ON THE CROSS-NORM OF THE DIRECT PRODUCT OF C*-ALGEBRAS

Masamichi Takesaki

(Received December 5, 1963)

In [7] Turumaru introduced the notion of the direct product of C^* -algebras. Let $\mathfrak{A}_1 \odot \mathfrak{A}_2$ be the algebraic direct product of two C^* -algebras \mathfrak{A}_1 and \mathfrak{A}_2 . Then $\mathfrak{A}_1 \odot \mathfrak{A}_2$ becomes a *-algebra under the natural algebraic operations. Turumaru's C^* -direct product $\mathfrak{A}_1 \odot \mathfrak{A}_2$ is given as the completion of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ under the norm given by

 $\sum_{i=1}^{n} a_{1,i} \otimes a_{2,i} \in \mathfrak{A}_{1} \odot \mathfrak{A}_{2}, \text{ where } \varphi_{1}, \varphi_{2} \text{ run over the set of all states of } \mathfrak{A}_{1}, \mathfrak{A}_{2} \text{ and}$

 $\sum_{j=1}^{\infty} x_{1,j} \otimes x_{2,j}$ runs over $\mathfrak{A}_1 \odot \mathfrak{A}_2$. Let us call this norm T-cross norm. Then T-cross norm has the following property: If π_1 and π_2 are representations of \mathfrak{A}_1 and \mathfrak{A}_2 to Hilbert spaces \mathfrak{S}_1 and \mathfrak{S}_2 respectively, then the naturally defined product representation $\pi_1 \otimes \pi_2$ of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ to the product Hilbert space $\mathfrak{S}_1 \otimes \mathfrak{S}_2$

is continuous with respect to T-cross norm, so that $\pi_1 \otimes \pi_2$ can be extented to the representation of $\mathfrak{A}_1 \otimes_{\mathfrak{a}} \mathfrak{A}_2$ which is also denoted by $\pi_1 \otimes \pi_2$. Besides, if π_1 and π_2 are faithful then $\pi_1 \otimes \pi_2$ becomes faithful. Hence T-cross norm is very natural norm of $\mathfrak{A}_1 \odot \mathfrak{A}_2$. But it is another matter whether or not T-cross norm is unique compatible norm of $\mathfrak{A}_1 \odot \mathfrak{A}_2$, where a norm \mathcal{B} of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ is called compatible to the algebraic structure of $\mathfrak{A}_1 \odot \mathfrak{A}_2$, where a norm \mathcal{B} of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ by \mathcal{B} becomes a C^* -algebra and $\|x_1 \otimes x_2\|_{\mathcal{B}} \leq \|x_1\| \cdot \|x_2\|$ for $x_1 \in \mathfrak{A}_1$ and $x_2 \in \mathfrak{A}_2$. In the present note we shall answer for this question that T-cross norm is smallest among the compatible norms and that T-cross norm is unique in $\mathfrak{A}_1 \odot \mathfrak{A}_2$ for C^* -algebra \mathfrak{A}_1 of certain class but it is not so in general. So we say that C^* -algebra \mathfrak{A}_1 has the property (T) if the following is true;

(T): For every C*-algebra \mathfrak{A}_2 T-cross norm of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ is the unique compatible norm.

LEMMA 1. If π is a *-representation of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ to a Hilbert space \mathfrak{H} which

is continuous relative to a compatible norm, then there exist unique representations π_1 and π_2 of \mathfrak{A}_1 and \mathfrak{A}_2 to \mathfrak{H} such that

$$\pi(x_1 \otimes x_2) = \pi_1(x_1)\pi_2(x_2) = \pi_2(x_2)\pi_1(x_1)$$

for $x_1 \in \mathfrak{A}_1$ and $x_2 \in \mathfrak{A}_2$.

This is nothing but [3: Prop. 1.] So we omit the proof. We call π_1 and π_2 the restrictions of π to \mathfrak{A}_1 and \mathfrak{A}_2 respectively. Let $\mathfrak{A}_1 \otimes_{\beta} \mathfrak{A}_2$ be the completion of $\mathfrak{A}_1 \otimes_{\beta} \mathfrak{A}_2$ by a compatible norm β . For a state σ of $\mathfrak{A}_1 \otimes_{\beta} \mathfrak{A}_2$ let $\pi_{\sigma}, \xi_{\sigma}$ and \mathfrak{F}_{σ} be the cyclic representation, the cyclic vector and the cyclic Hilbert space respectively. Let $\pi_{\sigma,1}$ and $\pi_{\sigma,2}$ be the restrictions of π_{σ} to \mathfrak{A}_1 and \mathfrak{A}_2 respectively. By the equations

$$\sigma_1(x_1) = (\pi_{\sigma,1}(x_1) \xi_{\sigma}, \xi_{\sigma}) \text{ and } \sigma_2(x_2) = (\pi_{\sigma,2}(x_2)\xi_{\sigma},\xi_{\sigma})$$

for $x_1 \in \mathfrak{A}_1$ and $x_2 \in \mathfrak{A}_2$, we define the restrictions σ_1 and σ_2 of σ to \mathfrak{A}_1 and \mathfrak{A}_2 respectively. If $\sigma(x_1 \otimes x_2) = \sigma_1(x_1)\sigma_2(x_2)$ for $x_1 \in \mathfrak{A}_1$ and $x_2 \in \mathfrak{A}_2$, then we write $\sigma = \sigma_1 \otimes \sigma_2$. Conversely, if the functional on $\mathfrak{A}_1 \odot \mathfrak{A}_2$ defined by

$$\sigma\left(\sum_{i=1}^n x_{1,i} \otimes x_{2,i}\right) = \sum_{i=1}^n \sigma_1(x_{1,i}) \sigma_2(x_{2,i})$$

is continuous under the β -norm for states σ_1 and σ_2 of \mathfrak{A}_1 and \mathfrak{A}_2 , then σ can be extended to a state of $\mathfrak{A}_1 \bigotimes_{\beta} \mathfrak{A}_2$, which coincides with $\sigma_1 \otimes \sigma_2$.

LEMMA 2. Let $\widetilde{\mathfrak{A}}_1$ and $\widetilde{\mathfrak{A}}_2$ be the C*-algebras obtained by adjoining units to \mathfrak{A}_1 and \mathfrak{A}_2 respectively. If β is a compatible norm of $\mathfrak{A}_1 \odot \mathfrak{A}_2$, then β can be extended to a compatible norm of $\widetilde{\mathfrak{A}}_1 \odot \widetilde{\mathfrak{A}}_2$.

