ON HYPERSURFACES SATISFYING A CERTAIN CONDITION ON THE CURVATURE TENSOR*

Katsumi Nomizu

(Received August 22, 1967)

If a Riemannian manifold M is locally symmetric, then its curvature tensor R satisfies

(*) $R(X,Y) \cdot R = 0$ for all tangent vectors X and Y,

where the endomorphism R(X,Y) operates on R as a derivation of the tensor algebra at each point of M. Conversely, does this algebraic condition (*) on the curvature tensor field R imply that M is locally symmetric (i.e. $\nabla R = 0$)? We conjecture that the answer is affirmative in the case where M is irreducible and complete and dim $M \ge 3$. For partial and related results, see [4], p.11, [9], Theorem 8, and [6].

The main purpose of the present paper is to give an affirmative answer in the case where M is a complete hypersurface in a Euclidean space. More precisely, we prove

THEOREM. Let M be an n-dimensional, connected, complete R iemannian manifold which is isometrically immersed in a Euclidean space R^{n+1} so that the type number is greater than 2 at least at one point. If M satisfies condition (*), then it is of the form $M = S^k \times R^{n-k}$, where S^k is a hypersphere in a Euclidean subspace R^{k+1} of R^{n+1} and R^{n-k} is a Euclidean subspace orthogonal to R^{k+1} .

As a result, M is, of course, symmetric. We have also

COROLLARY. Let M be an n-dimensional, connected compact Riemannian manifold which is isometrically immersed in R^{n+1} , where n > 3. If M satisfies condition (*), it is a hypersphere.

In the appendix, we shall show that slight modifications of our proof of

^{*} This paper has been written with partial support by NSF Grant GP 4251.

the theorem above lead to the result of Hartman-Nirenberg [2] that a complete locally Euclidean hypersurface is actually imbedded as a cylinder built over a plane curve.

1. Reduction of condition (*). The following is a purely local argument. Let U be a neighborhood of a point $x_0 \in M$ on which we choose a unit vector field ξ normal to M. For any vector fields X and Y tangent to M, we have the formulas of Gauss and Weingarten:

$$D_{x}Y = \nabla_{x}Y + h(X, Y) \xi$$
$$D_{x}\xi = -AX,$$

where D_X and ∇_X denote covariant differentiations for the Euclidean connection of R^{n+1} and the Riemannian connection on M, respectively. A is a field of symmetric endomorphisms which corresponds to the second fundamental form h, that is, h(X,Y)=y(AX,Y) for tangent vectors X and Y. The equation of Gauss expresses the curvature tensor R of M by means of A:

$$R(X,Y) = AX \wedge AY$$
,

where, in general, $X \wedge Y$ denotes the endomorphism which maps Z upon g(Z,Y) X - g(Z,X) Y, g being the Riemannian metric. The type number k(x) at x is, by definition, the rank of A at x.

At a point $x \in M$, let $\{e_1, \dots, e_n\}$ be an orthonormal basis of the tangent space $T_x(M)$ such that $Ae_i = \lambda_i e_i$, $1 \le i \le n$. Then the equation of Gauss implies

$$R(e_i, e_j) = \lambda_i \lambda_j e_i \wedge e_j.$$

By computing

$$(R(e_i, e_j) \cdot R)(e_k, e_l) = [R(e_i, e_j), R(e_k, e_l)]$$

 $- R(R(e_i, e_j) e_k, e_l) - R(e_k, R(e_i, e_j) e_l),$

we find that it is zero except possibly in the case where k = i and $l \neq i, j$ $(i \neq j)$. For this case we have

$$(R(e_i, e_i) \cdot R)(e_i, e_i) = \lambda_i \lambda_i \lambda_i (\lambda_i - \lambda_i) e_i \wedge e_i$$

Thus we see that condition (*) is equivalent to

(**)
$$\lambda_i \lambda_j \lambda_l (\lambda_j - \lambda_i) = 0 \text{ for } l \neq i, j, \text{ where } i \neq j.$$

Suppose that the type number k(x) is ≥ 3 at a point x and assume that $\lambda_1, \dots, \lambda_k$ are non-zero eigenvalues of A at x and $\lambda_{k+1} = \dots = \lambda_n = 0$. For any i and j such that $1 \leq i < j \leq k$, we choose l such that $1 \leq l \leq k$ and $l \neq i, j$. Then (**) implies $\lambda_i = \lambda_j$. In other words, all the non-zero eigenvalues $\lambda_1, \dots, \lambda_k$ are equal to each other.

We have

LEMMA 0. If $k(x_0) \ge 3$, then there is a neighborhood U of x_0 on which the type number k(x) is equal to a constant and the non-zero eigenvalue $\lambda(x)$ of A is a differentiable function.

