ON ABSOLUTE RIESZ SUMMABILITY FACTORS (II)

IVOR J. MADDOX

(Received September 11, 1963)

1. In this note we give conditions for a series $\sum a_n \epsilon_n$ to be summable $|R, \lambda, \kappa|$ whenever $\sum a_n$ is bounded (R, λ, κ) , $\kappa \ge 0$. The case κ a positive integer or zero was dealt with by the author in a recent note [9]. Our object is to consider the truth of the theorem in [9] when κ is non-integral. The same conditions are required whether κ is an integer or not. As usual the proof for non-integral orders is much harder than for integral orders.

Our theorem generalizes theorems on absolute Cesàro summability factors (Chow [6], Ahmad [1]). Also the result is closely related to theorems on the abscissae of summability (R, λ, κ) , $|R, \lambda, \kappa|$ of the Dirichlet series $\sum a_n e^{-\lambda_n s}$ (Hardy and Riesz [7], Obrechkoff [10], Bosanquet [4], Austin [2], Borwein [3]).

2. Let $\lambda = \{\lambda_n\}$ be an increasing unbounded sequence of positive numbers. We write $\lambda \in \Lambda$ if λ satisfies

(a)
$$0 < a \le \frac{\Delta \lambda_n}{\Delta \lambda_{n-1}} \le A$$
, $a, A \text{ constants}$,

(b)
$$\frac{\lambda_{n+1}}{\lambda_n}$$
 decreases to 1.

In a certain sense the set of sequences Λ consists of increasing sequences which are 'reasonably regular'. By $\Delta \lambda_n$ we mean $\lambda_n - \lambda_{n+1}$.

For $\kappa > -1$ we define

$$A^{\kappa}(\omega) = \sum_{\lambda_{\nu} < \omega} (\omega - \lambda_{\nu})^{\kappa} a_{\nu} = \int_{0}^{\omega} (\omega - t)^{\kappa} dA(t),$$

where $A(t) = A^{0}(t)$. Similarly for $B^{\kappa}(\omega)$. If $\omega^{-\kappa}A^{\kappa}(\omega)$ is bounded (of bounded variation) over (λ_{0}, ∞) we say $\sum a_{n}$ is bounded (absolutely summable) (R, λ, κ) .

In the latter case it is usual to say $\sum a_n$ is summable $|R, \lambda, \kappa|$. When $\mu > 0$, $\kappa > -1$, $\kappa + \mu > 0$,

$$A^{\kappa+\mu}(\boldsymbol{\omega}) = \frac{\Gamma(\kappa+\mu+1)}{\Gamma(\kappa+1)\Gamma(\mu)} \int_{0}^{\boldsymbol{\omega}} (\boldsymbol{\omega}-t)^{\mu-1} A^{\kappa}(t) dt.$$

Hence if $b_{\nu} = \lambda_{\nu} a_{\nu}$, $\kappa \geq 0$ and $A^{\kappa}(\omega) = O(\omega^{\kappa})$, then $B^{\kappa}(\omega) = O(\omega^{\kappa+1})$.

3. Some lemmas will be needed.

LEMMA 1. If $0 < \mu \le 1$, $\kappa \ge 0$, $0 \le \xi \le \omega$, then

$$\frac{\Gamma(\kappa+\mu+1)}{\Gamma(\kappa+1)\Gamma(\mu)}\left|\int_0^{\xi} (\omega-t)^{\mu-1} A^{\kappa}(t) dt\right| \leq \max_{0 \leq t \leq \xi} \left|A^{\mu+\kappa}(t)\right|.$$

See Hardy and Riesz [7], Lemma 8. We shall refer to this lemma as 'the Riesz mean-value theorem'.

LEMMA 2. If $\kappa \geq 0$, $\kappa + q \geq 0$, $A^{\kappa}(\omega) = O(\omega^{\kappa+q})$, then, for $\mu = 0, 1, [\kappa]$ and $\lambda_n < \omega \leq \lambda_{n+1}$,

$$A^{\mu}(\omega) = O\{\omega^{\kappa} \lambda_n^{\eta} \Lambda_n^{\kappa-\mu}\}, \qquad \qquad where \ \Lambda_n = \frac{\lambda_{n+1}}{\lambda_{n+1} - \lambda_n}.$$

See Borwein [3], Lemma 2.