PROOF. Let π be a faithful representation of $\mathfrak{A}_1 \otimes_{\beta} \mathfrak{A}_2$ to a Hilbert space \mathfrak{F} and π_1 and π_2 the restrictions of π to \mathfrak{A}_1 and \mathfrak{A}_2 respectively. Then π_1 and π_2 are faithful and can be naturally extended to the representations of \mathfrak{A}_1 and \mathfrak{A}_2 respectively, which are also denoted by π_1 and π_2 . For each element

$$\sum_{i=1}^{n} (x_{1,i} + \lambda_{1,i} I) \otimes (x_{2,i} + \lambda_{2,i} I) \in \widetilde{\mathfrak{A}}_{1} \widetilde{\mathfrak{A}}_{2} \text{ putting}$$

$$egin{aligned} & \left\| \sum_{i=1}^n \left(x_{1,i} + \lambda_{1,i} I
ight) \otimes \left(x_{2,i} + \lambda_{2,i} I
ight)
ight\|_{eta} \ & = \left\| \sum_{i=1}^n \left(\pi_1(x_{1,i}) + \lambda_{1,i} I
ight) (\pi_2(x_{2,i}) + \lambda_{2,i} I)
ight\|_{eta} \end{aligned}$$

the norm β coincides with the original one of $\mathfrak{A}_1 \odot \mathfrak{A}_2$. Let \mathfrak{F} be the set of all elements $\sum_{i=1}^n (x_{1,i} + \lambda_{1,i}I) \otimes (x_{2,i} + \lambda_{2,i}I)$ with β -norm zero. Clearly, \mathfrak{F} becomes an ideal of $\widetilde{\mathfrak{A}}_1 \odot \widetilde{\mathfrak{A}}_2$ and $\mathfrak{F} \cap \mathfrak{A}_1 \odot \mathfrak{A}_2 = \{0\}$. Since π_1 and π_2 are faithful, $\pi_1 \otimes \pi_2$

is so on $\widetilde{\mathfrak{A}}_1 \bigcirc \widetilde{\mathfrak{A}}_2$. Since $(\pi_1 \otimes \pi_2)$ $(\mathfrak{A}_1 \bigcirc \mathfrak{A}_2)$ $(\mathfrak{H} \otimes \mathfrak{H})$ is dense in $\mathfrak{H} \otimes \mathfrak{H}$ and $\mathfrak{F}(\mathfrak{A}_1 \bigcirc \mathfrak{A}_2)$ $\subset \mathfrak{F} \cap (\mathfrak{A}_1 \bigcirc \mathfrak{A}_2) = \{0\}$, we get $(\pi_1 \otimes \pi_2)$ $(\mathfrak{F}) = \{0\}$, that is, $\mathfrak{F} = \{0\}$. Hence the new β -norm of $\widetilde{\mathfrak{A}}_1 \bigcirc \widetilde{\mathfrak{A}}_2$ is a compatible norm.

In the following $\mathfrak{P}_0(\mathfrak{A})$ means the set of all pure states for any C^* -algebra \mathfrak{A} . For each state σ of $\mathfrak{P}_0(\mathfrak{A})$ and unitary $u \in \widetilde{\mathfrak{A}}$ we define a state σ^u by

$$\sigma^{u}(x) = (uxu^{-1}) \quad \text{for } x \in \mathfrak{A}.$$

We remark that \mathfrak{A} is an ideal of $\widetilde{\mathfrak{A}}$ and so $x \to uxu^{-1}$ is an automorphism of \mathfrak{A} , so that $\sigma^u \in \mathfrak{P}_0(\mathfrak{A})$ if $\sigma \in \mathfrak{P}_0(\mathfrak{A})$. For any compatible norm β of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ put

$$S_{\beta} = \{(\sigma_1, \sigma_2) \in \mathfrak{P}_0(\mathfrak{A}_1) \times \mathfrak{P}_0(\mathfrak{A}_2) : \sigma_1 \otimes \sigma_2 \text{ is } \beta\text{-continuous on } \mathfrak{A}_1 \bigcirc \mathfrak{A}_2\}.$$

Then we get

LEMMA 3. S_{β} is w^* -closed and unitarily invariant. That is, $(\sigma_1^u, \sigma_2^v) \in S_{\beta}$ for each $(\sigma_1, \sigma_2) \in S_{\beta}$ and unitaries $u \in \widetilde{\mathfrak{A}}_1$ and $v \in \widetilde{\mathfrak{A}}_2$.

PROOF. Closedness: Let $\{(\sigma_{1,\alpha}, \sigma_{2,\alpha})\}$ be a directed sequence in S_{β} converging to (σ_1, σ_2) . Then we have

$$\sum_{i=1}^{n} \sigma_{1,\alpha}(x_{1,i}) \sigma_{2,\alpha}(x_{2},i) \to \sum_{i=1}^{n} \sigma_{1}(x_{1,i}) \sigma_{2}(x_{2,i})$$

for each $\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \in \mathfrak{U}_{1} \odot \mathfrak{U}_{2}$ and

$$\left|\sum_{i=1}^n \sigma_{1,\alpha}(x_{1,i})\sigma_{2,\alpha}(x_{2,i})\right| \leq \left\|\sum_{i=1}^n x_{1,i} \otimes x_{2,i}\right\|_{\beta},$$

so that we have

$$\left|\sum_{i=1}^n \sigma_1(x_{1,i})\sigma_2(x_{2,i})\right| \leq \left\|\sum_{i=1}^n x_{1,i} \otimes x_{2,i}\right\|_{\beta}.$$

Hence $(\sigma_1, \sigma_2) \in S_{\beta}$, that is, S_{β} is closed.

