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In Pontrjagin's theory of duality for compact abelian groups, the following
theorem is well known:

Let G be a compact abelian group, G* the dual group. Then the
topological dimension of G, in the sense of Lebesgue, is equal to the rank
of discrete abelian group G*.

In his paper [3], S. Takahashi has formulated the corresponding theorem
in non-commutative case as follows.

THEOREM A. Let G be an arbitrary compact group, GA the aggregate
of continuous finite dimensional representations of G, C[GA] the algebra
over the complex numbers C generated by the coefficients of representations
in G\ i.e., the representative ring of G in the sense of C. Chevalley in [1].
Then the topological dimension of G, in the sense of Lebesgue, is equal to
the transcendental degree of C[G*] over C.

Another form of corresponding theorem is the following:

THEOREM B. Let G be the space consisting of conjugate classes of a
compact group G, G* the characters of representations in GA, C[G*] the
algebra over C generated by G*. Then the topological dimension of G is
equal to the transcendental degree of C\G*~\ over C.

Theorem A was affirmatively solved, but Theorem B was merely justified
for connected compact Lie groups, reducing it to the following fact the
transcendental degree of C[G*] over C is equal to the rank of G, i.e., the
topological dimension of a maximal abelian subgroup of G. Prof. T. Tannaka
has called my attention to justify Theorem B for arbitrary compact groups.
Unfortunately we have not succeeded to prove it by now, accordingly we
wish to content ourselves with proving the following fact:

THEOREM C. Let G be a compact group with the finite topological
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dimension, r the maximum number of topological dimension of abelian
subgroups in G. Then the transcendental degree of C[G*] over C is equal
to r.

The purpose of the present paper is to give the proof for Theorem C.

1. Notations. We shall use following notations for arbitrary compact
group.

dim (G): the topological dimension of G in the sense of Lebesgue.
r{G) : the maximum number of topological dimension of abelian sub-

groups of G. If G is a connected Lie group, riG) is equal to the topological
dimension of space G consisting of conjugate classes of G.

C[G*\S] (C[G* \S]) for any subset S of G: the algebra over C consisting
of restriction of elements of character ring C[G*] {C[GA]) to S.

r(G*) = <C[G*]: C> : the transcendental degree of C[G*] over C.
r(G* IS) for any subset S of G: the transcendental degree of C[G* \ S]

over C.

2. Reduction of the theorem to a connected case.

LEMMA 1. Let G be a compact topological group, Go the connected
component of unit element of G. Then it holds r(G) — r(G0).

PROOF. f Let T be any abelian subgroup of G, To the connected com-
ponent of unit element of T. Since T,T0 are compact subgroups, they are
projective limit of compact Lie groups, i.e., T — lim Ta, To — lim T α 0 , cceA

where Ta are compact Lie groups, and for each a, Ta>0 is a connected
component of unit element of Ta. Since dim T (dim To) is the maximum
number of dim Ta (dim Tα>0)> and dim Ta = dim T α 0 , it holds dim T=dim To.
Another one, To is contained in Go, therefore, r{G) = r(G0). q.e.d.

In order to reduce our theorem to a connected case we must prove
r(G*) = r(G$) and we shall begin with proving this equality for compact
Lie groups.

LEMMA 2. Let G be a compact Lie group, Go connected component
of unit element of G. Then it holds r(G$) = r(G* \ Go)

Clearly it holds C[G*]) 2 C[G* |G0]. Let % be an irreducible character
of a continuous finite dimensional representation of Go, D a matrix
representation corresponding to %. Let
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G = axG0 + α2G0 + — 4- anG0

be the coset decomposition of G with respect to Go. We now extend the
domain of definition of D as follows:

\D(y) yzG
D(y) =

( 0 y$G.

Then D^ affords a matrix representation DG given by

DG(x) = (ΪXμj1 xa,))WMn9 xzG.