LEMMA 3. Let $\Lambda_n = \lambda_{n+1}/(\lambda_{n+1} - \lambda_n)$ be increasing, $\kappa \geq 0$, $q \geq 0$ and $A^{\kappa}(\omega) = O(\omega^{\kappa+q})$. Then for $\lambda_n < \omega \leq \lambda_{n+1}$, $0 \leq \mu < \kappa$,

$$A^{\mu}(\boldsymbol{\omega}) = O\{\boldsymbol{\omega}^{\mu+q} \Lambda_n^{\kappa-\mu}\}.$$

This follows from [5], Theorem 1.61, on taking $\phi(\omega) = \omega^{\kappa+q}$, and noting that $\lambda_{n+1} = O(\lambda_n)$.

LEMMA 4. Let $\kappa > 0$, $\lambda \in \Lambda$, $\epsilon_n = G_{\kappa}(\lambda_n)$, then for $\lambda_n < \omega \leq \lambda_{n+1}$,

$$G_{\kappa}(\omega) \equiv \int_{\omega}^{\infty} (u - \omega)^{\kappa} dg(u)$$

$$= O(1) \int_{\lambda_{n}}^{\lambda_{n+\lceil \kappa \rceil + 1}} dg(u) | + O(1) \sum_{\nu=0}^{\lceil \kappa \rceil} |\epsilon_{n+\nu}|$$

$$+ O(1)(\lambda_{n+1} - \lambda_{n})^{\lceil \kappa \rceil + 1} \int_{\lambda_{n+\lceil \kappa \rceil + 1}}^{\infty} (u - \lambda_{n})^{\kappa - \lceil \kappa \rceil - 1} |dg(u)|$$
(1)

where we suppose that

$$\int_{1}^{\infty} u^{\kappa} |dg(u)| < \infty.$$

If κ is an integer, the final integral in (1) may be omitted.

This lemma follows from the proof of Lemma 9 (Maddox [8]). For completeness we outline the method. It is possible to determine functions $c_{\nu}(\omega) = O(1)$ such that

$$(u - \omega)^{\kappa} = \sum_{n=0}^{[\kappa]} c_{\nu}(\omega) (u - \lambda_{n+\nu})^{\kappa} + O\{(\lambda_{n+1} - \lambda_n)^{[\kappa]+1} (u - \lambda_n)^{\kappa-[\kappa]-1}\}$$

uniformly for $u \ge \lambda_{n+[\kappa]+1}$. This is equation (7) Maddox [8].

We now have

$$\begin{split} G_{\mathbf{k}}(\omega) &= \int_{\omega}^{\lambda_{n+[\kappa]+1}} (u-\omega)^{\mathbf{k}} dg(u) + \sum_{\nu=0}^{[\kappa]} c_{\nu}(\omega) \bigg\{ \mathcal{E}_{n+\nu} - \int_{\lambda_{n+\nu}}^{\lambda_{n+[\kappa]+1}} (u-\lambda_{n+\nu})^{\mathbf{k}} dg(u) \bigg\} \\ &+ O(1) (\lambda_{n+1} - \lambda_{n})^{[\kappa]+1} \int_{\lambda_{n+[\kappa]+1}}^{\infty} (u-\lambda_{n})^{\mathbf{k}-[\kappa]-1} |dg(u)| \,. \end{split}$$

The result follows.

LEMMA 5. If $\kappa > 1$ and non-integral, $\mu = \kappa - 1$,

$$J=\int_0^\omega (\omega-t)^{\kappa-1}(u-t)^\kappa dB(t),$$
 $H(lpha,eta,\gamma)\equiv H(lpha,eta,\gamma;\omega,u)=\int_0^\omega (\omega-t)^lpha(u-t)^eta B^\gamma(t)dt,$

then

$$egin{align} J &= \sum_{
u=0}^{[\mu]} cH(\mu-
u,\ \kappa-
p-1+
u,\ p) \ &+ \sum_{
u=0}^{q} cH(\mu-[\mu]-1,\ \kappa-p+
u,\ p-
u+[\mu]) \equiv J_1+J_2, \end{split}$$

where p is the integer such that $0 < \kappa - p \le 1$, and c denotes a non-zero constant, possibly different at each occurrence.

This lemma is established by suitable partial integrations; see Maddox [8], equation (38).

4. We now prove

Theorem 1. If $\kappa \geq 0$, $\lambda \in \Lambda$, $A^{\kappa}(\omega) = O(\omega^{\kappa})$ and

- (i) $\sum |\epsilon_n| < \infty$,
- (ii) there exists a function g(u), defined for $u \ge \lambda_0$, such that for $\nu = 0, 1$,

$$\epsilon_{v} = \int_{\lambda_{v}}^{\infty} (u - \lambda_{v})^{\kappa} dg(u)$$
 with $\int_{\lambda_{0}}^{\infty} u^{\kappa} |dg(u)| < \infty$,

then $\sum a_n \epsilon_n$ is summable $|R, \lambda, \kappa|$.

