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1. Let Rn be the w-dimensional Euclidean space whose points x are
represented by its coordinates (xί9 , xn) and let ΩΓ = Rn x(0, T) ( T < + <χ>)
be a strip in the (n + l)-dimensional Euclidean half-space i?wx(0, oo). Every
point in ΩΓ is denoted by (x, t), xzRn, te (0, T).

We introduce a function space E\(βτ)(\ £ (0, 1]) which is the totality of
functions W(x, t) such that

in the closure QT of Ωτ for some positive constants μ and cc.
Consider a parabolic differential equation

/ I N T NΓ- 32w , ^ , 3w , du

(1) i Λ S Σ β f J ^ _ § _ + g f t t __. + α t

with variable coefficients atj ( = α u ) , έ4 and c defined in £}τ, where
n

Σ2 ai5%ι%i > 0 in χ5Γ for every non-zero real vector £=(£i,•••,£,»)• We assume

that there exist positive constants JK̂ , JK2> KZ and λ ^ (0,1] such that in Qτ

(2) Σ
i,i

( 3 ) | έ t

( 4 )

Under these assumptions the equation (1) was treated by many authors,
Krzyzaήski, Bodanko, Aronson, Besala and others. In particular, Bodanko [2]
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proved the existence and the uniqueness of solutions u(x, t) £ Eλ(Ωτ) of the
Cauchy problem for (1). Aronson-Besala [1] showed the existence of a
fundamental solution of (1) in some strip Rn x (0, T"), where T" fg T.

In this paper, we shall deal with the behavior of solutions of the Cauchy
problem of (1) for large \x\.

2. In the later discussion, the existence of positive function H(x, t) such
that LAΓrgO in ί2Γ, plays an important role. The following lemma shows
the existence of such a function.

LEMMA 1. Suppose that all the coefficients of the differential operator
L in (1) satisfy (2), (3) and (4). Let p be a number greater than 1. Then
the function

( 5 ) Ha = Ha(x, t) = exp[-< |α : | 2 + l)V ( α ) <]

satisfies LHa ^ 0 in &Ta = Rn x [0, Ta], where a>0, β(cc) = - [4tfλ2 Kγ

^ ) - 1 and Tα =

PROOF. It is easy to see that

α ) ί ] Σ ^

a)t - 4λ(λ-\)KX + 2λX 2n

So, if {x, t) is in Ωτ , then the term in the bracket of the last side of the

above is non-positive. Thus we have the lemma.

The following maximum principle due to Bodanko [2] will be important
in the later treatment.

LEMMA 2. Suppose that coefficients of L in (I) satisfy (2), (3) and
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c :g 0 in Qτ. If a usual solution u(x, t) e Eλ(Ωτ) of the equation (1) fulfills
\u(x,ϋ)\ 5g μ0 for a constant μ0, then \u(x, t)\ 5g μ0 throughout Qτ.

3. Now we consider a usual solution u(x, t) € Eλ(Ωτ) of (1). Here we
assume that all the coefficients of (1) satisfy (2), (3) and (4). Let us suppose
that \u(x, 0)| rg μ0 exp[—Λo(|x|2 + l)λ] for some positive constants μ0 and a0.
We put

u(x,t) = v(x,t)Hao(x,t),

where Hao(x, t) is obtained by putting a = <XQ in (5). Then it is obvious that

dv ^ LHao dv n

n T J-T
where bt* = bt-Acί0λ/^(*o)ί(|x|2 +1)*"1 Σ a,5xό. Lemma 1 implies that f:a

^ 0 in nτ , where Tα o=min(T, I/S^o)!'1) and β(ao)= -

<x0

Further in Qτ we have 1 *̂1 ^ i ^ 2 ( | ^ | 2 + l)1/2 for some positive constant

K'2 which is independent of t. Clearly | φ ; , 0 ) | = J ^ f e ^ L ^ ^ . Hence we
_ l ^ o O ^ O ) !

see by Lemma 2 that | v(x, t) \ ^ μ0 in QT .
Therefore it holds that

in S Γ β ;

If Tao < T, then we consider u(x, Tαo) to be the initial condition of u(x, t)
in Rn x (Tαo, 7

1) and repeat the same procedure as the above. Since

we get

\u(x,t)\ ^

in Rnx[Tao,Tao+Tai], where T β | = min(Γ-T α o ,
In general, if Tao+ +Tak < T, then by the argument used above, we

can conclude that

( 6 ) \u(x7t)\ ^
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in R" x [Tα, + + Tat, Tα o + + Tat + TatJ, where

TaM = min(T-(Ta, + •••+ Tat), \β(aop-(*+1))\"') > 0 .

We consider the convergent series

(7) Σl^or*)!-1

J\ + 2\K2n + ̂ P f e

a

For simplicity we put f=4ct0X
2Ku g = — 4λ(λ — l)i^i + 2λ,K2n, and

h = K3ctϊ\ Assume now 4fh-g2>0. The function [/>- r +# + Λpτ +T1 of
the real variable τ^(—oo, oo) has its maximum at τ = τ 0 = (l/2)logp(//Λp).