Then the induced character XG obtained from this satisfies

Let I(G) be the set of inner automorphisms of G, and for σ€ /(G), / ^ C[G$],
we define / σ by

f"(x) = f(arιxά) for all Λ € Go

where σ means a mapping # —» α"1^:^. Then /(Go) is a normal subgroup of
/(G), and 7(G)//(G0) is a finite group. Since fσ=f for any σ € /(Go), it is
natural to think that <r is an element of 7(G)//(G0) operating on C[G$].
If a character X an element of C[G$] is invariant under the operation of
any o- € 7(G)//(G0), it holds

for all * € Go,

that is, if we set XG\G0 the restriction of XG to Go, then it holds the
following relation:

Let % be any character element of C\G%\ and we consider the following
equation:

X?) (X-Xf) = 0
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where 7(G)//(G0) = {σ, T, , p}, and X unknown element. Then X is a
root of this equation, and each coefficients of X*, i = l, 2, , n are characters
belonging to C[G$] and are invariant under the operation of σ <= 7(G)/7(G0),
therefore their each coefficient belongs to C[G*|G0], that is, X is algebraic
over C[G*|G0]. In S. Takahashi [3] Lemma 2, it is proved that C[G$] has
no zero-divisor, then C[G$] is algebraic over C[G*|G0], i.e., r(G*) = r(G*\G0).

q. e. d.

LEMMA 3. Let G bi a compact Lie group, Go connected component of
unit element of G, and let the coset decomposition of G with respect to
Go be

G = GX + G2 + . . . + Gn .

If it holds r(G*\Gi) 5g m> i — 1,2, , n, then we have r(G*) fg m.

PROOF. Let /i ,/ 2 , ,fm+i be arbitrary elements of C[G*]. Since
fι(x)>f2(x)j'' ,/m+i( £)> x^Gi are algebraically dependent, there exists a
non-trivial polynomial Fi(Xu X2, , XOT+i) in the polynomial ring C[XU X2,
• , Xm+i] over C generated by indeterminates X1? X2, , Xm+1 such that :

\Ux\ ,/m+i(*)) = 0, x € G,.

Therefore

π ufλχ\fiχ\ ,/««(*)) = o, Λ € G.
1 = 1

This means that / i , / 2 , ,/m+i are algebraically dependent, i.e., r{G*) ^ m.
q. e. d.

LEMMA 4. Z/̂ ί G, Gt (i = 1,2, , ή) be as in Lemma 3. If U is any
open subset of Gί9 then r(G*\U) = r(G*\Gt).

PROOF. Clearly it holds r{G* \ U) ^ r(G* \ G4). Let r = r(G* \ U), and fl9

fiy' * ffr+i any elements in CTG^lGj. Then there exists a non-trivial
polynomial F(XU X2, , Xr+i) in C[Xi, X2, , Xr+i] such that :

F{f(x\Ux\ ,/r+1(*)) = 0 x ̂  E7.

This polynomial F is an analytic function on Gt. Since G4 is connected,
this equality holds everywhere on Gi9 i.e., r(G* \ U) §: r(G* \ G4). q. e. d.
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LEMMA 5. Let Gy Gt i = 1,2, •• , n be as in Lemma 3, C[GΛ] the
representative ring, C[GA \Gt] the restriction of C[GA] to Gt. Then C[GA \Gi]
has no zero divisor.

PROOF. Assume fι(x)fi{x) ='0 everywhere on. G ,̂ where fl9f2 are two
functions belonging to C[GA \ G j . We must then show that at least one of
fuf2 is zero everywhere on Gt. Now as f,f2 are analytic functions on Gt,
by property of analytic functions at least one of / i ,/ 2 is zero in a sufficiently
small open set of Gt. Since Gt is connected, this holds everywhere on Gt.

LEMMA 6. Let G, Go be as in Lemma 2, T a maximal abelian sub-
group of Go. Then it holds r(G*) = r(T*).