PROOF. When $\kappa = 0$ the result follows trivially from (i). Now consider

two cases.

CASE 1. $0 < \kappa < 1$. We have

$$I = \kappa \int_{\lambda_0}^{\infty} \omega^{-\kappa - 1} d\omega \left| \sum_{\lambda_{\nu} < \omega} (\omega - \lambda_{\nu})^{\kappa - 1} \lambda_{\nu} a_{\nu} \mathcal{E}_{\nu} \right|$$

$$= \kappa \int_{\lambda_0}^{\infty} \omega^{-\kappa - 1} d\omega \left| \int_{0}^{\omega} (\omega - t)^{\kappa - 1} G_{\kappa}(t) dB(t) \right|. \tag{2}$$

where
$$G_{\kappa}(t) = \int_t^{\infty} (u-t)^{\kappa} dg(u), \ B(t) = \sum_{\lambda_{\nu} < t} \lambda_{\nu} a_{\nu}.$$

We note that

$$G'_{\kappa}(t) = -\kappa \int_{t}^{\infty} (u-t)^{\kappa-1} dg(u) \text{ p. p. in } (\lambda_{0}, \infty).$$
 (3)

Integrating the inner integral in (2) by parts, we have for $\lambda_n < \omega \le \lambda_{n+1}$,

$$(\omega - \lambda_n)^{\kappa-1} \epsilon_n B(\lambda_n) + c \int_0^{\lambda_n} (\omega - t)^{\kappa-2} G_{\kappa}(t) B(t) dt + c \int_0^{\lambda_n} (\omega - t)^{\kappa-1} G_{\kappa}'(t) B(t) dt.$$
 (4)

By Lemma 2, since $B^{\kappa}(\omega) = O(\omega^{\kappa+1})$, we have $B(\lambda_n) = O(\lambda_n \Lambda_n^{\kappa})$.

Thus

$$\int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1}(\omega - \lambda_{n})^{\kappa-1} |\epsilon_{n}B(\lambda_{n})| d\omega$$

$$= \sum_{n=0}^{\infty} \int_{\lambda_{n}}^{\lambda_{n+1}} (\omega - \lambda_{n})^{\kappa-1} |\epsilon_{n}| O(\lambda_{n}\Lambda_{n}^{\kappa}) d\omega$$

$$= O(1) \sum_{n=0}^{\infty} |\epsilon_{n}| \lambda_{n}\Lambda_{n}^{\kappa} \int_{\lambda_{n}}^{\lambda_{n+1}} (\omega - \lambda_{n})^{\kappa-1} d\omega$$

$$= O(1) \sum_{n=0}^{\infty} |\epsilon_{n}| < \infty. \tag{5}$$

Consider the contribution of the second term in (4) to I:

$$\int_{\lambda_0}^{\infty} \omega^{-\kappa-1} d\omega \left| \int_0^{\lambda_n} (\omega - t)^{\kappa-2} G_{\kappa}(t) B(t) dt \right|$$

$$\leq \sum_{n=1}^{\infty} \int_{\lambda_n}^{\lambda_{n+1}} d\omega \sum_{\nu=0}^{n-1} \int_{\lambda_{\nu}}^{\lambda_{\nu+1}} (\omega - t)^{\kappa-2} |G_{\kappa}(t) B(t)| dt$$

$$= \sum_{\nu=0}^{\infty} \sum_{n=\nu+1}^{\infty} \int_{\lambda_n}^{\lambda_{n+1}} d\omega \int_{\lambda_{\nu}}^{\lambda_{\nu+1}} (\omega - t)^{\kappa-2} |G_{\kappa}(t) B(t)| dt$$

$$\begin{split} &= \sum_{\nu=0}^{\infty} \int_{\lambda_{\nu+1}}^{\infty} d\omega \int_{\lambda_{\nu}}^{\lambda_{\nu+1}} d\omega \int_{\lambda_{\nu}}^{\lambda_{\nu+1}} (\omega - t)^{\kappa-2} |G_{\kappa}(t)B(t)| dt \\ &\leq \sum_{\nu=0}^{\infty} \lambda_{\nu+1}^{-\kappa-1} \int_{\lambda_{\nu}}^{\lambda_{\nu+1}} |G_{\kappa}(t)| O(\lambda_{\nu} \Lambda_{\nu}^{\kappa}) (\lambda_{\kappa+1} - t)^{\kappa-1} dt, \end{split}$$

by Lemma 2.

