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In Pontrjagin’s theory of duality for compact abelian groups, the following
theorem is well known :

Let G be a compact abelian group, G* the dual group. Then the
topological dimension of G, in the sense of Lebesgue, is equal to the rank
of discrete abelian group G*.

In his paper [3], S. Takahashi has formulated the corresponding theorem
in non-commutative case as follows.

THEOREM A. Let G be an arbitrary compact group, G* the aggregate
of continuous finite dimensional representations of G, C[G"] the algebra
over the complex numbers C generated by the coefficients of representations
in G°, i.e., the representative ring of G in the sense of C. Chevalley in [1].
Then the topological dimension of G, in the sense of Lebesgue, is equal to
the transcendental degree of CIG"] over C.

Another form of corresponding theorem is the following:

THEOREM B. Let G be the space consisting of conjugate classes of a
compact group G, G*¥ the characters of representations in G", C[G*] the
algebra over C generated by G*. Then the topological dimension of G is
equal to the transcendental degree of C[G¥*] over C.

Theorem A was affirmatively solved, but Theorem B was merely justified
for connected compact Lie groups, reducing it to the following fact; the
transcendental degree of C[G¥] over C is equal to the rank of G, i.e., the
topological dimension of a maximal abelian subgroup of G. Prof. T. Tannaka
has called my attention to justify Theorem B for arbitrary compact groups.
Unfortunately we have not succeeded to prove it by now, accordingly we
wish to content ourselves with proving the following fact:

THEOREM C. Let G be a compact group with the finite topological
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dimension, r the maximum number of topological dimension of abelian
subgroups in G. Then the transcendental degree of CIG*] over C is equal
to r.

The purpose of the present paper is to give the proof for Theorem C.

1. Notations. We shall use following notations for arbitrary compact
group.

dim (G) : the topological dimension of G in the sense of Lebesgue.

~G): the maximum number of topological dimension of abelian sub-
groups of G. If G is a connected Lie group, r(G) is equal to the topological
dimension of space G consisting of conjugate classes of G.

C[G*|S] (CIG"|S]) for any subset S of G: the algebra over C con51st1ng
of restriction of elements of character ring C[G*] (C[G"]) to S.

r(G*) = <C[G*]: C> : the transcendental degree of C[G*] over C.

1(G*|S) for any subset S of G: the transcendental degree of C[G*|S]
over C.

2. Reduction of the theorem to a connected case.

LEMMA 1. Let G be a compact topological group, G, the connected
component of unit element of G. Then it holds r(G) = r(G,).

PROOF. "Let T be any abelian' subgroup of G, T, the connected com-
ponent of unit element of T. Since T, T, are compact subgroups, they are
projective limit of compact Lie groups, ie., T =1imT,, Ty =1lim T,, acA

where 7T, are compact Lie groups, and for each a, T,, is a connected
component of unit element of 7T,. Since dim 7" (dim 7,) is the maximum
number of dim 7, (dim T, ,), and dim T, = dim T, ,, it holds dim 7’=dim 7T,.
Another one, T, is contained in G,, therefore, {(G) = r(G,). q.e.d.

In order to reduce our theorem to a connected case we must prove
r{G¥*) = r{G¥) and we shall begin with proving this equality for compact
Lie groups.

LEMMA 2. Let G be a compact Lie group, G, connected component
of unit element of G. Then it holds r(G}) = r(G*|G,)

Clearly it holds C[G}]) = C[G*|G,]. Let X be an irreducible character
of a continuous finite dimensional representation of G,, D a matrix
representation corresponding to X. Let
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G=alGo+a2Go+‘°’+anGo

be the coset decomposition of G with respect to G,, We now extend the
domain of definition of D as follows:

D(y) yeG

D(y) =
) 0 y&G.