Unitary invariance: By Lemma 2 we may consider β as the compatible norm of $\widetilde{\mathfrak{A}}_1 \odot \widetilde{\mathfrak{A}}_2$. For each unitaries $u \in \widetilde{\mathfrak{A}}_1$ and $v \in \widetilde{\mathfrak{A}}_2$, we have

$$egin{aligned} \left| \left(\sigma_1^{\ u} \otimes \sigma_2^{\ u}
ight) \left(\sum_{i=1}^n \ x_{1,i} \otimes x_{2,i}
ight)
ight| &= \left| \sigma_1 \otimes \sigma_2 \left(\sum_{i=1}^n \ u x_{1,i} u^{-1} \otimes v x_{2,i} v^{-1}
ight)
ight| \ &= \left| \sigma_1 \otimes \sigma_2 (u \otimes v) \left(\sum_{i=1}^n \ x_{1,i} \otimes x_{2,i}
ight) (u \otimes v)^{-1}
ight| \ &\leq \left\| \left(u \otimes v
ight) \left(\sum_{i=1}^n \ x_{1,i} \otimes x_{2,i}
ight) (u \otimes v)^{-1}
ight\|_{eta} \end{aligned}$$

$$=\left\|\sum_{i=1}^nx_{1,i}{\otimes}x_{2,i}\;
ight\|_{\mathcal{B}}$$

for each $(\sigma_1, \sigma_2) \in S_{\beta}$ and $\sum_{i=1}^n x_i, i \otimes x_{2,i} \in \mathfrak{A}_1 \odot \mathfrak{A}_2$. Hence S_{β} is unitarily invariant.

THEOREM 1. Every commutative C^* -algebra has the property (T).

PROOF. Let \mathfrak{A}_1 be an arbitrary commutative C^* -algebra and \mathfrak{A}_2 another C^* -algebra. Let \mathcal{B} be arbitrary compatible norm of $\mathfrak{A}_1 \odot \mathfrak{A}_2$. Let σ be an arbitrary pure state of $\mathfrak{A}_1 \odot_{\beta} \mathfrak{A}_2$ and σ_1 and σ_2 its restrictions to \mathfrak{A}_1 and \mathfrak{A}_2 respectively. Let π be the cyclic representation of $\mathfrak{A}_1 \odot_{\beta} \mathfrak{A}_2$ to the Hilbert space \mathfrak{F}_{σ} induced by σ and π_1 and π_2 its restrictions to \mathfrak{A}_1 and \mathfrak{A}_2 respectively. Since the commutant of $\pi(\mathfrak{A}_1 \odot_{\beta} \mathfrak{A}_2)$ contains $\pi_1(\mathfrak{A}_1)$ by the commutativity of \mathfrak{A}_1 , π_1 becomes the representation of \mathfrak{A}_1 to the scalar field over \mathfrak{F}_{σ} . Hence we have $\sigma_1(x_1)I = \pi_1(x_1)$ and

$$egin{aligned} \sigma(x_1 \otimes x_2) &= (\pi_1(x_1) \pi_2(x_2) \xi_{\sigma}, \xi_{\sigma}) \ &= \sigma_1(x_1) (\pi_2(x_2) \xi_{\sigma}, \xi_{\sigma}) \ &= \sigma_1(x_1) \sigma_2(x_2) \end{aligned}$$

for each $x_1 \in \mathfrak{A}_1$ and $x_2 \in \mathfrak{A}_2$. Thus every irreducible representation π of $\mathfrak{A}_1 \bigotimes_{\beta} \mathfrak{A}_2$ is written in the form $\pi = \pi_1 \otimes \pi_2$ by some irreducible representations π_1 and π_2 of \mathfrak{A}_1 and \mathfrak{A}_2 . Therefore we get

$$\begin{cases} \left\| \sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right\|_{\beta} = \sup \left\{ \left\| \pi \left(\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right) \right\|; \ \pi \text{ runs over} \\ \text{all irreducible representations of } \mathfrak{A}_{1} \widehat{\otimes}_{\beta} \mathfrak{A}_{2} \right\} \\ \leq \sup \left\{ \left\| \pi_{1} \otimes \pi_{2} \left(\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right) \right\| : \pi_{1} \text{ and } \pi_{2} \text{ run over all} \\ \text{irreducible representations of } \mathfrak{A}_{1} \text{ and } \mathfrak{A}_{2} \right\} \\ = \left\| \sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right\|_{\alpha}$$

for each $\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \in \mathfrak{A}_1 \odot \mathfrak{A}_2$.

Suppose $S_{\beta} \neq \mathfrak{P}_{0}(\mathfrak{A}_{1}) \times \mathfrak{P}_{0}(\mathfrak{A}_{2})$. By the closedness of S_{β} there exist non empty open sets U_{1} and U_{2} in $\mathfrak{P}_{0}(\mathfrak{A}_{1})$ and $\mathfrak{P}_{0}(\mathfrak{A}_{2})$ such that $U_{1} \times U_{2} \cap S_{\beta} = \phi$. Replacing U_{1} and U_{2} by $\bigcup_{u \in \mathfrak{A}_{1}; uo_{1} t a_{ry}} U_{1}^{u}$ and $\bigcup_{v \in \mathfrak{A}_{2}; uo_{1} t a_{ry}} U_{2}^{v}$, we may suppose that U_{1} and U_{2} are unitarily invariant and $U_{1} \times U_{2} \cap S_{\beta} = \phi$ by the unitary invariance of S_{β} . Putting $K_{1} = \mathfrak{C}U_{1}$ and $K_{2} = \mathfrak{C}U_{2}, K_{2}$ is a unitarily invariant

closed subset of $\mathfrak{P}_0(\mathfrak{A}_2)$. By [2: Lemma 8] $K_1^+ = \mathfrak{F}_1$ and $K_2^+ = \mathfrak{F}_2$ are closed ideals of \mathfrak{A}_1 and \mathfrak{A}_2 such that $\mathfrak{F}_1^+ = K_1$ and $\mathfrak{F}_2^+ = K_2$ respectively. It follows from the non-emptiness of U_1 and U_2 that $\mathfrak{F}_1 \neq \{0\}$ and $\mathfrak{F}_2 \neq \{0\}$. Hence there exist non-zero positive elements $a_1 \in \mathfrak{F}_1$ and $a_2 \in \mathfrak{F}_2$ respectively. Since $S_\beta \subset \{K_1 \times \mathfrak{P}_0(\mathfrak{A}_2)\} \cup \{\mathfrak{P}_0(\mathfrak{A}_1) \times K_2\}$ we have $\sigma_1 \otimes \sigma_2$ $(a_1 \otimes a_2) = 0$ for every $(\sigma_1, \sigma_2) \in S_\beta$. But every $\sigma \in \mathfrak{P}_0(\mathfrak{A}_1 \otimes \mathfrak{F}_2)$ has the form $\sigma = \sigma_1 \otimes \sigma_2$ for some $(\sigma_1, \sigma_2) \in S_\beta$ as already shown, so that $a_1 \otimes a_2 = 0$. This is a contradiction. Hence we get $S_\beta = \mathfrak{P}_0(\mathfrak{A}_1) \times \mathfrak{P}_0(\mathfrak{A}_2)$, so that the inequality in (*) is replaced by the equality. This completes the proof.