Now by Lemma 4, since $[\kappa] = 0$, we have for $\lambda_{\nu} < t < \lambda_{\nu+1}$,

$$G_{\mathbf{k}}(t) = O(1) \int_{\lambda_{\nu}}^{\lambda_{\nu+1}} |dg(u)| + O(|\epsilon_{\nu}|) + O(1)(\lambda_{\nu+1} - \lambda_{\nu}) \int_{\lambda_{\nu+1}}^{\infty} (u - \lambda_{\nu})^{\kappa-1} |dg(u)|.$$

Hence

$$O(1) \sum_{\nu=0}^{\infty} \lambda_{\nu+1}^{-\kappa-1} \lambda_{\nu} \Lambda_{\nu}^{\kappa} \left(\int_{\lambda_{\nu}}^{\lambda_{\nu+1}} |dg(u)| + |\epsilon_{\nu}| \right) \int_{\lambda_{\nu}}^{\lambda_{\nu+1}} (\lambda_{\nu+1} - t)^{\kappa-1} dt$$

$$= O(1) \sum_{\nu=0}^{\infty} \lambda_{\nu+1}^{-1} \lambda_{\nu} \left(\int_{\lambda_{\nu}}^{\lambda_{\nu}+1} |dg(u)| + |\epsilon_{\nu}| \right)$$

$$= O(1) \left(\int_{\lambda_{0}}^{\infty} u^{\kappa} |dg(u)| + \sum_{\nu=0}^{\infty} |\epsilon_{\nu}| \right) < \infty.$$
(6)

Also

$$O(1) \sum_{\nu=0}^{\infty} \lambda_{\nu+1}^{-\kappa} \lambda_{\nu} \Lambda_{\nu}^{\kappa} (\lambda_{\nu+1} - \lambda_{\nu}) \int_{\lambda_{\nu+1}}^{\infty} (u - \lambda_{\nu})^{\kappa-1} |dg(u)| \int_{\lambda_{\nu}}^{\lambda_{\nu+1}} (\lambda_{\nu+1} - t)^{\kappa-1} dt$$

$$= O(1) \sum_{\nu=0}^{\infty} (\lambda_{\nu+1} - \lambda_{\nu}) \int_{\lambda_{\nu+1}}^{\infty} (u - \lambda_{\nu})^{\kappa-1} |dg(u)|$$

$$= O(1) \sum_{\nu=0}^{\infty} \int_{\lambda_{\nu}}^{\lambda_{\nu+1}} dt \int_{t}^{\infty} (u - t)^{\kappa-1} |dg(u)|$$

$$= O(1) \int_{\lambda_{0}}^{\infty} dt \int_{t}^{\infty} (u - t)^{\kappa-1} |dg(u)|$$

$$= O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa} |dg(u)| < \infty.$$
(7)

Finally, consider the contribution of the third term in (4) to I. By (3) we have

$$c \int_0^{\lambda n} (\omega - t)^{\kappa - 1} B(t) dt \int_t^{\infty} (u - t)^{\kappa - 1} dg(u)$$
$$= c \int_0^{\lambda n} (\omega - t)^{\kappa - 1} B(t) dt \left(\int_t^{\omega} + \int_{\omega}^{\infty} \right)$$

$$= c \int_0^{\omega} dg(u) \int_0^m (\omega - t)^{\kappa - 1} (u - t)^{\kappa - 1} B(t) dt$$
$$+ c \int_0^{\infty} dg(u) \int_0^{\lambda_n} (\omega - t)^{\kappa - 1} (u - t)^{\kappa - 1} B(t) dt. \tag{8}$$

where $m = \min(\lambda_n, u)$. Now $(\omega - t)^{\kappa-1}$ increases in (0, m).

Hence, by the second mean-value theorem and the Riesz mean-value theorem,

$$\int_{0}^{m} (\omega - t)^{\kappa - 1} (u - t)^{\kappa - 1} B(t) dt = (\omega - m)^{\kappa - 1} \int_{\xi}^{m} (u - t)^{\kappa - 1} B(t) dt \qquad (0 \le \xi \le m)$$

$$= O((\omega - u)^{\kappa - 1} u^{\kappa + 1}). \qquad (9)$$

Also $(u-t)^{\kappa-1}$ increases in $(0,\lambda_n)$, so that

$$\int_0^{\lambda_n} (\omega - t)^{\kappa - 1} (u - t)^{\kappa - 1} B(t) dt = (u - \lambda_n)^{\kappa - 1} \int_{\xi}^{\lambda_n} (\omega - t)^{\kappa - 1} B(t) dt \qquad (0 \le \xi \le \lambda_n)$$