PROOF. If $k(x_0) = n$, then obviously k(x) is n in a neighborhood of x_0 . Assume that $3 \le k(x_0) < n$ and that $\lambda_1 = \cdots = \lambda_{k_0} = \lambda \ne 0$, $\lambda_{k_0+1} = \cdots = \lambda_n = 0$ are the eigenvalues of A at x_0 . By continuity of the eigenvalues of A, there is a neighborhood U of x_0 on which k_0 eigenvalues of A are of absolute value $> |\lambda|/2$ and $n-k_0$ eigenvalues are of absolute value $< |\lambda|/2$ (both counting the multiplicity). Since $k(x) \ge k_0 \ge 3$ for $x \in U$, we know that all the non-zero eigenvalues of A at x are equal. Hence the eigenvalues of absolute value $< |\lambda|/2$ must be 0. Thus $k(x) = k_0$ for every $x \in U$. The non-zero eigenvalue $\lambda(x)$ is a differentiable function on U, since $\lambda(x) = \text{trace } A/k_0$ and since trace A is a differentiable function (where it is defined).

2. Lemmas. In this section, we shall assume that M is oriented (so that a unit normal field ξ is defined on the whole M) and that the type number k(x) is ≥ 3 everywhere on M. By the observations we made in 1, the function k(x) is locally constant and hence is a constant function, say, k, since M is connected. We may also speak of the differentiable function $\lambda(x)$ which assings to each $x \in M$ the non-zero eigenvalue of A at x.

Thus, at each $x \in M$, $\lambda(x)$ is the non-zero eigenvalue of A with multiplicity k and 0 is the eigenvalue with multiplicity n-k. We define two distributions on M as follows:

$$T_0(x) = \{X \in T_x(M) ; AX = 0\}$$

 $T_1(x) = \{X \in T_x(M) ; AX = \lambda(x)X\}.$

We have $T_x(M) = T_0(x) + T_1(x)$ (direct sum). For any $Z \in T_x(M)$, Z_0 and Z_1 will denote the components of Z in $T_0(x)$ and $T_1(x)$. respectively.

LEMMA 1. T_0 and T_1 are differentiable.

PROOF. For any point $x_0 \in M$, let $\{X_1, \dots, X_k\}$ be a basis of $T_1(x_0)$ and let $\{X_{k+1}, \dots, X_n\}$ be a basis of $T_0(x_0)$. We extend X_i 's to vector fields on M and define vector fields

$$Y_i = AX_i$$
 for $1 \le i \le k$

and

$$Y_j = (A - \lambda I) X_j$$
 for $k+1 \le j \le n$,

where I denotes the identity transformation. At x_0 , we have $Y_i = \lambda X_i$ for $1 \le i \le k$ and $Y_j = -\lambda X_j$ for $k+1 \le j \le n$. Thus Y_1, \dots, Y_n are linearly independent at x_0 and hence in a neighborhood U of x_0 . At each point of U, we have

$$(A - \lambda I) Y_i = (A - \lambda I) A X_i = 0$$
 for $1 \le i \le k$
 $AY_i = A(A - \lambda I) X_i = 0$ for $k+1 \le i \le n$.

Hence Y_1, \dots, Y_k form a basis of T_1 and Y_{k+1}, \dots, Y_n form a basis of T_0 .

LEMMA 2. T_0 and T_1 are involutive.

PROOF. We recall the Codazzi equation

$$(\nabla_{\mathbf{v}}A)Y = (\nabla_{\mathbf{v}}A)(X)$$
.

Suppose that X and Y are vector fields belonging to T_0 . Then

$$(\nabla_x A)Y = \nabla_x (AY) - A(\nabla_x Y) = -A(\nabla_x Y),$$

and

$$(\nabla_{\mathbf{r}}A)X = -A(\nabla_{\mathbf{r}}X)$$
.

Thus we get $A(\nabla_X Y) = A(\nabla_Y X)$, that is,

$$A([X,Y]) = A(\nabla_x Y - \nabla_y X) = 0$$

showing that [X, Y] belongs to T_0 . Thus T_0 is involutive. Suppose now that X and Y belong to T_1 . Then

$$(\nabla_{X}A)Y = \nabla_{X}(AY) - A(\nabla_{X}Y) = \nabla_{X}(\lambda Y) - A(\nabla_{X}Y)$$
$$= X\lambda \cdot Y + \lambda \nabla_{X}Y - A(\nabla_{X}Y).$$

Interchanging X and Y here and using the Codazzi equation, we get

$$(X\lambda) Y - (Y\lambda) X + (\lambda I - A)[X, Y] = 0.$$

Since $(X\lambda)Y - (Y\lambda)X \in T_1$ and $(\lambda I - A)[X, Y] = \lambda[X, Y]_0$, we get

$$(X\lambda)Y - (Y\lambda)X = 0$$
 and $[X,Y]_0 = 0$.

