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1. Introduction.' In an earlier paper [3] the author proved that the second
betti number of a compact normal regular contact manifold of strictly positive
curvature vanishes. This was subsequently strengthened by E.M.Moskal [5]
by removing the regularity condition and another proof2) was recently given
by S.Tanno [9].

PROPOSITION 1. The second betti number of a compact normal contact
manifold of positive curvature is zero.

In this paper we prove

THEOREM 1. The second betti number of a compact normal regular
contact manifold with non-negative sectional curvature is zero.

The proof is based upon Proposition 2 below as well as the technique
used to obtain Theorem 2 of [3].

Proposition 2 has other interesting consequences. Indeed an application
of a result due to B.Kostant [4] yields

THEOREM 2. A compact simply connected^ (normal) contact symmetric
space is isometric with a sphere.

This also follows from a statement due to M.Okumura ([6], Theorem 3.2).
Employing Theorem 1 and Proposition 3 below, we obtain

THEOREM 3. A compact torsion free ^-dimensional normal regular
contact manifold with non-negative sectional curvature is homeomorphic
with a sphere.

1) Research supported by National Science Foundation Grant GP-5477.
2) An error in the proof originally due to Moskal led to the proof given by Tanno which

is substantially the same.
3) D. Blair and the auther have shown that the fundamental group of a compact symmetric

normal contact manifold is finite.
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For, M is an integral homology sphere, so by the Hurewicz isomorphism

theorem, the Whitehead homotopy type theorem and the generalized Poincare

conjecture [7], M is homeomorphic with a sphere.

The author wishes to thank the referee for several important comments.

2. Contact manifolds. An almost contact structure (J,X0,ω) on a 2nΛ-l
dimensional C°° manifold M is given by a linear transformation field J, a
vector field Xo and a 1-form ω on M with the properties

(1) ω(X0) = l ,

(2)

(3)

(4) J 2 = - / + ©(.)Xo

where / is the identity transformation field. If M has a (J, Xo, ω)-structure, a

Riemannian metric < , > can be found such that

(5) ω = <X 0, >,

( 6 ) < JX, JY> = <X, Y> - ω(X)ω(Y)

and M is then said to carry a (J, XQ9 ω, < , >)-structure. Formula (6) along

with (1) —(5) says that J is skew-symmetric with respect to < , >, that is

(6s) <JX,Y> = -<X,JY>

for all vector fields X and Y.

The almost contact structure is called normal if for all vector fields X

and Y on M

J2[X, Y] + [JX, JY]-J[X, JY]-J[JX, Y]+dω(X, Y)X0=0.

A 2n + l dimensional C°° manifold M is said to have a contact structure

and M is called a contact manifold if it carries global 1-form ω with the

property

( 7 ) ω Λ (dω)n Φ 0 .

In this case, there exists an associated (J, Xo, ω, < , >)-structure with ω the

1-form defining the contact structure and

(8) < X , J Ύ > =dω(X,Y).

This structure is called a contact metric structure.

It can easily be shown that the vector field Xo generates a one-parameter
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group of isometries with respect to < , >.
Observe that (7) implies that a contact manifold is orientable.
A normal contact metric manifold is occasionally referred to as a Sasakian

manifold.

3. Harmonic forms. Let a be a harmonic ^>-form on a compact Sasakian
manifold. Then, for l^p^n, a is % orthogonal' to Xo, that is ι(X0)a vanishes [8].

Let V denote the operator of covariant differentiation with respect to
the Riemannian connexion. Then, since Xo is a Killing field with respect to
the metric < , > we obtain

LEMMA 1. On a Sasakian manifold

=O, VΓ.

For, (V*©)(y) + (Vrω)(X) = 0. So <X, JY> = dω(X, Y) = (V*ω)(Y)-(VYω)(X)
= —2(Vγω)(X)=-2<X,\7γX0> The vector field X being arbitrary and
< , > being nondegenerate, Lemma 1 follows.

PROPOSITION 2. There are no covariant constant p-forms on a compact
Sasakian manifold M for l^p^2n.

PROOF. Let a be a covariant constant ^>-form, l^p^n and X lvX2, , Xp

any p vector fields on M. Then, since ι(X0)<z=0, Lemma 1 implies

(VJ^(XO)Λ)(X 2 , , Xp)=i(\7j^Xo)a(X2, , Xp)

= - j Γ a ( J * X 1 , X 2 , . . ., Xp)

= -2~a(Xi> X2, ; Xp).