$$= O((u - \omega)^{\kappa - 1} \omega^{\kappa + 1}). \qquad (10)$$

By (8) and (9) it follows that

$$O(1) \int_{\lambda_0}^{\infty} \omega^{-\kappa - 1} \ d\omega \int_0^{\omega} (\omega - u)^{\kappa - 1} u^{\kappa + 1} \ |dg(u)|$$

$$= O(1) \int_{\lambda_0}^{\infty} u^{\kappa + 1} \ |dg(u)| \int_u^{\infty} \omega^{-\kappa - 1} (\omega - u)^{\kappa - 1} \ d\omega$$

$$= O(1) \int_{\lambda_0}^{\infty} u^{\kappa} |dg(u)| < \infty. \tag{11}$$

Also (8) and (10) yield

$$O(1) \int_{\lambda_0}^{\infty} \omega^{-\kappa - 1} d\omega \int_{\omega}^{\infty} (u - \omega)^{\kappa - 1} \omega^{\kappa + 1} |dg(u)|$$

$$= O(1) \int_{\lambda_0}^{\infty} |dg(u)| \int_{\lambda_0}^{u} (u - \omega)^{\kappa - 1} d\omega$$

$$= O(1) \int_{\lambda_0}^{\infty} u^{\kappa} |dg(u)| < \infty.$$
(12)

If we now combine the relevant equations (2)—(12), we see that $I < \infty$, i.e. $\sum a_n \epsilon_n$ is summable $|R, \lambda, \kappa|$. This proves the theorem when $0 < \kappa < 1$.

CASE 2. $\kappa \ge 1$. I have already dealt with the case when κ is a positive

integer in a recent note [9]. Suppose then that $\kappa > 1$ and non-integral. We have

$$\begin{split} I &= \kappa \int_{\lambda_0}^{\infty} \omega^{-\kappa - 1} \ d\omega \left| \sum_{\lambda_{\nu} < \omega} (\omega - \lambda_{\nu})^{\kappa - 1} \lambda_{\nu} a_{\nu} \epsilon_{\nu} \right| \\ &= \kappa \int_{\lambda_0}^{\infty} \omega^{-\kappa - 1} \ d\omega \left| \sum_{\lambda_{\nu} < \omega} (\omega - \lambda_{\nu})^{\kappa - 1} \lambda_{\nu} a_{\nu} \left(\int_{\lambda_{\nu}}^{\omega} + \int_{\omega}^{\infty} \right) \right| \\ &\leq \kappa I_1 + \kappa I_2, \end{split}$$

where

$$\begin{split} I_1 &= \int_{\lambda_0}^{\infty} \left. \omega^{-\kappa-1} \, d\omega \, \right| \int_{\lambda_0}^{\omega} \, dg(u) \int_0^u \left. (\omega - t)^{\kappa-1} (u - t)^{\kappa} dB(t) \right|, \\ I_2 &= \int_{\lambda_0}^{\infty} \left. \omega^{-\kappa-1} \, d\omega \, \right| \int_{\omega}^{\infty} \, dg(u) \int_0^{\omega} \left. (\omega - t)^{\kappa-1} (u - t)^{\kappa} \, dB(t) \right|. \end{split}$$

It will be shown that I_1 , $I_2 < \infty$. In [9] it was proved that $I_1 < \infty$ for any $\kappa > 0$. For completeness we indicate the argument. If p is the integer such that $0 < \kappa - p \le 1$, we integrate the inner integral in I_1 by parts p+1 times to obtain a sum of integrals of the form

$$c \int_0^u (\omega - t)^{\kappa - r - 1} (u - t)^{\kappa - p + r - 1} B^p(t) dt \qquad (0 \le r \le p + 1).$$

Since $\kappa > 1$, $(\omega - t)^{\kappa - r - 1}(u - t)^r$ decreases in (0, u). Applying the second mean-value theorem and the Riesz mean value theorem, we find that each integral is $O(\omega^{\kappa - 1} u^{\kappa + 1})$. Hence

$$I_1 = O(1) \int_{\lambda_n}^{\infty} u^{\kappa+1} |dg(u)| \int_u^{\infty} \omega^{-2} d\omega = O(1) \int_{\lambda_n}^{\infty} u^k |dg(u)| < \infty.$$
 (13)

