Let = be the isomorphism of

C @ G onto M, defined in Lemma 4 and 7, be the representation M, on the
Hilbert space f,2, defined in Lemma 8. Then the arguments of [9:p.588 and

A\
p. 589] show that the representation m,or of C ® G is unitarily equivalent to the
representation @, appeared in p.86 and this unitary equivalence is implemented

by an isometry » of 9, onto f,§, which carries the cyclic vector & of £, to
the cyclic vector & of 9,. Let A be the abelian subalgebra of ,(C ® G) defined
in p. 86 as 7(C). Then #Au* is the abelian subalgebra of mom(C @ GY =[6,(M) f,]’.
Since the mapping: £ — xf is an isomorphism of 6¢,(M), we get an abelian
subalgebra A, of (M) such that uAu* = A, f,. Now we decompose # into the
direct integral of irreducible representations relative to A, whose weak closure

~

A, is isomorphic to L=(T', ). Let & be the mapping of M into ZP such as
(6(x)ak,, &) = (Efx)ak;, &)
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for all a < Zp and x € M. Then, for each a ¢ Zp, we have

(0,,["0(0(1, co e, d)U(Byy e e e, /en)*]agp’ gp)

= ((lv(ay, « « +, A)V(B, « « +, Bu)*] foa foke, &)

= (mpom[{(X(@y, «  +, A))it(By + 1, By + Qyyeee, B+ Ay, 0,0, 2)]afEp)
= (@ulllx(a, « o, @))(By + aty, oo o, By + ,,0,0, « « ua fuk, , &).

Therefore

Ep[v(ah M ) an)‘v(ﬁla ooy Bn)%] = El-:‘[l(x(al, LA ) a‘n))u(ﬁl + al, .. 'aBﬂ + an’ 07' ° ')]

if we regard the both side of equation as the function over I', where &; is the
mapping defined in Lemma 3. It follows that

Elv(ay, « « o, an)v(By, « « «, B) W) = &g &g
Hence if we define the state p, on M by p,(x) = &(x)(y), then p, becomes
a pure state of M by the arguments of [9:584], and p, does not depend on

the choice of p. Moreover if we decompose the representation ¢ relative to A,
as follows:

6 = faydm) B, = f HO)du(y)

then ¢, is the cyclic representation induced by p,, which implies 1°. Besides
the arguments in [9:p.585 and p.594] show that ¢, = #,, if and only if y=1v
mod G. This completes the proof.

Concluding remarks. 1° Theorem 1 does not hold in the case of type II;.
Indeed, let @ be an arbitrary finite factor representation of M,. If = is a trace
on the weak closure of @(M,), then ‘@(7) is also a trace on M. Since there is only

one trace @ [1/2(0% + 07)] on M,, we have ‘g(r) = (X) [1/2(ey + o})]. Hence

n=1 n=1

there is only one finite factor representation of M, within quasi-equivalence.

2° In [10], Guichardet shows that the components of irreducible direct
integral decomposition of every multiplicity free representation is mutually
disjoint except a null set. However in the cases of type II and of type III, this
is imposible. In fact, if u(I';)) =1 and T, N Tya = ¢ then u(Tyx) =0 for every
subset 1"y of T". Hence there is no subset I'y such that I'y N T'ya = ¢ and
u(Ty) = 1, which implies that there are some elements v and v" in T’y such that
6,6, if wT,) = 1. Moreover, u({y € T'|8,==6,}) =0 for every v, < T

3 If we define the measure in the dual space M of M by &(S)
= u({y € I'|#, € S), where ¢, means the unitary equivalence class of §,, then

N\
A is not standard measure. And the identity mapping in M is not integrable
with respect to 4 in the sense of [14].
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4° After writing this paper, the author find the papers [4] and [5] that
treat the factor decompositions. Comparing the results of [5] and this paper,
it seems the factor decomposition to be more natural object in the case of the
representations of type II or type IIL
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