The second identity shows that $[X, Y] \in T_1$, proving that T_1 is involutive. The first identity will establish

LEMMA 3. If X belongs to $T_1(x)$, then $X\lambda = 0$.

PROOF. Since dim $T_1(x) = k \ge 3$, we may choose $Y \in T_1(x)$ such that X and Y are linearly independent. Extending X and Y to vector fields belonging to T_1 , we have $(X\lambda)Y - (Y\lambda)X = 0$ at x. Thus $X\lambda = Y\lambda = 0$ at x.

REMARK. The function λ is therefore constant on each maximal integral manifold of T_1 . We shall later see that λ is actually a constant on M (for this, completeness of M is essential).

We now let $X \in T_1$, $Y \in T_0$ and compute the both sides of the Codazzi equation:

$$(\nabla_{X}A)Y = \nabla_{X}(AY) - A(\nabla_{X}Y) = -A(\nabla_{X}Y) = -\lambda(\nabla_{X}Y)_{1},$$

$$(\nabla_{Y}A)X = \nabla_{Y}(AX) - A(\nabla_{Y}X) = \nabla_{Y}(\lambda X) - A(\nabla_{Y}X)$$

$$= Y\lambda \cdot X + \lambda(\nabla_{Y}X) - A(\nabla_{Y}X)$$

$$= Y\lambda \cdot X + \lambda(\nabla_{Y}X)_{0}.$$

Therefore we have

$$(\nabla_Y X)_0 = 0$$
, that is, $\nabla_Y X \in T_1$

and

$$(Y\lambda)X = -\lambda(\nabla_X Y)_1 = -A(\nabla_X Y).$$

We have hence

LEMMA 4. If
$$X \in T_1$$
, $Y \in T_0$, then $A(\nabla_x Y) = -(Y\lambda)X$.

LEMMA 5.

- (i) If $Y \in T_0$, then $\nabla_{\mathbf{r}}(T_1) \subset T_1$.
- (ii) If $Y \in T_0$, then $\nabla_{\mathbf{r}}(T_0) \subset T_0$.
- (iii) If $Y \in T_0$, $X \in T_1$ and [X, Y] = 0, then $\nabla_X Y \in T_1$.

PROOF. (i) has been already shown above. (ii) follows from (i) and from the fact that T_0 and T_1 are orthogonal complements to each other. (iii) follows from $\nabla_x Y = \nabla_x X + [X,Y] = \nabla_x X \in T_1$.

LEMMA 6. If $Y\lambda = 0$ for every $Y \in T_0$, then $X \in T_1$ implies $\nabla_X(T_0) \subset T_0$ and $\nabla_X(T_1) \subset T_1$.

PROOF. Under the assumption, Lemma 4 implies $A(\nabla_x Y) = 0$, that is, $\nabla_x Y \in T_0$ for $X \in T_1$ and $Y \in T_0$. Thus $\nabla_x (T_0) \subset T_0$ for $X \in T_1$. Since T_1 is the orthogonal complement of T_0 , we have $\nabla_x (T_1) \subset T_1$ as well.

LEMMA 7. Let Y and Z be vector fields belonging to T_0 such that $\nabla_Y Z = \nabla_Z Y = 0$. If there is a non-vanishing vector field X belonging to T_1 such that [X,Y] = [X,Z] = 0, then $(YZ)\left(\frac{1}{\lambda}\right) = 0$.

PROOF. We know that $R(X, Y) = AX \wedge AY = 0$ since AY = 0. On the other hand, we have

$$R(X,Y) \cdot Z = \nabla_{X}(\nabla_{Y}Z) - \nabla_{Y}(\nabla_{X}Z) - \nabla_{[X,Y]}Z = -\nabla_{Y}(\nabla_{X}Z)$$

in view of $\nabla_Y Z = 0$ and [X, Y] = 0. By Lemma 4, we have $-(Z\lambda)X = A(\nabla_X Z)$. By Lemma 5, (iii), we have $A(\nabla_X Z) = \lambda(\nabla_X Z)$. Thus we get $\nabla_X Z = -\frac{Z\lambda}{\lambda}X$.