First suppose that / > Λ. Then we can find p0 ( > 1) so that if
Po > P > 1, then //Λ/> > 1, that is, τ0 > 0. Let p be the non-negative integer
such that p < τ0 :g /> + 1. Then we see easily from Afhp — g2 > 0 that

g

- {Ahpf-g*)2hp(f-I) '

The last term of the above will be denoted by T*(p), which is continuous
in p € [1, oo).

In the case when f^ h> we see that /:fg hp, τ0 rg 0 and that

The right hand side of (9) will be denoted by T**(p), which is also continuous
in [1, oo).

We put

iT*(p), (f>h)
(10) T(p)=\

Now we can prove the following
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THEOREM 1. Suppose that the parabolic operator L in (1) satisfies the
conditions (2), (3) and (4) in χ) r and that the constants KuK2,Kz appeared
in (2), (3) and (4) satisfy D = 4X2[(K2n - 2(λ-l)K 1 ) 2 - 4K&] < 0 . Let
u(x, t) <= Eλ(Ωτ) (λ £ (0,1]) be a usual solution of Lu = 0 in &T. Put

To = mm (T, - 7 = = tan

/br some positive constants μQ and oc0, then for any t in the closed interval
[0, T"] contained in [0, TO) there exists a positive constant d such that

for any x <= Rn.

PROOF. We see easily from the continuity of T(f>) in [1, oo) that there
exist a positive integer iVand a positive number p (>1) such that

Therefore, for Λ' = maxΓtfoP'*^*0^), we have \u(x91)\ ^

+ l)λ] at every point (xy t) € Rn x[0, T'], which proves the theorem.

4. Example. We consider a particular parabolic equation

(11) M + kX\x

where k (>0) is a constant. Krzyzaήski [3] proved the existence of the solution

(12)

ω t e t) ( * V ' ' Γ ^(2α:oCθS2^-^Sin2^) 1
M ^ ' τ> ~ \ 2a0 sin 2kt+k cos 2^ί / p [_ 2(2Λ0 sin 2/feί+A coβ 2*ί) J

of the above equation (11) in Rn X (0, π/4k) with the Cauchy data u(x, 0)
_ e-α.ix|« |jy. u s j ng t n e fundamental solution, which was constructed in [4].
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The solution u(x, t) decays exponentially as \x\-*oo if t<(l/2k)taxΓ1(2aQ/k).
If we put Kι = l, K2=0, K3=k2 and λ = l in our Theorem 1, then we get

the result stated above.
As is easily seen, the solution u(x, t) in (12) grows exponentially as

\χ >oo provided that t >

5. Recently Kusano [5] discussed the decay of solutions of the Cauchy
problem of (1) for large | x | under the assumptions (2), (3) and c :g K3 for
a positive constant K'3 in QT. Here we show that Kusano's result can be
derived from the discussion stated above. First we prove the following:

LEMMA 3. Let u(x, t) € Eλ(βτ) (λ € (0, 1]) be α usual solution of the
parabolic equation (1) and the operator L in (1) satisfy the conditions (2),
(3), and c fg 0 in χ5Γ If for some positive constants μ0, <X0 and λ € (0,1]

then there exists a positive constant oL = cc(a0, T) for which

\u(x, t)\^μ0exp[-<|α:|2 + l)λ]

in Qτ.

PROOF. We put K3=0 in (3). Then we get the divergent series

k=0

instead of the convergent series (7).

So we can easily conclude the existence of a positive constant a in our
lemma.

Now we can prove Kusano's result.

THEOREM 2. (Kusano [5]) Assume that the parabolic operator L in (1)
satisfies the conditions (2), (3) and c^K'z for a positive constant K'3 in χ5Γ.
Let u{x, t) e= Eλ(βτ) (λ € (0,1]) be a usual solution of Lu=0 in <&T. If

for some positive constants μ0 and ct09 then u(x> t) decays exponentially as
\x\ tends to oo for any t€ [0, 7^.
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PROOF. We put v{xy t)=u(x, t)e~Kit. Then v(x, t) satisfies

Lemma 3 implies the existence of a positive constant a such that | v(x, i) \

^/xoexp[-αΓ(|.r|2 + l)λ] in ΩΓ. Thus we see \u(x, i)\ ̂ /*Όexp[-S(|Λ;|2 + l)λ

-\-K'zt\, which proves our theorem.

6. By the similar argument to that used in §3, we can prove the following

whose proof is omitted.

THEOREM 3. Assume that the parabolic operator L in (1) satisfies the

conditions (2), (3) and

(4') c^K

in ΩT. Let u(x, t) e Eλ(β^) (λ € (0, 1]) be a usual solution of Lu=0 in ύ r If

\u(x,G)\ ^/ioexp[-tfo(|x|2 + l)λ]

for some positive constants μ0 and ccQ, then there exist positive constants

μ and ci for which

\u(x,t)\ ̂ K | ^ | 2 + l)^exp[-<|α:|2 + l)λ]

in Ωτ.

REMARK. If K3' = 0 in Theorem 3, then Theorem 3 also reduces to

Kusano's result, Theorem 2.
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