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1. In this note we give conditions for a series ]P anen to be summable

IR, λ, ιc I whenever ̂  an is bounded (R, λ, κ\ κ^Q. The case K a positive

integer or zero was dealt with by the author in a recent note [9]. Our object
is to consider the truth of the theorem in [9] when K is non-integral. The
same conditions are required whether K is an integer or not. As usual the
proof for non-integral orders is much harder than for integral orders.

Our theorem generalizes theorems on absolute Cesaro summability factors
(Chow [6], Ahmad [1]). Also the result is closely related to theorems on the

abscissae of summability (R, λ, #), \R, λ, κ\ of the Dirichlet series ^ ane~λnS

(Hardy and Riesz [7], Obrechkoff [10], Bosanquet [4], Austin [2], Borwein [3]).

2. Let λ={λn] be an increasing unbounded sequence of positive numbers.
We write λ £ Λ if λ satisfies

(a) 0 < a ̂  -T^ ^ A, α, A constants,
ΔΛn-!

(b) -̂ ^ decreases to 1.
λ»W

In a certain sense the set of sequences Λ consists of increasing sequences
which are 'reasonably regular'. By Δλn we mean λn — λn+1.

For K > — 1 we define

λ <ω
= ί O ~ £)*

JO

where A(t) = A\t). Similarly for Bκ(ω). If ω~κAx(ω) is bounded (of bounded

variation) over (λ0,°°) we say ̂  an is bounded (absolutely summable) (R, λ, K).

In the latter case it is usual to say ̂  an is summable | R, λ, K \ . When /^ > 0,

κ>-l, ιc + μ>Q,
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Hence if bυ = \vav, K ̂  0 and Aκ(ω) = O(ωκ\ then Bκ(ω) = O(ωκ+1)

3. Some lemmas will be needed.

LEMMA 1. If 0 <μ^l, /c ̂  0, Q^ξ^ω, then

^max Al+κ(t)

See Hardy and Riesz [7], Lemma 8. We shall refer to this lemma as 'the
Riesz mean-value theorem'.

LEMMA 2. // * ̂  0, * + q ̂  0, A"(ω) - O (ω*+g), then, for μ = 0,l, [K] and

\n < ω 5g λw + ι,

7ί . .
Λ'ri + l ~~ Λ w

See Borwein [3], Lemma 2.

LEMMA 3. Let Λn = λn+1/(λn+1 — λn) be increasing,κ §r 0, q ̂  0 ατz<ί A*(ω)
= O(ωκ+<7). Then for \n < ω ̂  λw+ι, 0 ̂  /A < Λ:,

This follows from [5], Theorem 1. 61, on taking φ(ω) = ωKH 5, and noting
that λn+1 - O(λn).

LEMMA 4. Let K > 0, λ £ Λ, en = Gκ(\n\ then for \n < ω rg λn+1,

GΛ(ω) = I (w — ω)κdg(u}

λn+rκl+1/t-t-LKJ-t-i

J l̂

)

" (1)
where we suppose that

00

I uκ\dg(u)\ < oo.

If K is an integer, the final integral in (1) may be omitted.

This lemma follows from the proof of Lemma 9 (Maddox [8]).
For completeness we outline the method. It is possible to determine functions
cv(ω) = O(l) such that
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(« - «)" = Σ '•>(«) (« - λ— )" + ° Kλ» + . - λn)
M+'(M-λn

v=0

uniformly for w^λn+w+i This is equation (7) Maddox [8].
We now have

λn+[κ] + l IK] f λn+[κ]

Gt(α>) = f (« - «)
Jot

+ 0(l)(λn+1 - 7OW+I f (M-Xn;r*i-'|^(M)
Jλ?Z +[«]+!

The result follows.

LEMMA 5. //" K > 1 αnJ non-integral, μ = K — 1,

J = (ω - ί)-i(w

•'o

, /9, Ύ) Ξ H(Λ, /8, Ύ; ω, «) = f (ω - ί)α(w -
Jo

then

t'=[μl

'where p is the integer such that 0 < K — p ̂  1, αnJ c denotes a non-zero
constant, possibly different at each occurrence.

This lemma is established by suitable partial integrations; see Maddox [8],
equation (38).