Therefore $\nabla_{Y}\left(\frac{Z\lambda}{\lambda}X\right)=0$, which implies

$$\frac{\lambda(YZ\lambda)-(Y\lambda)(Z\lambda)}{\lambda^2}X+\frac{Z\lambda}{\lambda}\nabla_{\mathbf{r}}X=0.$$

Since [X,Y]=0, we have $\nabla_{Y}X=\nabla_{X}Y$ and this is equal to $\frac{-Y\lambda}{\lambda}X$ (in the same way as for $\nabla_{X}Z=\frac{-Z\lambda}{\lambda}X$). Hence the equation above reduces to

$$(\lambda(YZ\lambda) - 2(Y\lambda)(Z\lambda)) X = 0.$$

Since X is non-vanishing, we get

$$\lambda(YZ\lambda) - 2(Y\lambda)(Z\lambda) = 0.$$

A simple computation shows

$$YZ\left(\frac{1}{\lambda}\right) = -\frac{\lambda Y(Z\lambda) - 2(Y\lambda)(Z\lambda)}{\lambda^3} = 0.$$

3. Proof of the theorem in the case where $k(x) \geq 3$ everywhere. We restate the assumptions explicitly. M is an n-dimensional, connected and complete Riemannian manifold satisfying condition (*). $f: M \rightarrow R^{n+1}$ is an isometric immersion such that the type number k(x) is ≥ 3 everywhere. We wish to prove that M is the direct product $M_0 \times M_1$ and that f is the direct product of $f_0: M_0 \rightarrow R^{n-k}$ and $f_1: M_1 \rightarrow R^{k+1}$, where R^{n-k} and R^{k+1} are Euclidean subspaces of R^{n+1} which are orthogonal to each other, f_0 is an isometry and f_1 is an isometry of M_1 onto a sphere S^k in R^{k+1} .

Let \widetilde{M} be the universal covering of M with projection $\pi:\widetilde{M}\to M$. The assumptions above are satisfied for \widetilde{M} and its isometric immersion $\widetilde{f}=f\circ\pi$. If we know that \widetilde{f} is an isometry of \widetilde{M} onto $R^{n-k}\times S^k$ in the manner above, then it follows that π is one-to-one, that is, $\widetilde{M}=M$. Thus it will be sufficient to prove the theorem for \widetilde{M} .

We shall therefore assume that M is simply connected (and hence orientable).

In 2 we have introduced involutive distributions T_0 and T_1 . For each $x \in M$, we denote by $M_0(x)$ and $M_1(x)$ the maximal integral manifolds through x of T_0 and T_1 , respectively.

PROPOSITION 1.

- (i) $M_0(x)$ is totally geodesic in M and is complete.
- (ii) The restriction of f to $M_0(x)$ is an isometry of $M_0(x)$ onto a Euclidean subspace $R^{n-k}(x)$ of R^{n+1} .

PROOF. (i) By Lemma 5, (ii), we know $\nabla_r(T_0) \subset T_0$ for $Y \in T_0$. This means that $M_0(x)$ is totally geodesic in M. $M_0(x)$ is complete as a maximal integral manifold which is totally geodesic. Indeed, let y(t) be a geodesic in $M_0(x)$. As a geodesic in M, it is infinitely extendible. Suppose $t_0 = \sup\{t_1; y(t) \in M_0(x) \text{ for } t < t_1\}$. Take local coordinates $\{x^1, \dots, x^k, x^{k+1}, \dots, x^n\}$ with origin $y(t_0)$ such that $\{\partial/\partial x^1, \dots, \partial/\partial x^k\}$ and $\{\partial/\partial x^{k+1}, \dots, \partial/\partial x^n\}$ are local bases for T_1 and T_0 . Since y(t), $t < t_0$, is a geodesic lying in the T_0 -direction, we have $y^i(t) = c^i$, $1 \le i \le k$, for $t_0 - \delta < t < t_0$, where $\delta_0 > 0$. As $t \to t_0$, we have $y^i(t) \to 0$, hence $c^1 = \dots = c^k = 0$. Thus the geodesic continues to lie in $M_0(x)$.

(ii) Consider f locally. If X and Y are vector fields tangent to $M_0(x)$, then

$$D_{f(X)}f(Y) = f(\nabla_X Y) + h(X, Y) \xi.$$

We have h(X,Y)=0 since $X,Y\in T_0$. We know that $\nabla_X Y$ is tangent to $M_0(x)$. This means that $f:M_0(x)\to R^{n+1}$ is totally geodesic (that is, a geodesic in $M_0(x)$ is mapped upon a straight line in R^{n+1}). Hence $f(M_0(x))$ is contained in an (n-k)-dimensional Euclidean subspace $R^{n-k}(x)$. Since $M_0(x)$ is complete, it follows that $f(M_0(x))=R^{n-k}(x)$. By a well known result (cf. Theorem 4.6 of Chapter IV, [3]), f is a covering map and hence an isometry of $M_0(x)$ onto $R^{n-k}(x)$.

We now come to the crucial step of the proof.

PROPOSITION 2. For any $Y \in T_0$, we have $Y\lambda = 0$.