PROOF. See S. Takahashi [3] Theorem B.

LEMMA 7. Let G, Go be as in Lemma 2. Then it holds r{G*) = r(G$).

PROOF. We have clearly r{G*) gr r(G* \ Go), accordingly it holds by
Lemma 2,

Let the coset decomposition of G with respect to Go be

and T be a maximal abelian subgroup of Go. In order to deduce r(G*)
^ r(G*\ it is sufficient to prove r(G*\Gt) ^ r(T*) for i = 1,2, . . , n, by
Lemmas 3 and 6.

We put now riT*) = r, and take out arbitrary r + 1 elements of character
Xi, 2̂> * > ^r+i ̂  C[G^ I G t]. Let each corresponding matrix representations
be Dl9 A , •• , Dr+i> that is, A ( ^ U ^)) / = 1, 2,. - , r + l , α ^ ) € C[GA |Gt] for
x^Gi, and let the characteristic equation of A be

Φ,(X) = X n ? + FIX"*-1 + . - . . + Fί, = 0 , .

where Fγ € C[GA | Gj . If there is a reducible characteristic equation Φt = 0
over C[GA |Gi], we decompose this equation into irreducible equations over
C[GA \Gt], Φ] = 0, Φ |-0 , ,ΦV = 0. Since G[GΛ |G,] is the integral domain
by Lemma 5, the discriminants J3)f of Φf = 0 are all non-zero and belong to

G a that is:



RING OF REPESENTATIVE OF A COMPACT GROUP

5)1 •• $ϊm ®ϊ- Sj\+χ 3)?& Φ 0

43

Then there exists an element g in G* such that 3)\(g) Φ 0 for Z = 1, 2, ,
r + 1 , δ = 1, 2, , 5j. Therefore, since elements of C[GS |GJ are analytic on
Gu there exists a neighborhood ί/ of g such that [7cG t , and roots λ/Or)
0',= 1, 2, •• , w;) of ΦL(x) = 0 (/ = 1, 2, , r+1) for ^ € U are analytic on £7.
Let C[λ] be the algebra generated by M(x) x^U over C. In the proof of
Lemma 5, it is clear that C[λ] is the integral domain and contain Xi(x),
tX2(x), , Xr+iix), x^U. Now we may assume that the representation of
the maximal abelian subgroup T by DL is diagonal :

DL(t) =

h\{t) 0
h\(t)

0

Since for each x^U, {M(x)}n is an eigen-value of a matrix DL(xn), we set
\{(xn)= [λ{(x)}n. Since the order of G/Go is n, we have ĉn € Go for x^U,
and there exists an element g in Go with g~xxny = tzT. Therefore, for
any λ/, x^U, there exist ί ί T and /if with

Now we shall show that the transcendental degree of C[λ] over C is at
most r. By taking arbitrary r + 1 elements of eigen-values λ{ from C[λ], we
can choose without loss of generality

λ}, λϊ, , λ?,

where S\ + s2 + + sm.= r + 1 . Let Ψh 1 = 1, 2, , m be the aggregates of
combinations (z\, z2, , i8ι) to choose 5f elements from 1, 2, , nL. Since
the transcendental degree of C[T*] over C is r, there exist non-trivial
polynomials 'jFαi,α2t:..>αιXX'i, X2, , Xr+i) in the polynomial ring C[Xl9 X2, ,
-X"r+i]' generated by indeterminates X1? X2, , Xr+1 over C such that:

Faι,a2,...,aM(t)> hm, = 0

there by * € T, tft <= Ψ,, α1 = (£1, ? z'J, Λ2 = (*i, , *tf), , Λm = (ί1, , ί,J

Let Θz be the aggregates of permutations ( .' .'" # *'S ί. ) of st elements and we

set
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ίΐ:S;::::2:(λί, , xf, XL. , x?,. , x*m, .