4. We now prove

THEOREM 1. If K ̂  0, λ € Λ, At®) = O(ω*) αrcd

(ί) Σ k l < ° ° >
(ii) there exists a function g(u\ defined for u^\0, such that for v = 0, 1,

Γ°° Γ°°
€v= (u-\vγdg(u) with uκ\ dg(u}\ < oo,

Jλυ Λo

y^ anen is summable \ R, λ, K \ .

PROOF. When K = 0 the result follows trivially from (i). Now consider
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two cases.
CASE 1. 0 < K < 1. We have

/ =

where GΛ(ί

We note that

-./.-«
JλQ

— K I ω"*"1 dω
JλQ

Γ°°I (u — t)κ dg(u\

O -

(2)

G'κ(t) = -κ ( (u- t)κ~l dg(u) p. p. in (λ0, oo). (3)
Jt

Integrating the inner integral in (2) by parts, we have for λn < ω ̂  λn+1,

λn *™

(ω — λ )̂""̂ ^ )̂ + c \ (ω —ί)κ~2( - tΓ1 G'κ(t)B(t)dt. (4)

By Lemma 2, since B*(ω) = O(ωκ+l\ we have

Thus

f
Jλ0

= Σ f
rz=0 ̂

= 0(1) £ |βn

= 0(1)Σ |en| <~.
w = 0

Consider the contribution of the second term in (4) to /:

λn

I (a>-t)K-2GK(t)B(t) dt
Jo

00 Λ / W * I rz~1 ^•i;+1

^2: 1""-1 ^«Σ Kω-ί
n = 1 Jλn v=Q λv

= Σ Σ f^"1 rf® f(«- ty-
v=Q w = ι; + l ̂  */λy

(5)

/
ω''""1 dω

-β
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1"1 d(ΰ

^ Σ VίΓ1 f|G/ί)|0(λΛί)Ow+1 - ί)-1*,
y=0 *Άy

by Lemma 2.
Now by Lemma 4, since [κ\ = 0, we have for λy < £ < λu+1,

Jλv

Hence

- 0(1) [u*\dg(u)\
Jλv

λv + l \ λι +1

ίf'λΛί «"|rfflf(«)l + kl |0w - ί)"1

= 0(1) ( f «« I ̂ (M) I + έ β. I )< oo. (6)
V MO v=o /

Also
oo λp + l

1 -λ,) I (u - λ^-1 1 dg(u) I / (λ,+1 - tTldt
Jλv+l Jλv

Σ ΓΛ f («-i)-'|^5<«)l
V=Q JλV Jt

= 0(1) ΓΛ f"(«-ί)-W«)l
^λo Jί

|<oo. (7)

Finally, consider the contribution of the third term in (4) to /. By (3) we
have

λn oo

c \ (ω - ty~lB(t)dt I (u- t}"-1 dg(u)
Jo Jt

= c f (ω - t)^B(t)dt ( f + Π
J0 \ Λ Jω /



ON ABSOLUTE RIESZ SUMMABILITY FACTORS 65

rw rm

= c dg(u) (ω - tj-\u - tY~lB(t)dt
Jo Λ

oβ λn

+ c \ dg(u) f (ft> - ty-\u - ίf-lB(ί)dt. (8)
Λo •'o

where m = min(λn, u}. Now (ω — t)κ~l increases in (0, πί).

Hence, by the second mean-value theorem and the Riesz mean-value
theorem,

f f(ω — t)κ (u — t)κ B(t)dt — (ω — πι)κ~l \ (u — t)κ~lB(t)dt (0 ±g ξ :g ra)
Λ

Also (w — ί)κ~1 increases in (0, λw), so that

Λ .λ.
/ (ω - ί)""1^ ~ t)κ~ΊB(t}dt = (u - *λn)

κ-1 (ω - tY~l E(t)dt (0 < I < λw)
Jo Λ - ~

= O((M - α>)*-V+1). (10)

By (8) and (9) it follows that

00 ».»