PROOF. For a point $x \in M$, let $\{y^1, \dots, y^k, y^{k+1}, \dots y^n\}$ be a coordinate system with origin x in a neighborhood U of x such that $\{\partial/\partial y^1, \dots, \partial/\partial y^k\}$ and $\{\partial/\partial y^{k+1}, \dots, \partial/\partial y^n\}$ are local bases for T_1 and T_0 (cf. Lemma, [3], p. 182). Since $M_0(x)$ is isometric to a Euclidean space by Proposition 1, we may assume that the restriction of $\{y^{k+1}, \dots, y^n\}$ to $M_0(x) \cap U$ is rectangular, that is

$$g(\partial/\partial y^{\alpha}, \partial/\partial y^{\beta}) = \delta_{\alpha\beta}$$
 for $k+1 \leq \alpha, \beta \leq n$.

We show that the restriction of $\{y^{k+1}, \dots, y^n\}$ to $M_0(y) \cap U$ for any $y \in M_1(x) \cap U$ is rectangular. By setting $g_{\alpha\beta}(y^1, \dots, y^n) = g(\partial/\partial y^\alpha, \partial/\partial y^\beta)$. $k+1 \leq \alpha, \beta \leq n$, we have

$$\frac{\partial g_{\alpha\beta}}{\partial y_i} = g(\nabla_{\partial/\partial y^i}(\partial/\partial y^\alpha), \partial/\partial y^\beta) + g(\partial/\partial y^\alpha, \nabla_{\partial/\partial y^i}(\partial/\partial y^\beta)).$$

But Lemma 5, (iii), implies $\nabla_{\partial/\partial y^i}(\partial/\partial y^a) \in T_1$ for $1 \leq i \leq k$. Hence

$$g(\nabla_{\partial/\partial y^i}(\partial/\partial y^\alpha),\partial/\partial y^\beta)=0$$

and, similarly, $g(\partial/\partial y^{\alpha}, \nabla_{\partial/\partial y^{i}}(\partial/\partial y^{\beta})) = 0$. We have thus $\partial g_{\alpha\beta}/\partial y^{i} = 0$, that is,

$$g_{\alpha\beta}(y^1,\cdots,y^k,y^{k+1},\cdots,y^n)=g_{\alpha\beta}(0,\cdots,0,y^{k+1},\cdots,y^n)=\delta_{\alpha\beta}:$$

Now let $Y = \partial/\partial y^{\alpha}$, where $k+1 \leq \alpha \leq n$, and $X = \partial/\partial y^{i}$, where $1 \leq i \leq k$. Since $\{y^{k+1}, \dots, y^{n}\}$ is rectangular on each $M_{0}(y) \cap U$, which is totally geodesic in M, we have $\nabla_{r}Y = 0$. Applying Lemma 7 to X, Y and Z = Y, we have $Y^{2}(1/\lambda) = 0$.

If L is a straight line in $M_0(x)$, let Y be the parallel vector field in the direction of L on the Euclidean space $M_0(x)$. For any point of L, we may choose suitable local coordinates $\{y^1, \dots, y^n\}$ and show by the argument above that $Y^2(1/\lambda) = 0$. This means that if s is the length parameter of L, then $\frac{d^2}{ds^2}\left(\frac{1}{\lambda}\right) = 0$. Thus

$$\frac{1}{\lambda} = as + b$$
,

where a and b are certain constants. If a is not 0, then $1/\lambda$ will be 0 for s=-b/a, which is a contradiction. We have thus shown that λ is equal to a constant on L. Since L can be an arbitrary straight line in $M_0(x)$ starting from x, we conclude that λ is equal to a constant on $M_0(x)$. Thus $Y\lambda=0$ for any $Y\in T_0$.

REMARK. Since $X\lambda = 0$ for any $X \in T_1$, it follows that $Z\lambda = 0$ for any tangent vector Z. Thus λ is a constant function on M.

We now prove

PROPOSITION 3.

- (i) $M_1(x)$ is totally geodesic in M and is complete.
- (ii) For any point o, let $M_0 = M_0(o)$ and $M_1 = M_1(o)$. Then M is isometric to the direct product of M_0 and M_1 .
- (iii) The Euclidean subspaces $R^{n-k}(x) = f(M_0(x))$, $x \in M_1$, in Proposition 1 are all parallel to $R^{n-k} = R^{n-k}(o)$.
- (iv) The restriction f_1 of f to M_1 is an isometry of M_1 onto a sphere S^k in the Euclidean subspace R^{k+1} which is perpendicular to R^{n-k} .
- (v) If f_0 is the restriction of f to M_0 , then $f = f_0 \times f_1$, that is,

$$f(y, x) = (f_0(y), f_1(x)) \in \mathbb{R}^{n-k} \times S^k$$
.

for every $(y, x) \in M_0 \times M_1 = M$.

PROOF. (i) By Proposition 2 and Lemma 6, we know that $\nabla_X(T_1) \subset T_1$ for any vector field X belonging to T_1 . This means that $M_1(x)$ is totally geodesic. The completeness can be proved in the same way as for $M_0(x)$.