Consider now the inner integral in I_2 . In the notation of Lemma 5, we may write this as

$$J = J_1 + J_2. \tag{14}$$

Putting $\mu = \kappa - 1$, $0 < \kappa - p \le 1$, p integral, we have $[\mu] = p - 1$. Since $(\omega - t)^{\mu - \nu}(u - t)^{\nu}$ decreases in $(0, \omega)$ for $0 \le \nu \le [\mu]$, the second mean-value theorem and the Riesz mean-value theorem give

$$J_1 = \sum_{n=0}^{\lceil \mu \rceil} c \omega^{\mu-\nu} \ u^{\nu} \int_0^{\xi} (u-t)^{\kappa-\nu-1} B^{\nu}(t) dt \qquad (0 \le \xi \le \omega)$$

$$= \sum_{\nu=0}^{[\mu]} O(\omega^{\mu-\nu} u^{\nu} \omega^{\kappa+1}) = O(u^{\kappa-1} \omega^{\kappa+1}).$$
 (15)

Hence

$$\int_{\lambda_0}^{\infty} \omega^{-\kappa - 1} d\omega \left| \int_{\omega}^{\infty} J_1 dg(u) \right|$$

$$= O(1) \int_{\lambda_0}^{\infty} u^{\kappa - 1} |dg(u)| \int_{\lambda_0}^{u} d\omega = O(1) \int_{\lambda_0}^{\infty} u^k |dg(u)| < \infty.$$
 (16)

Now consider J_2 :

$$J_2 = cH(\kappa - p - 1, \kappa - 1, p) + cH(\kappa - p - 1, \kappa, p - 1). \tag{17}$$

Since $(u-t)^{\kappa-1}$ decreases in $(0, \omega)$, the second mean-value theorem and the Riesz mean-value theorem show that the first term in (17) is equal to

$$u^{\kappa-1} \int_0^{\xi} (\omega - t)^{\kappa - p - 1} B^p(t) dt \qquad (0 \le \xi \le \omega)$$

$$= O(u^{\kappa - 1} \omega^{\kappa + 1}). \qquad (18)$$

Take the second term in (17). Partial integration gives

$$H(\kappa - p - 1, \kappa, p - 1) = c(u - \omega)^{\kappa} B^{\kappa - 1}(\omega)$$

$$+ c \int_{0}^{\omega} (u - t)^{\kappa - 1} dt \int_{0}^{t} (\omega - x)^{\kappa - p - 1} B^{p - 1}(x) dx$$

$$= c(u - \omega)^{\kappa} B^{\kappa - 1}(\omega) + cH(\kappa - p - 1, \kappa - 1, p)$$

$$+ c \int_{0}^{\omega} (u - t)^{\kappa - 1} dt \int_{0}^{t} (\omega - x)^{\kappa - p - 2} B^{p}(x) dx.$$
(19)

We have already dealt with the term $H(\kappa - p - 1, \kappa - 1, p)$, (see (18)). Consider the repeated integral in (19). Changing the order of integration, and nothing that

$$(\omega-x)^{-1}\int_{x}^{\omega}(u-t)^{\kappa-1}dt$$

is a decreasing function of x in $(0, \omega)$, the second mean-value theorem and the Riesz mean-value theorem show that the repeated integral is equal to

$$\omega^{-1} \int_0^{\omega} (u - t)^{\kappa - 1} dt \int_0^{\xi} (\omega - x)^{\kappa - p - 1} B^p(x) dx \ (0 \le \xi \le \omega)$$

$$= \omega^{-1} O(u^{\kappa - 1} \omega^{\kappa + 2}) = O(u^{\kappa - 1} \omega^{\kappa + 1}). \tag{20}$$

The contribution to I_2 of the terms in (18) and (20) is

$$O(1)\int_{\lambda_0}^{\infty} \omega^{-\kappa-1} d\omega \int_{\omega}^{\infty} u^{\kappa-1} \omega^{\kappa+1} |dg(u)| = O(1)\int_{\lambda_0}^{\infty} u^{\kappa} |dg(u)| < \infty.$$
 (21)

