ON ABSOLUTE RIESZ SUMMABILITY FACTORS (II)
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1. In this note we give conditions for a series ) a,e, to be summable

R, N, k| whenever > a, is bounded (R,M\, k), «=0. The case « a positive

integer or zero was dealt with by the author in a recent note [9]. Our object
is to consider the truth of the theorem in [9] when « is non-integral. The
same conditions are required whether « is an integer or not. As usual the
proof for non-integral orders is much harder than for integral orders.

Our theorem generalizes theorems on absolute Cesaro summability factors
(Chow [6], Ahmad [1]). Also the result is closely related to theorems on the

abscissae of summability (R, M, ), |R,N, x| of the Dirichlet series > a,e™*
(Hardy and Riesz [7], Obrechkoff [10], Bosanquet [4], Austin [2], Borwein [3]).

2. Let A={\,} be an increasing unbounded sequence of positive numbers.
We write A € A if M satisfies

AN

@) 0<a= AT" =A, a, A constants,
n—1
k'7'1"'1
() - decreases to 1.

In a certain sense the set of sequences A consists of increasing sequences
which are ‘reasonably regular’. By AN, we mean A, — Agir.
For k> — 1 we define

2@ = 3 @=nya= " (0 — 1y dA),

A, <w

where A(t) = A'(¢). Similarly for BY(w). If ™A% (e) is bounded (of bounded

variation) over (\,,o0) we say > a, is bounded (absolutely summable) (R, ], «).

In the latter case it is usual to say > a, is summable |R,A,«|. When u >0,
k>—1, 6+ p>0,

T(e+p+1)

(@) = [T fo (0 — )1 A%2) dt.
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Hence if b, = Ma, £ =0 and A%(e) = O(e"), then B(o) = O(o**").
3. Some lemmas will be needed.
LEMMA 1. If O<u=1, k=0, 0=¢=< o, then

Ple+p+1)
De+1I'(w)

£
f (0 — £ A%)dt [ = max
0 0=t=

Ar+(z) ‘ .

See Hardy and Riesz [7], Lemma 8. We shall refer to this lemma as ‘the
Riesz mean-value theorem’.

LEMMA 2. If k=0, « + ¢ =0, A w) = O (0“9, then, for p =0, 1, [«] and

Ay <@ =Ny

7\'n-l‘-l

Ar(@) = Of{oNALH], where A, = .
7\'n+1 —An

See Borwein [3], Lemma 2.

LEMMA 3. Let A, = 7\”+1/(7\,n+1 —N\n) be increasingx =0,q =0 and A4 w)
= O(0**9). Then for My <o =Npyp, 0=p <k,

At@) = Ofo** A5},

This follows from [5], Theorem 1.61, on taking ¢(w) = ©*'% and noting
that N,.; = O(A,).

LEMMA 4. Let € >0, M € A, &, = G.(\,), then for A, < o = Nyyy,

Glo)= [ " — wydgu)

™)

An+ (k] +1 [k]

=0(1) f w|dg@)] +O0Q) Y |ens]

v=0

£ O = M) [ (@ = M) dg ()| )

An+[k]+1

where we suppose that

f w|dg(u)| < oo.
A

If « is an integer, the final integral in (1) may be omitted.

This lemma follows from the proof of Lemma 9 (Maddox [8]).
For completeness we outline the method. It is possible to determine functions

c(w) = O(1) such that
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3]

(u - m)x = Z, cu((‘)) (u - 7\'n+u)’c + O {(7\;”4_1 — 7\,n>['°]+1(u—7\,n)"_["]_1}

v=0
uniformly for # = Nps(q+1- This is equation (7) Maddox [8].
We now have

An+[k]+1 [x] An+[k]+1
Glw) = f(u — w)dg(u) + > c,,(w){é‘n“ — f(u——)nnﬂ)"dg(u)}

v=0 An+v

O Omr — M) [ (=D dg(ad)

An+[k]+1
The result follows.
LEMMA 5. If £ > 1 and non-integral, p =« — 1,

J = f i (0 — t)(u — t)dB(t),

H@, 8,7) = H@a,8,% 0,u) = [ (o — 1 — P B},

then
]

J=2"cHu—v,e—p—1+v,p)

v=0

+> cHu—[ul—1, e—p+v, p—v+[p)=J,+J,,

v=[pl

where p is the integer such that 0 <k — p=1, and c denotes a non-zero
constant, possibly different at each occurrence.