Then Df? affords a matrix representation D¢ given by
Df(x) = (l.)(ajl xa))isi,j=ns <G

Then the induced character X% obtained from this satisfies
Xé(x) =Y X(ai'za), x<G.
i=1

Let I(G) be the set of inner automorphisms of G, and for o< I(G), f < C[G}],
we define f° by

fo(x) = fla'za) for all zeG,

where o means a mapping x — a~'ra. Then I(G,) is a normal subgroup of
I(G), and I(G)/I(G,) is a finite group. Since f° =f for any o< I(G,), it is
natural to think that & is an element of I(G)/I(G,) operating on C[G}].
If a character X an element of C[G}] is invariant under the operation of
any o € I(G)/I(G,), it holds

X¢(x) = >_X(ai'za,) = nX(x) for all x€G,,

i=1

that is, if we set X¢|G, the restriction of X¢ to G, then it holds the
following relation :

_}l_xﬂco =X, ie, XecC[G*|G,].

Let X be any character element of C[G}], and we consider the following
equation :

(X=X (X =X) e e (X=X =0
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where I(G)/IG,)={,%,+++,p}, and X unknown element. Then X is a
root of this equation, and each coefficients of X!, i=1,2,--.,n are characters
belonging to C[G}] and are invariant under the operation of o€ I(G)/I(G,),
therefore their each coefficient belongs to C[G¥*|G,], that is, X is algebraic
over C[G*¥|G,]. In S. Takahashi [3] Lemma 2, it is proved that C[G}¥] has
no zero-divisor, then C[G}] is algebraic over C[G*|G,)], i.e., (G¥) = H(G*|G,).

g-e. d.

LEMMA 3. Let G bz a compact Lie group, G, connected com ponent of
unit element of G, and let the coset decomposition of G with respect to
G, be

G=G +Gy++--+G,.
If it holds r(G*|G))=m, i =1,2,---,n, then we have r(G*) = m.

PROOF. Let fi,fs***,fm be arbitrary elements of C[G*]. Since
[i@), fo(x), « « +, fmra(x), £ G, are algebraically dependent, there exists a

non-trivial polynomial Fy(X,, X,, -, Xn41) in the polynomial ring C[X,, X,,
«e+, Xni] over C generated by indeterminates X, X,, -+, X, such that:

Fi(fl(x)7f2(x)’ e ,fm+1(x)) =0, xe Gi .
Therefore

T F(f@), ful@), - fa@) = 0, 2<G.

This means that f,,fs,+++,fms1 are algebraically dependent, i.e., 7G¥) = m.
g.e.d.

LEMMA 4. Let G, G, i =1,2,---,n) be as in Lemma 3. If U is any
open subset of G,, then r(G*|U) = r(G*|G,).

PROOF. Clearly it holds ~{G*|U) = r(G*|G,). Let r = r(G*|U), and f,,
fore++,frs1 any elements in C[G*|G;]. Then there exists a non-trivial
polynomial F(X;, X,,+-+, X,,1) in C[X,, X,,- -+, X,.1] such that:

Ffi(@), faolx), ., frulx)) =0 zeU.

This polynomial F is an analytic function on G,. Since G, is connected,
this equality holds everywhere on G,, i.e., "(G¥*|U) = r(G*|G)). q.e.d.
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LEMMA 5. Let G, G, i=1,2,--+,n be as in Lemma 3, C[G"] the
representative ring, C[G"|G,] the restriction of C[G"] to G,. Then C[G"|G;]

has no zero divisor.

PROOF. Assume f,(x)f5(x) = 0 everywhere on G;, where f}, f, are two
functions belonging to C[G"|G;]. We must then show that at least one of
S, f2 is zero everywhere on G;. Now as f,f; are analytic functions on G,
by property of analytic functions at least one of fi,f; is zero in a sufficiently
small open set of G;. Since G, is connected, this holds everywhere on G,.

LEMMA 6. Let G, G, be as in Lemma 2, T a maximal abelian sub-
group of G,. Then it holds r(G¥) = r(T%).

PROOF. See S. Takahashi [3] Theorem B.
LEMMA 7. Let G,G, be as in Lemma 2. Then it holds r(G¥) = r(G}).