LEMMA 4. If the restriction of a pure state σ of $\mathfrak{A}_1 \bigotimes_{\beta} \mathfrak{A}_2 = \mathfrak{A}_{\beta}$ to \mathfrak{A}_1 becomes a pure state σ_1 of \mathfrak{A}_1 , then the restriction σ_2 of σ to \mathfrak{A}_2 becomes a pure state and σ is represented in the form $\sigma = \sigma_1 \otimes \sigma_2$.

PROOF. Let π be the cyclic representation of \mathfrak{A}_{β} , induced by σ , to the cyclic Hilbert space \mathfrak{F} with the cyclic vector $\boldsymbol{\xi}$. Let π_1 and π_2 be the restrictions of π to \mathfrak{A}_1 and \mathfrak{A}_2 respectively. Since $\sigma_1(x) = (\pi_1(x)\boldsymbol{\xi},\boldsymbol{\xi}), \ x \in \mathfrak{A}_1$, is a pure state of \mathfrak{A}_1 , $\pi_1^{\mathfrak{R}}$ becomes the irreducible cyclic representation of \mathfrak{A}_1 induced by σ_1 , where \mathfrak{R} is defined by $\mathfrak{R} = [\pi_1(\mathfrak{A}_1)\boldsymbol{\xi}]$ and $\pi_1^{\mathfrak{R}}$ means the representation of \mathfrak{A}_1 to \mathfrak{R} defined by $\pi_1^{\mathfrak{R}}(x)\eta = \pi_1(x)\eta$ for $\eta \in \mathfrak{R}$. Hence \mathfrak{R} becomes a minimal subspace belonging to $\pi_1(\mathfrak{A}_1)'$, the commutant of $\pi_1(\mathfrak{A}_1)$.

On the other hand, the irreducibility of π implies $\pi(\mathfrak{A}_{\beta})'' = \boldsymbol{B}(\mathfrak{H})$, so that \boldsymbol{R} $(\pi_1(\mathfrak{A}_1), \pi_2(\mathfrak{A}_2)) = \boldsymbol{B}(\mathfrak{H})$ where $\boldsymbol{B}(\mathfrak{H})$ means the full operator algebra on \mathfrak{H} and $\boldsymbol{R}(S)$ means the von Neumann algebra generated by S for any subset S of $\boldsymbol{B}(\mathfrak{H})$. $\pi_1(\mathfrak{A}_1)' \supset \pi_2(\mathfrak{A}_2)$ implies $\boldsymbol{R}(\pi_1(\mathfrak{A}_1), \pi_1(\mathfrak{A}_1)') = \boldsymbol{B}(\mathfrak{H})$ and similarly $\boldsymbol{R}(\pi_2(\mathfrak{A}_2), \pi_2(\mathfrak{A}_2)') = \boldsymbol{B}(\mathfrak{H})$, so that both π_1 and π_2 are factor representations. Since $\pi_1(\mathfrak{A}_1)'$ has the minimal invariant subspace \mathfrak{R} , $\pi_1(\mathfrak{A}_1)''$ is a factor of type I.

Let e be the projection of \mathfrak{F} onto \mathfrak{A} . Then e is a minimal projection of $\pi_1(\mathfrak{A}_1)'$, so that $e\pi_1(\mathfrak{A}_1)'e = \{\lambda e : \lambda \text{ is complex}\}$. Putting $exe = \lambda(x)e$ for $x \in \pi_1(\mathfrak{A}_1)'$, λ is a pure state of $\pi_1(\mathfrak{A}_1)'$. Since $\pi_2(\mathfrak{A}_2) \subset \pi_1(\mathfrak{A}_1)'$, we get

$$\begin{split} \sigma(x_1 \otimes x_2) &= (\pi(x_1 \otimes x_2) \xi, \xi) = (\pi_1(x_1) \pi_2(x_2) \xi, \xi) \\ &= (\pi_2(x_2) e \xi, \ e \pi_1(x_1)^* \xi) \\ &= (e \pi_2(x_2) e \xi, \ \pi_1(x_1)^* \xi) = \lambda(\pi_2(x_2))(\pi_1(x) \xi, \xi) \\ &= \sigma_1(x_1) \lambda(\pi_2(x_2)) \end{split}$$

for every $x_1 \in \mathfrak{A}_1$ and $x_2 \in \mathfrak{A}_2$. Besides, we have

$$\lambda(\pi_2(x_2)) = (e\pi_2(x_2)e\xi, \xi) = (\pi_2(x_2)\xi, \xi) = \sigma_2(x_2)$$

for every $x_2 \in \mathfrak{A}$. Thus we get $\sigma = \sigma_1 \otimes \sigma_2$.

Finally we shall show that σ_2 is a pure state. By the equality

$$\left(\pi\left(\sum_{i=1}^n x_{1,i} \otimes x_{2,i}\right) \xi, \ \pi\left(\sum_{j=1}^m y_{1,j} \otimes y_{2,j}\right) \xi\right)\right)$$

¹⁾ K_i^{\perp} means the set of all elements a_i of \mathfrak{A}_i such that $\sigma_i(a_i) = 0$ for every $\sigma_i \in K_i$ (i=1,2).

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma(y_{1,j} * x_{1,i} \otimes y_{2,j} * x_{2,i})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_1(y_{1,j} * x_{1,i}) \sigma_2(y_{2,j} * x_{2,i})$$

for $\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i}$, $\sum_{j=1}^{m} y_{1,j} \otimes y_{2,j} \in \mathfrak{A}_{1} \odot \mathfrak{A}_{2}$, π becomes the product representation of the cyclic ones $\pi_{\sigma_{1}}$ and $\pi_{\sigma_{2}}$ of \mathfrak{A}_{1} and \mathfrak{A}_{2} induced by σ_{1} and σ_{2} . Hence the irreducibility of π implies that of $\pi_{\sigma_{2}}$. Thus σ_{2} becomes a pure state.

THEOREM 2. T-cross norm in $\mathfrak{A}_1 \odot \mathfrak{A}_2$ is the smallest among compatible norms of $\mathfrak{A}_1 \odot \mathfrak{A}_2$.