This lemma is established by suitable partial integrations; see Maddox [8],
equation (38).

4. We now prove

THEOREM 1. If ¢« =0, M € A, A¥w) = O(e*) and
1) 2 el <o,

(ii) there exists a function g(u), defined for u =\, such that for v =0,1,

¢ = f (u — N dg(w) with f w| dg(w)| < oo,
Av Ao
then ) _ aqe, is summable |R,\, k|.

PROOF. When & =0 the result follows trivially from (i). Now consider
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two cases.
CASE 1. 0 <« < 1. We have

oo

I=« f o de
Ao

oo

= lcf o~ do
Ao

where G,(t) = f i (w — £y dg(w), B{t) =>_ Na.

A<t

Z (&) - )"vy—l)\"’avgu

Ay<w

[[@-6maBw l @

We note that

G(t) =— /ij (@ — t)"'dg(u) p.p. in (A, o). 3)

Integrating the inner integral in (2) by parts, we have for A, < o =N\, .1,
A

(0 — M) e, B(\,) + € f n(a)—-t)"_2 G(t)B(t) dt + ¢ f

A

" (0 — ) G()B(t)dt. (4)

By Lemma 2, since B (w) = O(0**"), we have B(\,)=O0(N\,A%).
Thus

oo

f 0™ (& — N, | &.B(N) | doo
Ao

5

n=o YA

An+1

o @ — X)) e |ONAAR) dew

An+1

=0 S len M f o~ (o — N do
n=0 An

— O Je] < oo, 5)

Consider the contribution of the second term in (4) to I:

-
f 0o ! do
p

f ot GUOB() di

An+ n—-1 Av+1

=5 [0 do3 f (0—2)| G()B(®)|dt

n=1 JAn v=0 YAV

An+1 Av+1

-5 [0t do (0 — iy1G0B) dr

=0 n=p+1 VAR

<
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™ oo Av+1
=3 [0 do f (o — )| G(OB@®)|dt
vr=0 JAv+1 Av

Av+1

=5 7 [ G O0uA e — £,
v=0 v

by Lemma 2.
Now by Lemma 4, since [«] = 0, we have for A, <t <A,y

Aw+1

G() = 0Q1) fl w|dgw)| + O(lel) + OW)(Nr — M) fA Z?I—M)““ldg(u)l-

Hence
oo Av+1 Av+1
O aszrtna ( [aeldg @0l + 1o ) [ = -t
v=0 Av Av
oo Av+1
=O0Q) > M (fu"|dg(u) | + el )
v=0 Ay
= 0(1) (i w|dg(u)| + 2 Ieul)< oo, (6)
0 v=0
Also
oo oo Av+1
O() 2° Mt MAS Nt — M) (w — M) dg(w)| f N —t)dt
v=0 Av+1 Av

= O X s =) [ = M=l dgw)

v=0 Av+1

Av+i

—0WY [de [ = trldgte)
=0 [ dr [ (= vrldgtw)

= 0) [ wldg() < == @)

Finally, consider the contribution of the third term in (4) to I By (3) we
have

o[ - Boa | - £ dgtu)

= e[ - B (f,. R f:)
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NGl m

= J dg(u) f (@ — £)(u — £y B(t)dt
[} 0

tc f " dgw) f (0 — £ — £ BU)de. ®)

where m = min(\,, #). Now (0 — )" increases in (0, m).
Hence, by the second mean-value theorem and the Riesz mean-value
theorem,

m

f (0 — Y (u — Y ' Ble)dt = (@ — m) f " — B 0 =¢=m)
0 £
= O((0 — wf'u™), 9)