Finally, we must find the contribution to I_2 of the first term in (19). We have

I. I. MADDOX

$$\int_{\lambda_0}^{\infty} \omega^{-\kappa-1} d\omega \left| \int_{\omega}^{\infty} (u - \omega)^{\kappa} B^{\kappa-1}(\omega) dg(u) \right|$$

$$= \int_{\lambda_0}^{\infty} \omega^{-\kappa-1} d\omega |B^{\kappa-1}(\omega)| G_{\kappa}(\omega)| d\omega$$

$$= T_1 + T_2 + T_3,$$

where by Lemmas 3 and 4, and the fact that $\lambda_{n+1}/\lambda_n = O(1)$,

$$T_{1} = O(1) \sum_{n=0}^{\infty} \Lambda_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} d\omega \int_{\lambda_{n}}^{\lambda_{n+\lceil \kappa \rceil + 1}} dg(u) |$$

$$= O(1) \sum_{n=0}^{\infty} \frac{\lambda_{n+1}}{\lambda_{n}} \int_{\lambda_{n}}^{\lambda_{n+\lceil \kappa \rceil + 1}} dg(u) | < \infty,$$
(22)

$$T_2 = O(1) \sum_{n=0}^{\infty} \frac{\lambda_{n+1}}{\lambda_n} \sum_{\nu=0}^{\lceil \kappa \rceil} |\epsilon_{n+\nu}| < \infty, \tag{23}$$

and

$$T_{3} = O(1) \sum_{n=0}^{\infty} \frac{\lambda_{n+1}}{\lambda_{n}} (\lambda_{n+1} - \lambda_{n})^{\lfloor \kappa \rfloor + 1} \int_{\lambda_{n} + \lfloor \kappa \rfloor + 1}^{\infty} (u - \lambda_{n})^{\kappa - \lfloor \kappa \rfloor - 1} |dg(u)|$$

$$= O(1) \sum_{n=0}^{\infty} \int_{\lambda_{n}}^{\lambda_{n+1}} (\omega - \lambda_{n})^{\lfloor \kappa \rfloor} d\omega \int_{\lambda_{n} + \lfloor \kappa \rfloor + 1}^{\infty} (u - \lambda_{n})^{\kappa - \lfloor \kappa \rfloor - 1} |dg(u)|$$

$$= O(1) \sum_{n=0}^{\infty} \int_{\lambda_{n}}^{\lambda_{n+1}} d\omega \int_{\omega}^{\infty} (u - \omega)^{\kappa - \lfloor \kappa \rfloor - 1} |dg(u)|$$

$$= O(1) \int_{\lambda_{0}}^{\infty} \omega^{\lfloor \kappa \rfloor} d\omega \int_{\omega}^{\infty} (u - \omega)^{\kappa - \lfloor \kappa \rfloor - 1} |dg(u)|$$

$$= O(1) \int_{\lambda_{0}}^{\infty} |dg(u)| \int_{\lambda_{0}}^{u} \omega^{\lfloor \kappa \rfloor} (u - \omega)^{\kappa - \lfloor \kappa \rfloor - 1} d\omega$$

$$= O(1) \int_{0}^{\infty} u^k |dg(u)| < \infty. \tag{24}$$

If we combine the relevant equations (13)-(24) we see that $I < \infty$ in the case $\kappa > 1$ and non-integral. The theorem is thus proved for all $\kappa \ge 0$.

5. If we write l_n instead of λ_n (in line with the notation of Bosanquet [4] and Borwein [3]), we obtain from our Theorem 1 a theorem due to these authors on the abscissae of summability of the Dirichlet series $\sum a_n l_n^{-s}$. This result can be stated as

$$\overline{\sigma_{\kappa}} - \sigma_{\kappa} \leq D = \lim_{n \to \infty} \frac{\log n}{\log l_n} < \infty, \tag{25}$$

where σ_{κ} , $\overline{\sigma_{\kappa}}$ are respectively the abscissae of summability (R, l, κ) , $|R, l, \kappa|$ of the Dirichlet series $\sum a_n l_n^{-s}$.

The proof of (25) was made to depend on the following theorem (Bosanquet [4], Borwein [3]), which we deduce from Theorem 1.

THEOREM 2. If $\sum a_n$ is bounded (R, l, κ) , $\kappa \ge 0$, then for $\sigma > D$, $\sum a_n l_n^{-\sigma}$ is summable $|R, l, \kappa|$.

PROOF. In Theorem 1 take $g(u)=-\frac{\Gamma(\kappa+\sigma+1)}{\Gamma(\sigma)\Gamma(\kappa+1)}u^{-\kappa-\sigma}$. Since $\sigma>D\geqq 0$, we have

$$\int_{l_{\alpha}}^{\infty} u^{\kappa} |dg(u)| < \infty,$$

and $\epsilon_n=l_n^{-\sigma}$. Also, since $\sigma>D, \sum |\epsilon_n|=\sum l_n^{-\sigma}<\infty$. The hypotheses of

Theorem 1 are satisfied, so that $\sum a_n l_n^{-\sigma}$ is summable $|R, l, \kappa|$.