(ii) Lemmas 5 and 6 together imply that T_0 and T_1 are parallel. Since M is simply connected and complete, our conclusion is a standard result (cf. Theorem 6.1 of Chapter IV, [3]).

(iii) Let $Y \in T_0(o)$ and let Y_t be the family of tangent vectors parallel to Y along a curve x(t) in M_1 . By (ii) we have $Y_t \in T_0(x(t))$. Considering f locally, we get (denoting by x_t the tangent vector of the curve x(t))

$$D_{f(\vec{x}_t)} f(Y_t) = f(\nabla_{\vec{x}_t} Y_t) + h(\vec{x}_t, Y_t) \xi = 0,$$

since $\nabla_{x_t} Y_t = 0$ and $h(x_t, Y_t) = 0$. Thus $f(Y_t)$ is parallel in R^{n+1} . This proves that $f(T_0(x))$ are parallel in R^{n+1} . Since the Euclidean subspace $R^{n-k}(x) = f(M_0(x))$ has $f(T_0(x))$ as the tangent space at f(x), we conclude that $R^{n-k}(x)$, $x \in M_1$, are parallel.

(iv) Consider the R^{n+1} -valued vector function $x \to \xi_x + \lambda f(x)$ on M_1 . For any tangent vector X to M_1 we have

$$D_{f(X)}(\xi + \lambda \cdot f) = f(-AX + \lambda X) = 0,$$

which shows that $\xi + \lambda f$ is equal to a constant vector, say, α , in \mathbb{R}^{n+1} . Hence

$$||f(x) - \alpha/\lambda|| = |1/\lambda|$$
 on M_1 ,

showing that $f(M_1)$ lies on the hypersphere S^n with center α/λ and radius $|1/\lambda|$. On the other hand, $f(M_1)$, is perpendicular to $f(M_0(x)) = R^{n-k}(x)$, $x \in M_1$, at each point of $f(M_1)$, and $R^{n-k}(x)$ are all parallel to R^{n-k} . It follows that $f(M_1)$ lies in the Euclidean subspace R^{k+1} through f(o) that is perpendicular to R^{n-k} . Hence $f(M_1)$ lies in the sphere $S^k = S^n \cap R^{k+1}$. Again by Theorem 4.6, Chapter IV, [3], it follows that $f_1: M_1 \to S^k$ is a covering map and hence an isometry.

(v) Let $(y,x) \in M_0 \times M_1$. Let $y = \exp_b sY_0$, where Y_0 is a unit vector in $T_0(o)$. Then the point (y,x) is equal to $\exp_x sY$, where Y is the unit vector in $T_0(x)$ which is parallel to Y_0 . By (iii) we know that $f(Y_0)$ and f(Y) are parallel in R^{n+1} . Since f maps geodesics in $M_0(x)$ upon straight lines in $R^{n-k}(x)$, we see that $f(y,x) = \exp_{f_1(x)} sf(Y)$ and this is equal to $(f_0(y), f_1(x))$, since $f_0(y) = \exp_{f_0(y)} sf(Y_0)$. We have thus shown $f(y,x) = (f_0(y), f_1(x))$.

With Proposition 3 the main theorem has been proved under the assumption that $k(x) \ge 3$ everywhere.

4. Proof of the theorem. We now prove the theorem under the weaker assumption that the type number k(x) is ≥ 3 at some point, say, $o \in M$. As in the beginning of 3, we may assume that M is simply connected.

Let $W = \{x ; k(x) \ge 3\}$, which is an open set. Let W_0 be the connected

component of o in W. As before, we know that k(x) is a constant on W_0 , $\lambda(x)$ is a differentiable function, and the distributions T_0 and T_1 defined on W_0 are differentiable and involutive. All the lemmas are valid.

Let M_0 and M_1 be the maximal integral manifolds of T_0 and T_1 , respectively, through o.

PROPOSITION 4.