PROOF. We have clearly r(G*)gr(G*lGO), accordingly it holds by
Lemma 2,

n(G*) = r(GY) .
Let the coset decomposition of G with respect to G, be
G=G,+G+---+G,,

and T be a maximal abelian subgroup of G,. In order to deduce r(G¥)
= r(G}), it is sufficient to prove r(G*|G,)=r(T%*) for i =1,2,---,n, by
Lemmas 3 and 6.

We put now 7{T%*) = r, and take out arbitrary r+1 elements of character
X, Xy, ¢+, X,,,€C[G*|G,]. Let each corresponding matrix representations
be Dy, Dy, ~«+, D,,,, that is, D/ale(x)) [=1,2,+«-,r+1, als(x) € C[G"|G,] for
xeG,;, and let the characteristic equation of D, be

QX)) = X"+ FiX"' +--- + F, =0,

where F!e C[G"|G,;]. If there is a reducible characteristic equation ®, = 0
over C[G"|G,;], we decompose this equation into irreducible equations over
CIG"|G,], ®: =0, ;=0,.--,® = 0. Since C[G"|G,] is the integral domain
by Lemma 5, the discriminants 9? of ® = 0 are all non-zero and belong to
CIG"|G,), that is:
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Then there exists an element ¢ in G, such that 9(¢g) #0 for [ =1,2,---,
r+1,8=1,2,---,s,. Therefore, since elements of C[G"|G,] are analytic on
G,, there exists a neighborhood U of ¢ such that UcG,, and roots Aj{(x)
(G=12,+,m) of &(x)=0(=1,2,---,r+1) for xc U are analytic on U.
Let C[A] be the algebra generated by M(x) £< U over C. In the proof of
Lemma 5, it is clear that C[A] is the integral domain and contain X,(z),
Xo(x),+++, X,1a(x), xe¢ U. Now we may assume that the representation of
the maximal abelian subgroup 7 by D, is diagonal :

hi@) 0
H0)
D) = o teT.

0 hi(e)

Since for each x €U, {M(x)}" is an eigen-value of a matrix D(z"), we set
M(x™)= {M(x)}". Since the order of G/G, is n, we have x" € G, for x €U,
and there exists an element g in G, with ¢~'2"y =t<T. Therefore, for
any A{, x<€ U, there exist t ¢ T and A} with

M(x™) = hi@).

Now we shall show that the transcendental degree of C[A] over C is at
most 7. By taking arbitrary »+1 elements of eigen-values A from C[\], we
can choose without loss of generality

1 2 $ 1 8 1 S,
)\'177\'1,"")\'1‘, 7\’27"':7\'22’"'77\'m:"°,7\'ﬂ?a

where s, + Sg+ oo+ sp=7r+1. Let ¥, [=1,2,---,m be the aggregates of
combinations (Z,, 7y, +,%;) to choose s, elements from 1,2,-..,n,. Since
the transcendental degree of C[T*] over C is r, there exist non-trivial
polynomials F,, ... .(X;, Xy, +++, X,41) in the polynomial ring C[X,, X,, - -
X,..] generated by indeterminates X, X,,- -+, X,,; over C such that:

5

Frrarorr,an(B (@), B, =+ = Ri(8), B3 (E), =+, in(E), = =+, ), + + +, hige(2) = O

there bY te T, a, € \I’l’ a1=(i1, st is.)a aZZ(kl’ MY kh)) ctc, am-——(tl’ M 7t8.)'

Let ®, be the aggregates of permutations (1’ Ztts

s ) of 5, elements and we
JusJas s ]s,

set
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Fﬁ:;gii:':/z:(y\‘}’ DY 7\’?[’ ki; DR hi’a D) 7\-1n, DR 7\':'7,")
= Fal,a,,...,a,(M‘, cee, M‘.., Ao e Mc.-., oo, 7\,5,-“ oo, )\,17:[,,.)
where

_ 1,2,0.',5 _ 1,2,-.0,52 . _(1,2,00.’Sm
ale@l’ Bl _<j1’j2’...’j131), 82_(k1,k2’_.. Sg)’ ’ Bm_ tutz,"',ts.)'