O(l) / ω~κ~l dω
Λo

= 0(l)f"«-1

•̂n

= O(1)J «'|̂ 7(«)| <°o. (U)

Also (8) and (10) yield

00 CO

Λ0 ^ω

r" r^
Λ0 Λ0

= O(1) f wβ|^(«)| <oo. (12)

If we now combine the relevant equations (2)—(12), we see that 7< oo? i.e.

Σ an
€n is summable \R,λ, κ\. This proves the theorem when 0 < K <C 1.

CASE 2. /c ̂  1. I have already dealt with the case when K is a positive
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integer in a recent note [9]. Suppose then that K > 1 and non-integral. We have

I = K I ω~κ~l dω'-ΊJλ0 λy<ω

00

= K I ω~κ~l dω

= Λ:/! + Kl2,

Σ O - λ^-Xα, ( f + f )
v<ω \\ Jω I

whers

dω
rω ru

\ dg(u} \ (ω - ty~\u - t)*dB(t}
Jλn Jo

"~ IΛ, IO

= I ω~κ~l dω \ dg(u) I (ω —
Jλo Jω Jθ

It will be shown that Il9 72 < co. In [9] it was proved that Iί < oo for any
#>0. For completeness we indicate the argument. If p is the integer such that
0 < Λ: — /> ̂ 1, we integrate the inner integral in Iλ by parts p 4- 1 times to
obtain a sum of integrals of the form

f (ω - t)κ-r-1 (u - ty-*"-1 B*(t) dt
JQ

(0 ̂  r ̂  ̂ > + 1).

Since # > 1, (ω — ty~r~l(u — tj decreases in (0, u). Applying the second mean-
value theorem and the Riesz mean value theorem, we find that each integral is
OCω"-1^1). Hence

Γ u*+l\dg(u)\ Γ ω~2dω = O(ΐ) ί uk\dg(u}\ <
JAO Jw Jλ0

(13)

Consider now the inner integral in 72. In the notation of Lemma 5, we
may write this as

J = Jl + J2. (14)

Putting μ — K — 1, 0 < K — p^l, p integral, we have [μ] — p— 1. Since
(ω — tY~v(u — t)v decreases in (0, ω) for 0 ίg v ̂  [μ], the second mean-value
theorem and the Riesz mean-value theorem give

Γ£
)R"ί; wP I fa -

Jθ

\dt
(0 ̂  f ̂  «)
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=. Σ O(ωβ~vuvωκ+l) = O(uκ~lωκ+l\ (15)

Hence

I ω~κ~l dω I Jιdy^
Γ «-ι Γ

Jλ0 Λ0

Now consider J2:

J2 = cH(κ - p - 1, * - 1, />) + cH(* - £ - 1, *, ̂  - 1). (17)

Since (w — t}*~1 decreases in (0, ω\ the second mean-value theorem and the
Riesz mean-value theorem show that the first term in (17) is equal to

uκ~l f (ω-tγ-p-lBp(t) dt (0 ̂  ξ ̂  ω)
Jo

= O(w"-W+I). (18)

Take the second term in (17). Partial integration gives

H(κ - p - I, K, p - 1) = c(u - «)« β«-'(ω)

< . < • > /
+ c I (u — ty 1 dt I (ω —xy " ί B" '(x) dx

Jo Jo

= c(u - ft))" B"\β>) + cH(κ - p - 1, K - 1, />)

ω ί

+ c Γ (« - ί)"'1 dt I (ω- x)*-p-2 B"(x) dx. (19)
Jo Jo

We have already dealt with the term H(κ — p — 1, K — 1, />), (see (18)).
Consider the repeated integral in (19). Changing the order of integration, and
nothing that

- r)-1 Γ (u-ty^
*Jχ

is a decreasing function of x in (0, ω), the second mean- value theorem and the
Riesz mean-value theorem show that the repeated integral is equal to
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J

ω-1 f (u- i)*-1 dt f (ω - xj-v~l Bp(x) dx (0 ̂  ξ ̂  ω)
Λ JQ

(20)

The contribution to 72 of the terms in (18) and (20) is

CO CO 00

O(l) Γ ω-*-1 dω I uκ-lωκ+l\dg(u)\ = O(V) Γ uκ\dg(u}\ < oo. (21)
Λo .'« Λ,

Finally, we must find the contribution to 72 of the first term in (19). We have

Γ ftΓ*-1 dω I (u- ω)κBκ-\ω) dg(u)
*λ0 Jω

=• I ω~κ~ldω \ Bκ~l(ω) Gκ(ω) \ dω
Λ.