- (i) M_0 is totally geodesic in M and is locally Euclidean.
- (ii) On a geodesic L(s) in M_0 with arc length parameter s, we have $\lambda(s) = \frac{1}{as+b}.$
- (iii) M_0 is complete and λ is a constant on M_0 .
- (iv) The type number k(x) is, in fact, ≥ 3 everywhere on M.
- PROOF. (i) M_0 is totally geodesic by Lemma 5, (ii). Hence the curvature tensor of M_0 is the restriction of the curvature tensor R of M to M_0 . We have $R(X,Y) = AX \wedge AY = 0$ for X and Y tangent to M_0 . Thus M_0 is locally Euclidean.
- (ii) For any geodesic L(s) in M_0 with arc length parameter s, we may show that $\frac{d^2}{ds^2} \left(\frac{1}{\lambda}\right) = 0$ by using the essentially same argument as for Proposition 2.
- (iii) Let L(s) be a geodesic in M_0 starting from o. As a geodesic in M, it is infinitely extendible. If this entire geodesic does not lie in W_0 , let s_0 be such that $L(s) \in W_0$ (hence $L(s) \in M_0$) for $s < s_0$ but $L(s_0) \notin W_0$. We derive a contradiction by showing that the type number at $L(s_0)$ is ≥ 3 . The characteristic polynomial of A at L(s), $s < s_0$, is $(t \lambda(s))^k t^{n-k}$. That of A at $L(s_0)$ is therefore the limit as $s \to s_0$, namely, $(t \lambda(s_0))^k t^{n-k}$. But $\lambda(s_0) = \lim_{s \to s_0} \lambda(s) = \lim_{s \to s_0} \frac{1}{as + b}$ cannot be 0. This shows that the type number of A at $L(s_0)$ is $k \geq 3$. It follows that $L(s_0) \in W_0$ and hence $L(s_0) \in M_0$. Thus M_0 is complete. We also see that the constant a has to be 0 (as in the proof of Proposition 2), namely, λ is a constant on M_0 .
- (iv) Since λ is constant on any maximal integral manifold of T_0 (defined on W_0), we have $Y\lambda=0$ for $Y\in T_0$. By Lemma 3, we have $X\lambda=0$ for $X\in T_1$. Thus we see that λ is a constant function on W_0 . We now show that W_0 is actually equal to M. Suppose $W_0\neq M$ and let x be a point of \overline{W}_0-W_0 . By the continuity argument for the characteristic polynomial of A, we see that the type number at x is again $k\geq 3$. Thus W_0 is open and closed so that $W_0=M$, completing the proof of Proposition 4.

Proposition 4 shows that the assumption that the type number is ≥ 3 at one point actually implies that it is ≥ 3 everywhere on M. Thus our main theorem has been proved.

The Corollary follows easily from the fact that for an n-dimensional compact Riemannian manifold M isometrically immersed in R^{n+1} there is a point $x \in M$ where the type number is n (for example, a point $x \in M$ where the distance from an arbitrarily fixed point in R^{n+1} attains a maximum).

5. Appendix. Let M be an n-dimensional, connected, locally Euclidean and complete Riemannian manifold and let $f: M \to R^{n+1}$ be an isometric immersion. The result of Hartman-Nirenberg [2] says that f(M) is of the form $\gamma \times R^{n-1}$, where R^{n-1} is a Euclidean subspace of R^{n+1} and γ is a curve: $-\infty < s < \infty \to \gamma(s)$ in a plane R^2 perpendicular to R^{n-1} . We indicate a proof of this result.

First assume that M is moreover simply connected (so that M is isometric to a Euclidean space R^n). Since its curvature tensor is identically zero, the eigenvalues of A are 0 except possibly one of them, say, λ . If λ is also identically 0, then obviously f(M) is a hyperplane in R^{n+1} and f is an isometry of M onto the hyperplane.

Assume that λ is not identically zero. Let W be the set of points where λ is not 0 and let $W = \bigcup_{\alpha} W_{\alpha}$ be the decomposition of W into the connected components. On each W_{α} we may define two distributions $T_0 = \{X; AX = 0\}$ and $T_1 = \{X; AX = \lambda X\}$, for which all the lemmas are valid except Lemma 3 (for Lemma 3, dim $T_1 \geq 2$ is needed, whereas here dim $T_1 = 1$). For each point $x \in W_{\alpha}$, we may show, as in Proposition 4, that the maximal integral manifold $M_0(x)$ of T_0 through x is totally geodesic in M and is complete, that λ is a constant on $M_0(x)$, and that f induces an isometry of $M_0(x)$ onto an (n-1)-dimensional subspace R^{n-1} of R^{n+1} . M being isometric with R^n , we may identify $M_0(x)$ with a hyperplane, say H(x), of $R^n = M$. The hyperplanes H(x) are parallel for all points x in one component W_{α} , because if H(x) and H(y) are distinct, they have no common point as the distinct maximal integral manifolds of T_1 . We also see that the maximal integral manifold $M_1(x)$ of T_1 through each point x is a geodesic in W_{α} , hence part of a straight line in $M = R^n$.

We now choose an arbitrary point $o \in W$ and extend the geodesic $M_1(o)$ as a straight line, say, L of $M=R^n$. We have the following situations:

- 1) For each point x of W_{α} , we have assigned a hyperplane $H(x) \subset W_{\alpha}$ and λ is constant on H(x).
- 2) All the hyperplanes H(x), $x \in W$, are parallel. In fact, if $x, y \in W_{\alpha}$, then H(x) and H(y) are parallel as we already know. Suppose $x \in W_{\alpha}$,

 $y \in W_{\beta}$ $(\alpha \neq \beta)$. If there is a point $z \in H(x) \cap H(y)$, then, since λ is a constant on H(x), $z \in W_{\alpha}$ and, similarly, $z \in W_{\beta}$, which is a contradiction. Thus H(x) and H(y) are disjoint, that is, parallel.