As it stands Theorem 2 is weaker than Borwein's result, since I suppose $l \in \Lambda$, whereas Borwein does not. However $G_{\kappa}(\omega) = \omega^{-\sigma}$ in this case, so that my argument is considerably simplified. Lemma 4 may be avoided, and it is easy to check that the theorem is true without restriction on l_n .

We may now generalize Theorem 1 to some extent if we replace the hypothesis that $\sum a_n$ is bounded (R, λ, κ) by $\omega^{-\kappa} A^{\kappa}(\omega) = O(\phi(\omega))$. To ensure the existence of the Stieltjes integrals we suppose that $\phi(\omega)$ is a positive, non-

70 I. J. MADDOX

decreasing function of ω which has no common points of discontinuity with g(u) in (λ_0, ∞) . Also we suppose that $\phi(\lambda_{n+1}) = O(\phi(\lambda_n))$, i. e. ϕ does not increase too rapidly. Lemma 2 is then replaced by

LEMMA 2'. If $\kappa \geq 0$, $\kappa + q \geq 0$, $A^{\kappa}(\omega) = O(\omega^{\kappa+q}\phi(\omega))$, $\phi(\omega) > 0$ and non-decreasing, with $\phi(\lambda_{n+1}) = O(\phi(\lambda_n))$, then for $\mu = 0, 1, ...[\kappa]$, and $\lambda_n < \omega \leq \lambda_{n+1}$, $A^{\mu}(\omega) = O\{\omega^{\mu}\lambda_n^q\phi(\lambda_n) \ \Lambda_n^{\kappa-\mu}\}$.

The proof of Theorem 1 goes through as before, if we suppose now that

$$\sum \phi(\lambda_n)|\epsilon_n| < \infty$$
,

$$\epsilon_{v} = \int_{\lambda_{v}}^{\infty} (u - \lambda_{v})^{\kappa} dg(u), \ \ ext{with} \int_{\lambda_{0}}^{\infty} u^{\kappa} \phi(u) | \ dg(u) | < \infty.$$

Hence we have

THEOREM 3. Suppose that $\phi(\omega) > 0$, non-decreasing, with $\phi(\lambda_{n+1}) = O(\phi(\lambda_n))$, and that ϕ has no common points of discontinuity with g(u) in (λ_0, ∞) . If $\omega^{-\kappa} A^{\kappa}(\omega) = O(\phi(\omega))$, $\kappa \geq 0$, $\lambda \in \Lambda$, and

(i)
$$\sum \phi(\lambda_n)|\epsilon_n| < \infty,$$

(ii) there exists g(u), such that

$$\epsilon_v = \int_{\lambda_v}^{\infty} (u - \lambda_v)^{\kappa} dg(u) \ \ with \int_{\lambda_0}^{\infty} u^{\kappa} \phi(u) |dg(u)| < \infty$$
 ,

then $\sum a_n \epsilon_n$ is summable $|R, \lambda, \kappa|$.

REFERENCES

- [1] Z. U. AHMAD, On the absolute Cesàro summability factors of infinite series, Math. Zeit., 76(1961), 295-310
- [2] M. C. Austin, On the absolute summability of a Dirichlet series, Journ. London Math. Soc., 27 (1952), 189-198.
- [3] D. BORWEIN, On the abscissae of summability of a Dirichlet series, Journ. London Math. Soc., 30(1955), 68-71.
- [4] L.S. BOSANQUET, On convergence and summability factors in a Dirichlet series, Journ. London Math. Soc., 22(1947), 190-195.
- [5] K. CHANDRASEKHARAN AND S. MINAKSHISUNDARAM, Typical Means, Tata Institute Monographs, Oxford University Press, 1952.
- [6] H. C. CHOW, Note on convergence and summability factors, Journ. London Math. Soc., 29(1954), 459-476.
- [7] C. H. HARDY AND M. RIESZ, The General Theory of Dirichlet's series, Cambridge Tract No. 18, 1915.
- [8] I.J. MADDOX, Convergence and summability factors for Riesz means, Proc. London

Math. Soc., (3)12(1962), 345-366.

- [9] I.J. MADDOX, On absolute Riesz summability factors, Tôhoku Math. Journ., 15 (1963), 116-120.
- [10] N. OBRECHKOFF, Uber die Absolute Summierung der Dirichletschen Reihen, Math. Zeit., 30(1929), 375-386.

DEPARTMENT OF MATHEMATICS, The UNIVERSITY, BIRMINGHAM, ENGLAND.