— 7 1 + 7 2 + 7 3,

where by Lemmas 3 and 4, and the fact that λw+1/λw = O(l),

0(1) Σ ΛB Γ ω-1

n=0 Jλn

λn Λ λn+[κ] + l

• \dg(u)\

λn+M+1

and

= 0(1) - λκ)
w+1 f (« -

Λn+t/c] + l

fί - λn)
w ίft

λrz

Γ » W Λ » r (M-
λ?l «^ω

00 00

0(1) Γ ωM dω f (u- ω
ΛO ^ω

*> u

| \dg(u)\ f ωM(u
Jλo Λo

(22)

(23)
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uk\dg(u)\ <oo. (24)Γ
Λo

If we combine the relevant equations (13)-(24) we see that 7 < °o in the
case K > 1 and non-integral. The theorem is thus proved for all K ̂  0.

5. If we write ln instead of \n (in line with the notation of Bosanquet [4]
and Borwein [3]), we obtain from our Theorem 1 a theorem due to these

authors on the abscissae of summability of the Dirichlet series ^anl~
s. This

result can be stated as

^ - σκ ̂  D = ϊϊm~ =^8* < oo? (25)
rz^~ lOg Ln

where σκ, σ^ are respectively the abscissae of summability (R,l,κ), \R,l,κ\ of

the Dirichlet series ̂  anln*

The proof of (25) was made to depend on the following theorem (Bosanquet
[4], Borwein [3]), which we deduce from Theorem 1.

THEOREM 2. IfΣa* is bounded (R, I, κ\ K ̂  0, then for σ > D, ]Γ anlΰσ

is summable \R,l,κ\.

PROOF. In Theorem 1 take g(u) = - -ffixί/ ^ ̂  u~κ-σ. Since σ > D ̂  0,
*• \σ)*- \K ~"~ J-J

we have

uκ\dg(u}\ <oo,

and €n = ln

σ. Also, since σ > Dy ]P |e n l = JZ ̂  < °°. The hypotheses of

Theorem 1 are satisfied, so that y^ α^Z^0^ is summable \R,l,κ\.

As it stands Theorem 2 is weaker than Borwein's result, since I suppose
/ € Λ, whereas Borwein does not. However Gκ(ω) — ω~σ in this case, so that
my argument is considerably simplified. Lemma 4 may be avoided, and it is
easy to check that the theorem is true without restriction on ln.

We may now generalize Theorem 1 to some extent if we replace the

hypothesis that Σ an is bounded (R,\ K) by ω~κAκ(ω) = O(φ(ω)). To ensure

the existence of the Stieltjes integrals we suppose that φ(ω) is a positive, non-
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decreasing function of α> which has no common points of discontinuity with
g(u) in (λ0, oo). Also we suppose that φ(λw+1) = O(φ(λΛ)), i. e. φ does not increase
too rapidly. Lemma 2 is then replaced by

LEMMA 2'. If K ̂  0, κ + q ̂ 0, Aκ(ω) - O(ωκ+Qφ(ω)\ φ(ω) > 0 and non-
decreasing, with φ(λn+1) = O(φ(λn)), iftett /or μ = 0 ,1, M> and λw < ω ̂  λΛ+1,

The proof of Theorem 1 goes through as before, if we suppose now that

00 00

*v — I (u — \v)
κdg(u\ with / uκφ(u)\ dg(u)\ < oo.

J\υ Λo

Hence we have

THEOREM 3. Suppose that φ(ω) > 0, non-decreasing, with
ΦOWi) — O(φ(λw)), and that φ has no common points of discontinuity τvith
g(u) in (λ0, oo). If ω~κ Aκ(ω) = O(φ(ω)\ K ̂  0, λ € Λ,

(i) ΣΦ(λn)|βnl <oo,

(ii) ί/iertf exists g(u\ such that

€v= [ (u- \}κdg(u) with [ uκφ(u)\dg(u}\ < oo,
Jλv JλQ

then Σ an€n is summable \R,\κ\.
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