= ί1«,.«ii....«.(λ1

Λ, , xί\ xf, , xj<% , x i, , λ t )
where

As g~ιxng — t zT, we have

Π ^ ; ; £ ; : : : ± (xi(^n), , x?Oc»), xKχw), , x^(xw),

, X^(α:w)) - 0 xzU.

Since it holds \{{xn) = (M(x))n for α; € [7, X}, X?, , Xί1, XL , X22, , XL
• , X̂ "1 are algebraically dependent, i.e., the transcendental degree of C[X]
over C is at most r. Hence X^x), X^x), , %r+i(^:), x^U are algebraically-
dependent, Since C[G*|U] is the integral domain, we have r(G*\U)^r.
By Lemmas 3 and 4 we then have r(G*) fg r. q. e. d.

Now we shall refer to the reduction theory under compact topological
groups.

LEMMA 8. Let G be a compact topological group, Go the connected
component of unit element of G. Then we have r(G*) — r(Gf).

PROOF. We set n=r(G*) and no = r(G*), and let / l 5 / 2 , ,fno+ι be any
no4-l elements in C[G*]. Then there is a compact Lie group G such that
G is homomorphic to G and fl9f2, * ,/Wo+i are defined on G, i.e., they
belong to C[G*]. Since Go is mapped onto a connected component Go of
unit element of G, fi9f29 ,/Wo+i are algebraically dependent, by Lemma 7,
hence n^nQ. On the other hand, let fi,f29 ,fn+i be n + 1 elements in
C[G*]. Since by Van Kampen's theorem, any irreducible representation of
Go is contained in the restriction of a representation of G, there is a
compact Lie group G such that, if Go denotes the connected component of
unit of G', then / i ,/ 2 , ,/n+i are defined on Go, that is to say ft € C
[G;*], / = 1,2, . , n+1. Since C[G'*]cC[G*], fl9flf... , / n + 1 are algebraically
dependent by Lemma 7, so that, we have n g: ?z0.

3. On compact connected topological groups. Let G be a compact
connected finite dimensional topological group. Then in Pontrjagin [4]
example 107, it is shown that G is isomorphic to (LxH)/D, where L is a
compact simply connected semi-simple Lie group, and H a compact connected
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abelian group, d i m i ί < 00, and D is a finite normal subgroup contained in
the center of the direct product LxH, Hπ D = {e}.

LEMMA 9. Let G, L, H be as above. Then τ\G*) = r(L*) + r(H*).

PROOF. See S. Takahashi [3] Lemma 5.

LEMMA 10. Let G, L, H, D be as in Lemma 9, TG a maximal abelian
subgroup of G, TL a maximal abelian subgroup of L. Then it holds
dim TG = dim TL + dim H.

PROOF. By applying Theorem A, we have easily that dim TL + dim H
^ dim TG. Let / be the canonical mapping of LxH onto G, and we set
f(L) = L\ f(H)=H'. Then it holds G = L' H' where L'nH' is a finite normal
subgroup of G, and H' is contained in the center of G. Then it holds

G/H' = L' H'/H' s L'/L n H'

where L'/L' Π H' is a connected semi-simple Lie group. Let A be a maximal
abelian subgroup of L'/L'πH', then it holds clearly dim TL=dim A. TG/H'
is isomorphic to a subgroup of A, so that, TG/H' is a compact Lie group.
Then by Pontrjagin [4] Theorem 69, we have dim (TG/H') = dim TG — dim H\
that is to say dim TG fg dim H' + dim TL. Since dim H = dim H\ we have
dim TG = dim H + dim TL.

In S. Takahashi [3], it is shown that dim TL = r(L*), dim H = r(H*).
Therefore by Lemmas 9 and 10, the following theorem is established:

THEOREM. Let G be a compact connected finite dimensional topological
group, T a maximal abelian subgroup. Then it holds r{G*) = dim T.

Theorem C is now completely proved by the above theorem and Lemmas
1 and 8.
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