Also (u — t)*™' increases in (0, \,), so that

A

f n(w — )7 u — )T Bt)dt = (u — M) f (o — t)t B(t)dt O=E=\)
0 &

= O((u — o) ') (10)
By (8) and (9) it follows that

O [ ot do [ (@ -y |dgta)
=0 [ wt |y [ oo — wr do
— o) [ wldgt)] <. an
Also (8) and (10) yield
0 [ o da " (@ — @)t dg(w)|
= o [ ldg )l | " (- w)do
= o | w|dg(a)| < oo, (12)

If we now combine the relevant equations (2)—(12), we see that I < oo, i.e.

> a,e, is summable |R,\,«k|. This proves the theorem when 0 <« <1.

CASE 2. «k=1. I have already dealt with the case when « is a positive
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integer in a recent note [9]. Suppose then that « > 1 and non-integral. We have

I= lcf o do | Y (0—N)"Nae,
Mo

Av<o

AZ;. (0 — m*-muay( j; . fm N)l

= lff o™ ! do
Ao

=«l, + «l,,
whers

co

I, Zf o * " do
Ao

1, :f o " dw
Ao

>

[: dg(u) j;" (0 — £)(u — t)dB(t)

[ o0 [ (0= 0r-iu = oy B

[

It will be shown that I, I, < co. In [9] it was proved that I, < oo for any
#>0. For completeness we indicate the argument. If p is the integer such that
0 <k — p=1, we integrate the inner integral in I, by parts p+ 1 times to
obtain a sum of integrals of the form

¢ f u (@ — £y (u — )7~ B(¢) dt O=r=p+ 1.

Since £ > 1, (0 — )" '(u — t)" decreases in (0,z). Applying the second mean-
value theorem and the Riesz mean value theorem, we find that each integral is
O(w* 'u*+"). Hence

I, =0Q) : w| dg(u) | f "ot do = 0(1) f ) u* | dg(u)| < oo. (13)

0

Consider now the inner integral in I,. In the notation of Lemma 5, we
may write this as

J=J,+ J,. (14)

Putting p=#«—1, 0<x— p=1, p integral, we have [u] = p— 1. Since
(@ — ty"(u — t)’ decreases in (0,w) for 0=v = [u], the second mean-value
theorem and the Riesz mean-value theorem give

(]

£
Ji=3 o' f (u — £y BY(t) dt 0=¢=ow)



ON ABSOLUTE RIESZ SUMMABILITY FACTORS 67

1]

= Z O(wu—vuuwx+1) — O(ux—lmx+l). (15)
Hence
f 0! do f J.dg(w)
A‘O w

=0 [ wldgw)| [ de =OQ) f w*| dg(u)| < oo. (16)

Ao Ao A,
Now consider J,:
Jy=cHe—p—1, c—1,p)+cHrk—p—1, «,p— 1). a7

Since (u — t)*! decreases in (0,®), the second mean-value theorem and the
Riesz mean-value theorem show that the first term in (17) is equal to

u! f f (0—2t) "' B"(t) dt 0=t=w)

= O o). (18)

Take the second term in (17). Partial integration gives
Hk—-—p—1,kp—1) =clu— o) B (o)
iy f = o f (0 — 2y Bri(z) de
o 0
=clu — o) B o) + cHk— p—1, c—1,p)
+c j;m (w — ) ' dt j: (0 — )~ ?% B?(x) dx. 19)

We have already dealt with the term Hk — p— 1, « — 1, p), (see (18)).
Consider the repeated integral in (19). Changing the order of integration, and
nothing that

(0 — 2) f Cu—ty dt

is a decreasing function of z in (0, ®), the second mean-value theorem and the
Riesz mean-value theorem show that the repeated integral is equal to
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w E
o1 f (w — £y dt f (@ — 27" B (x)dr (0=¢= )
— m—lO(uK—la)x+2) — O( u"_lco"“). (20)

The contribution to I, of the terms in (18) and (20) is
O(1) f o~ do [ w1 | dg(u)| = O(1) f w| dg(u)| < co. (21)
Ao v Ao