PROOF. Let β be another compatible norm of $\mathfrak{A}_1 \odot \mathfrak{A}_2$. Put $\mathfrak{A}_{\beta} = \mathfrak{A}_1 \widehat{\otimes}_{\beta} \mathfrak{A}_2$. If $S_{\beta} = \mathfrak{B}_0(\mathfrak{A}_1) \times \mathfrak{B}_0(\mathfrak{A}_2)$, then we have

$$\begin{split} & \left\| \sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right\|_{\alpha} \\ &= \sup_{(\sigma_{1}\sigma_{2}) \in \left\{ \prod_{j=1}^{n} a_{1,j} \otimes a_{2,j} \right\}^{*} \left(\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right)^{*} \left(\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right) \left(\sum_{j=1}^{n} a_{1,j} \otimes a_{2,j} \right)^{1/2} \\ & \sigma_{1} \otimes \sigma_{2} \left[\left(\sum_{j=1}^{m} a_{1,j} \otimes a_{2,j} \right)^{*} \left(\sum_{j=1}^{m} a_{1,j} \otimes a_{2,j} \right) \right]^{1/2} \\ & \leq \left\| \sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right\|_{\beta}. \end{split}$$

Hence it suffices to prove only $S_{\beta} = \mathfrak{P}_0(\mathfrak{A}_1) \times \mathfrak{P}_0(\mathfrak{A}_2)$. Suppose $S_{\beta} \neq \mathfrak{P}_0(\mathfrak{A}_1) \times \mathfrak{P}_0(\mathfrak{A}_2)$. As in the last part of the proof of Theorem 1, there exist non-zero positive elements $a_1 \in \mathfrak{A}_1$ and $a_2 \in \mathfrak{A}_2$ such that $\sigma_1 \otimes \sigma_2(a_1 \otimes a_2) = 0$ for every $(\sigma_1, \sigma_2) \in S_{\beta}$. Let A be the commutative C^* -subalgebra of \mathfrak{A}_2 generated by a_2 . By Theorem 1 the β -norm in $\mathfrak{A}_1 \odot A$ coincides with T-cross norm, so that $\mathfrak{A}_1 \odot A$ is naturally imbedded in \mathfrak{A}_{β} . Taking $\sigma_1 \in \mathfrak{P}_0(\mathfrak{A}_1)$ and $\rho_2 \in \mathfrak{P}_0(A)$ such that $\sigma_1(a_1) \neq 0$ and $\rho_2(a_2) \neq 0$, $\sigma_1 \otimes \rho_2$ is a pure state of $\mathfrak{A}_1 \odot A$. Let σ be a pure state extension of $\sigma_1 \otimes \rho_2$ to \mathfrak{A}_{β} . Then the restriction of σ to \mathfrak{A}_1 and A coincide with the original σ_1 and ρ_2 respectively. Hence σ is represented in the form $\sigma = \sigma_1 \otimes \sigma_2$ by Lemma 4. Besides, we have $\sigma(a_1 \otimes a_2) = \sigma_1(a_1)$ $\rho_2(a_2) \neq 0$. But $\sigma = \sigma_1 \otimes \sigma_2 \in \mathfrak{A}_{\beta}^*$ implies $(\sigma_1, \sigma_2) \in S_{\beta}$. This is a contradiction. Hence $S_{\beta} = \mathfrak{P}_0(\mathfrak{A}_1) \times \mathfrak{P}_0(\mathfrak{A}_2)$. This completes the proof.

REMARK. In Theorem 2 we do not assume any relation between the compatible norm β and Schatten's λ -norm on $\mathfrak{A}_1 \odot \mathfrak{A}_2$, so that we can conclude that every compatible norm β is larger than λ -norm.

As a direct conclusion of Theorem 2, we can answer the open question proposed by Turumaru [8] in the following

COROLLARY. The direct product of simple C*-algebras, in the sense of Turumaru, is also simple.

PROOF. Let \mathfrak{A}_1 and \mathfrak{A}_2 be two simple C^* -algebra. Let $\mathfrak{A}=\mathfrak{A}_1 \bigotimes_{\alpha} \mathfrak{A}_2$. Suppose that there exists a closed ideal \mathfrak{F} of \mathfrak{A} . If π is an irreducible representation of \mathfrak{A} vanishing on \mathfrak{F} , then the restriction π_1 and π_2 of π to \mathfrak{A}_1 and \mathfrak{A}_2 are factor representations commuting each other. By the simplicity of \mathfrak{A}_1 and \mathfrak{A}_2 both π_1

and π_2 are faithful. For any $\sum_{i=1}^n x_{1,i} \otimes x_{2,i} \in \mathfrak{J}$ we have

$$0=\pi\left(\sum_{i=1}^{n}x_{1,i}{f\otimes}x_{2,i}
ight)=\sum_{i=1}^{n}\pi_{1}\!\left(x_{1,i}\!
ight)\!\pi_{2}\!\left(x_{2,i}
ight)\!,$$

so that there exists a $n \times n$ -matrix (λ_{ij}) by [4:Theorem III] such that

$$\sum_{i=1}^n \pi_{i,j} \pi_1(x_{1,i}) = 0$$
 and $\sum_{j=1}^n \lambda_{i,j} \pi_2(x_{2,j}) = \pi_2(x_{2,i}).$

It follows that $\sum_{i=1}^{n} \lambda_{i,j} x_{1,i} = 0$ and $\sum_{j=1}^{n} \lambda_{i,j} x_{2,j} = x_{2,i}$ by the faithfulness of π_1 and π_2 , so that $\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} = 0$. Thus we get $\Im \cap \mathfrak{A}_1 \odot \mathfrak{A}_2 = \{0\}$. Therefore the norm $\| \cdot \|_{\beta}$ defined by

$$\left\|\sum_{i=1}^n x_{1,i}{\otimes} x_{2,i}
ight\|_{eta} = \left\|\piigg(\sum_{i=1}^n x_{1,i}{\otimes} x_{2,i}igg)
ight\|$$

for $\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \in \mathfrak{A}_{1} \odot \mathfrak{A}_{2}$ is a compatible norm on $\mathfrak{A}_{1} \odot \mathfrak{A}_{2}$, where π means the natural homomorphism of \mathfrak{A} onto $\mathfrak{A}/\mathfrak{F}$. But Theorem 2 says that $\left\|\sum_{i=1}^{n} x_{1,i} \otimes x_{1,i}\right\|_{\alpha}$ $\leq \left\|\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i}\right\|_{\beta}$ for every $\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \in \mathfrak{A}_{1} \odot \mathfrak{A}_{2}$, so that π becomes an isometry. Hence we have $\mathfrak{F} = \{0\}$. This completes the proof.