- 3) The straight line L is perpendicular to H(x) at every point $x \in L \cap W$. Indeed, if $\lambda(x) \neq 0$, then x belongs to W_{α} for some α and the hyperplane H(x), which is the maximal integral manifold of T_0 through x, is parallel to H(o). Since L is perpendicular to H(o), we see that L is perpendicular to H(x).
- 4) For each x on L-W, we define H(x) to be the hyperplane through x which is parallel to H(o). Then $\lambda(y)=0$ for every $y\in H(x)$. Indeed, suppose there is a point $y\in H(x)$ with $\lambda(y)\neq 0$. Then H(y), being parallel to H(o), must coincide with H(x). Since λ is constant on H(y), we must have $\lambda(x)\neq 0$, which is a contradiction.

We now show how f maps all H(x) into R^{n+1} . Let Y_t be a vector field along $L=L_t$ which is parallel to $Y \in T_0(o)$. We have locally

$$D_{f(\vec{L}_t)}f(Y_t) = f(\nabla_{\vec{L}_t}Y_t) + h(\vec{L}_t, Y_t) \xi = h(\vec{L}_t, Y_t)$$

since $\nabla_{\vec{L}_t} Y_t = 0$. If $\lambda(L_t) \neq 0$, then, in a neighborhood, Y_t belongs to T_0 and \vec{L}_t belongs to T_1 . Thus $h(\vec{L}_t, Y_t) = 0$. If $\lambda(L_t) = 0$, this means that h is identically 0 at the point L_t . Hence $h(\vec{L}_t, Y_t) = 0$. In either case, that is, for each point of L, we have $D_{f(\vec{L}_t)} f(Y_t) = 0$. This means that $f(Y_t)$ is parallel in R^{n+1} . It follows that f(H(x)), $x \in L$, are all parallel to the subspace $R^{n-1} = f(H(o))$.

Since L is perpendicular to all H(x) and since f is isometric, we see that $\gamma = f(L)$ is a curve on a plane perpendicular to R^{n-1} . From the fact that $f(Y_t)$ is parallel whenever Y_t is parallel along L, it follows, as in Proposition 3, (iii), that

$$f(L_t, Y) = (f_1(L_t), f_0(y))$$

for all $(L_t, y) \in L \times H(o) = M$, where f_1 and f_0 are the restrictions of f to L and H(o), respectively.

We have thus proved that $M = R^n$, which is the direct product of the straight line L and the hyperplane H(o), is mapped onto the cylinder $\gamma \times R^{n-1}$.

In the case where M is not simply connected, let \widetilde{M} be the universal covering of M with projection $\pi:\widetilde{M}\to M$. From the result for \widetilde{M} and its immersion $\widetilde{f}=f\circ\pi$, we see that $\widetilde{f}(\widetilde{M})=f(M)$ is a cylinder in the sense above.

We note that the result of Hartman-Nirenberg was earlier proved under

weaker differentiability assumptions by A. Pogorelov [8]. Also for the case of a 2-dimensional surface, see Massey [5]. As a matter of fact, our proof of the main theorem is an adaptation of Massey's arguments for a higher-dimensional case. For extensions of the cylinder theorem, see O'Neill [7] and Hartman [1].

BIBLIOGRAPHY

- P. HARTMAN, On isometric immersions in Euclidean space of manifolds with nonnegative sectional curvature, Trans. Amer. Math. Soc., 115(1965), 94-109.
- [2] P. HARTMAN AND L. NIRENBERG, On spherical image maps whose Jacobians do not change sign, Amer. Journ. Math., 81(1959), 901-920.
- [3] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963.
- [4] A. LICHNEROWICZ, Géométrie des groupes de transformations, Dunod, Paris, 1958.
- [5] W. S. MASSEY, Surfaces of Gaussian curvature zero in Euclidean 3-space, Tôhoku Math. Journ., 14(1962), 73-79.
- [6] K. NOMIZU, On infinitesimal holonomy and isotropy groups, Nagoya Math. Journ., 11(1957), 111–114.
- [7] B. O'NEILL, Isometric immersions which preserve curvatture operators, Proc. Amer. Math. Soc., 13(1962), 759-763.
- [8] A. POGORELOV, An extension of Gauss' theorem on the spherical representation of surfaces of bounded exterior curvature, Doklady Akademii Nauk, 111(1956), 945-947.
- [9] J. SIMONS, On transitivity of holonomy systems, Ann. of Math., 76(1962), 213-234.

DEPARTMENT OF MATHEMATICS BROWN UNIVERSITY PROVIDENCE, RHODE ISLAND, U.S.A.