Finally, we must find the contribution to I, of the first term in (19). We have

oo

f o ! do
)

0

[ " (w — oy B(w) dyg(w)

oo

- f o~ 'do| B (o) Glo)|do

Ao

=T, + T, + T,

where by Lemmas 3 and 4, and the fact that A,../A, = O(),

A An+ [k]+1

T, =01 A,,fm'l do J;u"ldg(u)]

n=0 An
o oy An+[k]+1
=02 o Jwldg@)] < oo, (22)

n=0 n An
o A [x1

Ty =020 =520 lenss] <o, (23)
n=0 n p=0

and

Ty = O 225 (uey = M) [ — N)197" | dg(a)|

n=0 n JAn+ [k} +1

— 0T [l — M) do [ — 2= dyw)

n=0 YAn An+[k]+1

— o1 i ;;;;] do f " — o)1 dg(w)|

= O(1) fl " o do f " — o)y dg(w)|

0

=ow | ; o) [ o~ oy~ do

u
Ao
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=0 [ wldytw] < e (24)

0

If we combine the relevant equations (13)-(24) we see that I << oo in the
case « > 1 and non-integral. The theorem is thus proved for all « = 0.

5. If we write [, instead of A, (in line with the notation of Bosanquet [4]
and Borwein [3]), we obtain from our Theorem 1 a theorem due to these

authors on the abscissae of summability of the Dirichlet series > a,/;*. This

result can be stated as

% — 0. =D = im 287
nse log I,

< oo, (25)

where o, o, are respectively the abscissae of summability (R,[,«), |R,I,«| of
the Dirichlet series > a,/;".

The proof of (25) was made to depend on the following theorem (Bosanquet
[4], Borwein [3]), which we deduce from Theorem 1.

THEOREM 2. If > a, is bounded (R,l, k), k =0, then for e > D, > a,l;°
is summable |R, [, k).

Tk+o+1)

PROOF. In Theorem 1 take g(u) =— (o) + 1)

u™*°. Since 0 > D =0,
we have

oo

f w| dglu)| < oo,

2

and e, = [;°. Also, since o> D, > |e,| = 2 I3° < co. The hypotheses of

Theorem 1 are satisfied, so that >_ a,/;° is summable |R,/, «|.

As it stands Theorem 2 is weaker than Borwein’s result, since 1 suppose
[ € A, whereas Borwein does not. However G (w) = »~° in this case,so that
my argument is considerably simplified. Lemma 4 may be avoided, and it is
easy to check that the theorem is true without restriction on /,.

We may now generalize Theorem 1 to some extent if we replace the

hypothesis that > a, is bounded (R, A\, «) by o *A*(0) = O(¢(w)). To ensure

the existence of the Stieltjes integrals we suppose that ¢(w) is a positive, non-
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decreasing function of @ which has no common points of discontinuity with
g(m) in (A, o). Also we suppose that p(N,.;) = O(d(N,)), i. e. ¢ does not increase
too rapidly. Lemma 2 is then replaced by

LEMMA 2. If k=0, ¢ + ¢ =0, A% (w) = O(e**'¢(®)), $(w) >0 and non-
decreasing, with ¢Nnvi) = O(P(N,)), then for p =0,1,..[«], and N, < 0 = Nnsy,
Ao) = O{o"Nip(N,) ALY,

The proof of Theorem 1 goes through as before, if we suppose now that

Z d’o\‘n)l‘?nl < oo,

o= [ = nydg, with [ )] dgGw)] < e

Hence we have

THEOREM 3. Suppose that ¢(w) > 0, non-decreasing, with
dNnsy) = O(P(N,), and that ¢ has no common points of discontinuity with
gw) in (Ao, o). If 07 A*(0) = O($(w)), « =0, M € A, and

@ 2 )l e < oo,

(i) there exists g(u), such that

o= fl " — Ny dgtu) with ﬁ 0| dgla)| < oo,

then Y aue, is summable |R, \, k|.
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