THEOREM 3. Every C^* -algebra of type I has the property (T).

PROOF. Let \mathfrak{A}_1 be a C^* -algebra of type I and \mathfrak{A}_2 an arbitrary C^* -algebra. Let $\boldsymbol{\beta}$ be an arbitrary compatible norm in $\mathfrak{A}_1 \odot \mathfrak{A}_2$. Let $\boldsymbol{\pi}$ be an irreducible representation of $\mathfrak{A}_1 \bigotimes_{\boldsymbol{\beta}} \mathfrak{A}_2$ to a Hilbert space $\boldsymbol{\delta}$. Let $\boldsymbol{\pi}_1$ and $\boldsymbol{\pi}_2$ be the restrictions of $\boldsymbol{\pi}$ to \mathfrak{A}_1 and \mathfrak{A}_2 . Let \boldsymbol{M}_1 and \boldsymbol{M}_2 be the weak closure of $\boldsymbol{\pi}_1(\mathfrak{A}_1)$ and $\boldsymbol{\pi}_2(\mathfrak{A}_2)$ respectively. Then \boldsymbol{M}_1 and \boldsymbol{M}_2 commute each other. By the irreducibility of $\boldsymbol{\pi}$ \boldsymbol{M}_1 and \boldsymbol{M}_2 generates the full operator algebra $\boldsymbol{B}(\boldsymbol{\delta})$ on $\boldsymbol{\delta}$, so that both \boldsymbol{M}_1 and \boldsymbol{M}_2 are factors. Since \mathfrak{A}_1 is a C^* -algebra of type I, \boldsymbol{M}_1 is a factor of type

I. By [4:Theorem IV] $\boldsymbol{B}(\mathfrak{D})$ is isomorphic to $\boldsymbol{M}_1 \otimes \boldsymbol{M}_1'$ under the natural isomorphism $\sum_{i=1}^n x_i x_i' \to \sum_{i=1}^n x_i \otimes x_i'$, $x_i \in \boldsymbol{M}_1$, $x_i' \in \boldsymbol{M}_1' = 1, 2, \cdots, n$. Since \boldsymbol{M}_2 is contained in \boldsymbol{M}_1' , $\boldsymbol{R}(\boldsymbol{M}_1, \boldsymbol{M}_2) \cong \boldsymbol{M}_1 \otimes \boldsymbol{M}_2$. Hence we get $\boldsymbol{M}_2 = \boldsymbol{M}_1'$, so that \boldsymbol{M}_2 is also of type I and $\boldsymbol{\pi} = \boldsymbol{\pi}_1^e \otimes \boldsymbol{\pi}_2^f$ for minimal projections e and f of \boldsymbol{M}_1' and \boldsymbol{M}_2' . After all, we get the following

$$\left\|\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i}\right\|_{\beta} = \sup\left\{\left\|\pi\left(\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i}\right)\right\| \colon \pi \text{ runs over}\right.$$

$$\left. \text{all irreducible representations of } \mathfrak{A}_{1} \widehat{\otimes}_{\beta} \mathfrak{A}_{2}\right\}$$

$$= \sup\left\{\left\|\sum_{i=1}^{n} \pi_{1}(x_{1,i}) \otimes \pi_{2}(x_{2,i})\right\| \colon \pi_{1} \text{ and } \pi_{2} \text{ run}\right.$$

$$\left. \text{over all irreducible representations of } \mathfrak{A}_{1} \text{ and } \mathfrak{A}_{2} \text{ respectively}\right\}$$

$$= \left\|\sum_{i=1}^{n} x_{1,i} \otimes \pi_{2,i}\right\|$$

for every $\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \in \mathfrak{U}_1 \odot \mathfrak{U}_2$. This completes the proof.

THEOREM 5. If C^* -algebra \mathfrak{A}_1 is an inductive limit of C^* -subalgebras $\{\mathfrak{A}_{\gamma}\}$ with the property (T) in the sense of Takeda [5], then \mathfrak{A}_1 also has the property (T).

PROOF. Let \mathfrak{A}_2 be an arbitrary C^* -algebra. Let β be another compatible norm in $\mathfrak{A}_1 \odot \mathfrak{A}_2$. Let $\sum_{i=1}^n x_{1,i} \otimes x_{2,i}$ be a fixed element of $\mathfrak{A}_1 \odot \mathfrak{A}_2$. For any $\varepsilon > 0$ there exist an index γ_0 and $x'_{1,1} \cdot \cdot \cdot \cdot \cdot \cdot \cdot x'_{1,n} \in \mathfrak{A}_{\gamma_0}$ such that $\|x_{1,i} - x'_{1,i}\| < \varepsilon$ i = 1, $2, \dots, n$. Since \mathfrak{A}_{γ_0} has the property (T), we have $\left\|\sum_{i=1}^n x'_{1,i} \otimes x_{2,i}\right\|_{\beta} = \left\|\sum_{i=1}^n x'_{1,i} \otimes x_{2,i}\right\|_{\alpha}$. Hence we get

$$\begin{split} \left\| \sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right\|_{\alpha} & \leq \left\| \sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right\|_{\beta} \\ & \leq \left\| \sum_{i=1}^{n} x'_{1,i} \otimes x_{2,i} \right\|_{\beta} + \left\| \sum_{i=1}^{n} (x_{1,i} - x'_{1,i}) \otimes x_{2,i} \right\|_{\beta} \\ & \leq \left\| \sum_{i=1}^{n} x'_{1,i} \otimes x_{2,i} \right\|_{\alpha} + \sum_{i=1}^{n} \left\| x_{1,i} - x'_{1,i} \right\| \|x_{2,i}\| \\ & \leq \left\| \sum_{i=1}^{n} x'_{1,i} \otimes x_{2,i} \right\|_{\alpha} + \left(\sum_{i=1}^{n} \|x_{2,i}\| \right) \mathcal{E} \end{split}$$

$$\leq \left\| \sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right\|_{\alpha} + \left\| \sum_{i=1}^{n} (x'_{1,i} - x_{i,1}) \otimes x_{2,i} \right\|_{\alpha}$$

$$+ \varepsilon \sum_{i=1}^{n} \|x_{2,i}\|$$

$$\leq \left\| \sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \right\|_{\alpha} + 2\varepsilon \sum_{i=1}^{n} \|x_{2,i}\|,$$

so that
$$\left\|\sum_{i=1}^n x_{1,i} \otimes x_{2,i}\right\|_{\alpha} = \left\|\sum_{i=1}^n x_{1,i} \otimes x_{2,i}\right\|_{\beta}$$
.