As g7'z*g =t < T, we have

I Fo&iiQd@™), -« -, M@, M), -« -, M x™),

ape¥y.By e 0y’

..,x}n(xn),..,,)\,:’?(xn)):o xzeU.

Since it holds M(x™) = \(x)™ for e U, A, AL -+, A", AN, oo+, MY -« -, AL,
<+, Nr are algebraically dependent, i.e., the transcendental degree of C[A]
over C is at most . Hence X,(x), Xy(x), * + -, Xr+1(x), x€ U are algebraically
dependent, Since C[G*|U] is the integral domain, we have ~(G¥|U)=r.
By Lemmas 3 and 4 we then have r(G¥) =r. g.e.d.

Now we shall refer to the reduction theory under compact topological
groups.

LEMMA 8. Let G be a compact topological group, G, the connected
component of unit element of G. Then we have r(G¥) = r(G}).

PROOF. We set n=r(G¥) and n,=r(G}), and let f,fs ", a1 be any
n,+1 elements in C[G¥*]. Then there is a compact Lie group G’ such that
G is homomorphic to G' and fi,fs+++,fun are defined on G, ie., they
belong to C[G'*]. Since G, is mapped onto a connected component G, of
unit element of G, f,,f,, -+, fn+1 are algebraically dependent, by Lemma 7,
hence n=n,. On the other hand, let f,,f5 -+, s be n+1 elements in
CIG}]. Since by Van Kampen’s theorem, any irreducible representation of
G, is contained in the restriction of a representation of G, there is a
compact Lie group G such that, if G, denotes the connected component of
unit of G’, then fi, fy,+++,fann are defined on G that is to say f,€C
[Ge*1, i=1,2,- -+, n+1. Since C[G*]CCI[G¥*], fi,fe . fnn are algebraically
dependent by Lemma 7, so that, we have n = n,.

3. On compact connected topological groups. Let G be a compact
connected finite dimensional topological group. Then in Pontrjagin [4]
example 107, it is shown that G is isomorphic to (L X H)/D, where L is a
compact simply connected semi-simple Lie group, and H a compact connected
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abelian group, dim H << oo, and D is a finite normal subgroup contained in
the center of the direct product Lx H, HND = {e}.

LEMMA 9. Let G, L, H be as above. Then r{G*) = r(L¥) + r(H¥).
PROOF. See S. Takahashi [3] Lemma 5.

LEMMA 10. Let G, L, H, D be as in Lemma 9, Tz a maximal abelian
subgroup of G, T, a maximal abelian subgroup of L. Then it holds
dim T; = dim T, + dim H.

PROOF. By applying Theorem A, we have easily that dim 7 + dim H
=dim T,.. Let f be the canonical mapping of L XH onto G, and we set
AL)=L", f(H)=H'. Then it holds G=L"-H’ where L'NH’ is a finite normal
subgroup of G, and H’ is contained in the center of G. Then it holds

G/H =L-H/H =L/L'nH

where L'/L'NH’ is a connected semi-simple Lie group. Let A be a maximal
abelian subgroup of L'/L'NH’, then it holds clearly dim T;,=dim A. Ty/H’
is isomorphic to a subgroup of A, so that, T,/H is a compact Lie group.
Then by Pontrjagin [4] Theorem 69, we have dim (T;/H')=dim Ty—dim H’,
that is to say dim 7y =<dim H' + dim 7T;. Since dim H = dim H’, we have
dim T = dim H + dim T7.

In S. Takahashi [3], it is shown that dim T, =~(L*), dim H = »(H¥).
Therefore by Lemmas 9 and 10, the following theorem is established :

THEOREM. Let G be a compact connected finite dimensional topological
group, T a maximal abelian subgroup. Then it holds rG*) = dim T.

Theorem C is now completely proved by the above theorem and Lemmas
1 and 8.
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