Hence, a=0. Denote by *a the (2n + l—p)-ίorm corresponding to a under the
Hodge star operator. Since *a is covariant constant whenever a is, and * is
an isomorphism, the same is true for forms of complementary degree.

Let bp=bp(M) denote the pth betti number of M. We shall require the
following well-known fact [1].

LEMMA 2. In a compact and orientable Riemannian manifold there are
no harmonic p-forms a = au...ipdxhΛ Λ dxίp satisfying the quadratic
inequality

Fp(a) = Ri3a»>"ι>a\i...iv+ ^ Rιma^*aklh...lp ^ 0
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unless X/a vanishes where Rίjkι and Ru are the components of the Riemann
curvature and Ricci tensors, respectively.

For />=1, we have

Fx(a) = RtjaW,

so if the Ricci curvature is positive semi-definite \/a vanishes. Proposition 2
then gives

PROPOSITION 3. If the Ricci curvature of a compact Sasakian manifold
is positive semi-definite, bx = 0.

4. The main results. A contact manifold M is homogeneous if there is
a connected Lie group which acts transitively and effectively on M as a
group of diffeomorphisms and leaves the contact form invariant. If M is also
compact and simply connected, then it is regular, and is, in fact, a principal
circle bundle over a homogeneous Hodge manifold (see [2], Theorem 6). It
can be shown that an odd dimensional sphere possesses a homogeneous
contact structure as a principal circle bundle over a homogeneous Hodge
manifold. Making use of these facts, it was shown in a previous paper [3]
that a simply connected homogeneous contact manifold of positive curvature
in the invariant metric is globally isometric with a sphere.

PROOF OF THEOREM 1. Since the contact structure is normal and
regular and the manifold M is compact, it may be considered as a principal
circle bundle over a Hodge manifold B. Since the sectional curvatures of M
are non-negative, the sectional curvatures of B are positive (see [3, §4]). The
Gysin sequence of the circle bundle M over B is

— iί»(J5,jR) — H>(M,R) —^H ι-\B,R) —*H i+\B,R)—*•

where R denotes the reals, p* is the map induced by the bundle projection
and L is multiplication by the characteristic class of the bundle. By Proposi-
tion 3, bι(M) vanishes, so since b2(B) = l, we conclude that b2(M) also
vanishes.

A contact symmetric space is a homogeneous contact manifold which is
Riemannian symmetric with respect to the contact metric structure.

PROOF OF THEOREM 2. Since a harmonic form on a compact symmetric
space has vanishing covariant derivative with respect to the connexion of the
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invariant metric, then by Proposition 2, since the manifold is normal, it

is a rational homology sphere. But a compact simply connected symmetric

space which is a rational homology sphere is isometric with a sphere except

for SU (3)/SO (3). To see this, we first note that the holonomy group of a

compact simply connected Riemannian manifold M which is topologically a

cohomology sphere, is the special orthogonal group SO(d), d = dim M, with

the exception of SU(3)/SO(3). This is a consequence of Corollary 2.2 of [4]

and the fact that simple connectedness implies that the holonomy group is

contained in SO(d). Since M is in addition a symmetric space G/H, the

holonomy group is H.

The above facts imply that the isotropy group is SO(d), unless d=5.

In particular, the isometry group is transitive on tangents, M is of rank 1,

and M is not complex or quaternionic projective space, so M = Sd, unless

d=5. The exceptional case does not occur as one sees from the classification

of homogeneous contact manifolds given by Boothby and Wang [2].

REMARKS, (a) SU(S)/SO(3) may yet carry a contact structure, but it will

not be invariant.

(b) AS£/(3)/*SΌ(3) has 2-torsion. This is a conseque nceof the exact sequence

- τr2(SC/(3)) - ττ2(SU(3)/SO(3)) ^(50(3)) — - ̂ (5*7(3)) — - 0.

For, τr2(St7(3)) = ̂ (517(3)) = 0 , irι{SO{3))^Z2y and since SU(3)/SO(3) is
simply connected, τr2(SU(3)/SO(3))w H2(SU(3)/SO(3), Z). Hence,
H2(SU(3)/SO(3)) » Z2.
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