According to Theorem 3 and 4, the class of C^* -algebras with the property (T) is actually larger than that of C^* -algebras of type I. Indeed, the infinite C^* -direct product of finite dimensional matrix algebras in the sense of Takeda [5] has the property (T), but is not of type I. Finally we shall construct an example of C^* -algebra without the property (T).

Let G be the free group of two generators α, β . On the Hilbert space $\mathfrak{H} = l^2(G)$, space of square summable functions over G, we define unitary operators $u(g_0)$ and $v(g_0)$ for each $g_0 \in G$ by

$$[u(q_0)\xi](g) = \xi(g_0^{-1}q), \ [v(g_0)\xi](q) = \xi(qq_0) \text{ for } \xi \in \mathfrak{H}.$$

Putting $(w\xi)(g) = \xi(g^{-1})$ for $\xi \in \mathfrak{H}$, w becomes unitary on \mathfrak{H} and we have

$$w^2 = I$$
, $wu(g)w = v(g)$ and $wv(g)w = u(g)$

for each $g \in G$. Let $\mathfrak A$ be the C^* -algebra generated by u(g)'s. Let π_1 be identical representation of $\mathfrak A$ on $\mathfrak A$ and let $\pi_2(x) = w\pi_1(x)w$,

$$\pi_1(\mathfrak{A})'=$$
 the weak closure of $\pi_2(\mathfrak{A})=\pi_2(\mathfrak{A})^-$,

$$\pi_2(\mathfrak{A})'=$$
 the weak closure of $\pi_1(\mathfrak{A})=\pi_1(\mathfrak{A})^-$,

and $\pi_1(\mathfrak{A})^-$, $\pi_2(\mathfrak{A})^-$ are factors of type II₁.

Next we consider the C^* -algebra \mathfrak{B} generated by $\{u(g_1)\otimes u(g_2); g_1, g_2 \in G\}$ on $\mathfrak{R} = \mathfrak{D}\otimes\mathfrak{D}$. Then \mathfrak{B} is naturally isomorphic to the Turumau's direct product $\mathfrak{A} \otimes_{\alpha} \mathfrak{A}$. So we identity $\mathfrak{A} \otimes_{\alpha} \mathfrak{A}$ and \mathfrak{B} .

Then we can define a representation π of $\mathfrak{A} \odot \mathfrak{A}$ by

$$\pi\left(\sum_{i=1}^{n} x_{1,i} \otimes x_{2,i}\right) = \sum_{i=1}^{n} \pi_{1}(x_{1,i})\pi_{2}(x_{2,i}) \text{ for each } \sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} \in \mathfrak{A}.$$

Suppose that π is continuous under T-cross-norm. Then π can be extended to the representation of \mathfrak{B} , denoted also by π . Since the weak closure \mathfrak{B} of \mathfrak{B} has the coupling constant one, every normal state of \mathfrak{B} can be represented as a

vector state. Hence the set of all vector states of \mathfrak{B} is w^* -dense in the state space of \mathfrak{B} . As every state of \mathfrak{B} can be extended to a state of \mathfrak{B} , the set of all vector states of \mathfrak{B} is w^* -dense in the state space of \mathfrak{B} . After all, for every unit vector ξ of \mathfrak{F} the state φ_{ξ} of \mathfrak{B} , define by $\varphi_{\xi}(x) = (\pi(x)\xi, \xi)$, is weakly approximated by the vector states ω_{η} of \mathfrak{B} , where η is a unit vector of \mathfrak{R} and ω_{η} is defined by $\omega_{\eta}(x) = (x\eta, \eta)$. Putting $\xi_{0}(g) = 1$ if g = e and $\xi_{0}(g) = 0$ if $g \neq e$, $g \in G$, ξ_{0} is a unit vector of \mathfrak{F} . Then we have

$$egin{aligned} arphi_{\xi_0}(u(g_1) \otimes u(g_2)) &= (\pi(u(g_1) \otimes u(g_2)) \xi_0, \; \xi_0) \ &= (u(g_1) \; \; v(g_2) \xi_0, \; \xi_0) \ &= \sum_{g \in G} \xi_0({g_1}^{-1} g g_2) \xi_0(g) \ &= \xi_0({g_1}^{-1} g_2) \qquad ext{for each } (g_1, \; g_2) \in G imes G. \end{aligned}$$

For any $\varepsilon > 0$, there exists a unit vector $\eta_0 \in \mathbb{R}$ such that

$$egin{align} (1) & |1-(u(lpha)\otimes u(lpha)\,\,\eta_{\scriptscriptstyle 0},\,\,\eta_{\scriptscriptstyle 0})| < arepsilon^2/2, \ & |1-(u(eta)\otimes u(eta)\eta_{\scriptscriptstyle 0},\,\,\eta_{\scriptscriptstyle 0})| < arepsilon^2/2. \end{split}$$

From (1) it follows that

(2)
$$\|\eta_0 - u(\alpha) \otimes u(\alpha)\eta_0\| < \varepsilon$$
 and $\|\eta_0 - u(\alpha) \otimes u(\alpha) \otimes u(\alpha)\eta_0\| < \varepsilon$. In fact, we have

$$\begin{split} \|\eta_0 - u(\alpha) \otimes u(\alpha)\eta_0\|^2 &= \|\eta_0\|^2 + \|u(\alpha) \otimes u(\alpha)\eta_0\|^2 \\ &- 2\Re \mathrm{e}(u(\alpha) \otimes u(\alpha)\eta_0, \ \eta_0) \\ &= 2\Re \mathrm{e}((1 - (u(\alpha) \otimes u(\alpha) \ \eta_0, \ \eta_0)) < \mathcal{E}^2. \end{split}$$

For each subset S of $G \times G$ we define a projection p_S in \Re by

$$(p_{S}\eta)(g_1,g_2)=\chi_{S}(g_1,g_2)\ \eta(g_1,g_2) \quad \text{for } \eta \in \Re,$$

where χ_S means the characteristic function of S. Then we have

$$egin{aligned} (p_{(h_1,h_2)S}\,\eta)(g_1,\;g_2) &= oldsymbol{\chi}_{(h_1,h_2)S}(g_1,g_2)\eta(g_1,g_2) \ &= oldsymbol{\chi}_{S}(h_1^{-1}g_1,\;h_2^{-1}g_2)\eta(g_1,g_2) \ &= oldsymbol{\chi}_{S}(h_1^{-1}g_1,h_2^{-1}g_2)(u(h_1^{-1})igotimes u(h_2^{-1})\eta(h_1^{-1}g_1,h_2^{-1}g_2) \ &= [u(h_1)igotimes u(h_2)\;\;p_{S}(u(h_1)igotimes u(h_2))^{-1}\eta]\;\;(g_1,g_2) \end{aligned}$$

for each $(h_1, h_2) \in G \times G$ and $\eta \in \mathbb{R}$, that is

$$P_{(h_1,h_2)S} = u(h_1) \otimes u(h_2) P_S u(h_1^{-1}) \otimes u(h_2^{-1}).$$

Hence

$$|(P_{s}\eta_{0},\eta_{0}) - (P_{(\alpha,\alpha)^{-1}s}\eta_{0},\eta_{0})|$$

= $|(P_{s}\eta_{0},\eta_{0}) - (u(\alpha)^{-1}\otimes(u(\alpha)^{-1}P_{s}u(\alpha)\otimes u(\alpha)\eta_{0},\eta_{0})|$

$$= |(P_{s}\eta_{0}, \eta_{0}) - (P_{s}u(\alpha) \otimes u(\alpha)\eta_{0}, u(\alpha) \otimes u(\alpha)\eta_{0})|$$

$$\leq |(P_{s}\eta_{0}, \eta_{0}) - (P_{s}\eta_{0}, u(\alpha) \otimes u(\alpha)\eta_{0})|$$

$$+ |(P_{s}\eta_{0}, u(\alpha) \otimes u(\alpha)\eta_{0}) - (P_{s}u(\alpha) \otimes u(\alpha)\eta_{0}, u(\alpha) \otimes u(\alpha)\eta_{0})|$$

$$\leq ||P_{s}\eta_{0}|| ||\eta_{0} - u(\alpha) \otimes u(\alpha)\eta_{0}|| + ||P_{s}(\eta_{0} - u(\alpha) \otimes u(\alpha)\eta_{0})|| ||u(\alpha) \otimes u(\alpha)\eta_{0}||$$

$$< 2\varepsilon.$$

That is,

$$(P_{(\alpha^{-1},\alpha^{-1})S}\eta_0,\eta_0) > (P_S\eta_0,\eta_0) - 2\varepsilon.$$

Put $A = \{g \in G : g = \alpha^p \beta^q, \dots, p \neq 0\}$ and B = G - A. Then the family $\{\alpha^{-n}B : n = 1, 2, \dots\}$ is mutually disjoint, so that $\{(\alpha^{-n}, \alpha^{-n})(B \times G); n = 1, 2, \dots\}$ is mutually disjoint. Hence

$$1 \geqq \left(\begin{array}{c} P_{\bigcup\limits_{k=0}^{n-1} \; (\alpha^{-k}, \alpha^{-k})(B \times G)}^{n-1} \; \eta_0, \; \eta_0 \end{array} \right) = \sum_{k=0}^{n-1} \left(P_{(\alpha^{-k}, \alpha^{-k})(B \times G)} \eta_0, \eta_0 \right)$$

$$> n(P_{(B\otimes G)} \eta_0, \eta_0) - n(n-1)\varepsilon.$$

That is,
$$(P_{(B\times G)}, \eta_0, \eta_0) < \frac{1}{n} + (n-1)\varepsilon$$
 $n=1, 2 \cdots$

Similarly we have $(P_{A\times G} \eta_0, \eta_0) < \frac{1}{n} + (n-1) \varepsilon$ $n=1,2,\cdots$

But we have

$$egin{aligned} 1 &= \| oldsymbol{\eta}_0 \|^2 = (P_{(A imes G)} \, oldsymbol{\eta}_0, \, oldsymbol{\eta}_0) + (P_{(B imes G)} \, oldsymbol{\eta}_0, \, oldsymbol{\eta}_0) \ &< 2 \Big(rac{1}{n} + (n-1) oldsymbol{arepsilon} \Big) \qquad \qquad n = 1, 2, \cdots, \end{aligned}$$

since $G = B \cup A$. This is impossible if $\varepsilon < \frac{1}{12}$ and n = 3. Hence φ_{ε_0} can not be approximated by vector states. That is, π is discontinuous under T-crossnorm in $\mathfrak{A}_1 \odot \mathfrak{A}_2$. After all, we get the following

THEOREM 6. There exists a C^* -algebra without the property (T).

REFERENCES

- [1] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, 1957.
- [2] J. CLIMM. Type I C*-algebras, Ann. Math., 73(1961), 572-612.
- [3] A. GUICHARDET, Caractères et représentations des produits tensoriels de C*-algèbres, the auther's manuscript.
- [4] F. J. MURRAY AND J. VON NEUMANN, On rings of operators, Ann. Math., 37(1936), 116–229.
- [5] Z.TAKEDA, Inductive limit and infinite direct product of operator algebras, Tôhoku Math. Journ., 7(1955), 67-86.
- [6] M. TAKESAKI, A note on the cross-norm of the direct product of operator algebras, Kôdai Math. Sem. Rep., 10(1958), 137-140.
- [7] T. TURUMARU, On the direct product of operator algebras I, Tôhoku Math. Journ.,

4(1952), 242-251.

- [8] T.TURUMARU, On the direct product of operator algebras II, Tôhoku Math. Journ., 5(1953), 1-7.
- [9] T.TURUMARU, On the direct product of operator algebras III, Tôhoku Math. Journ., 6(1954), 208-211.
- [10] T. TURUMARU, On the direct product of operator algebras IV, Tôhoku Math. Journ., 8(1956), 281-285.
- [11] H. YOSHIZAWA, Some remarks on unitary representations of the free group, Osaka Math. Journ., 3(1951), 55-63.

MATHEMATICAL INSTITUTE TÓHOKU UNIVERSITY.