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In this paper we shall give an another proof of the Riesz decomposition
theorem for supermartingales and we shall consider on the Riesz-type decomposition
for local supermartingales.

1. Let (2, &, P) be the basic P-complete probability space and let &, be a
sub o-field of § such that &, C &, whenever m < n. It is clear that E[x,] decreases
if (x,, &,) is a supermartingale. We assume here the integrability of x, for each
n.

THEOREM 1. Let (x,, &,) be a supermartingale. Then x, can be written
as

—_ *
Zp = Zp" +Yn

where (x,%, §,) is a martingale and (y,, §») is a positive supermartingale if
and only if

(A) inf E[x,] > — oo
(there is no uniqueness)

PROOF. The condition is obviously necessary. Let us prove the sufficiency.
Since (x,, &) Is a supermartingale, we have

E[xn+k+l l %’n] é E[anc l %n] é Ly -

Put for each n

.I'n% = Illm E[xnwc l 8:7;] .

Clearly z,—z,*=0 and x,* is J,-measurable. If the condition (A) is fulfilled,
then from the monotone convergence theorem we have
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(1) Elz, — 2,"] = Ellim(x, — Elp 4] $a))]
= lim Elz, — ElZy.| Sal]
= Elz,] — lim E[,.]

= Elz,] —inf E[x,] < + oo.

Therefore x,—zx,* is integrable and so x,* is integrable. Moreover for each pair
m<n

Elz,*| ] = lim B (Elzy.| Fal} 15,
= lim Bl | Bl
= lim Bl Tl
— ¥

This implies that (x,*, §,) is a martingale and so it follows from z,*=ux, that
(Y &), where y, = x,—x,%,is a positive supermartingale. This completes the proof.

COROLLARY. If the condition (A) is fulfilled, then one may assume that
(Yn, &n) s a potential. (the Riesz decomposition theorem)

PROOF. In order to prove this corollary, it is sufficient to prove that the process
(¥n» Fn) constructed in the proof of Theorem 1 is a potential. It follows from (1) that

Ely.) = Elz,] — inf Elz,,]

and so lim E[y,] =0. This implies that (y,, J,) is a potential.

REMARK. If a supermartingale (x,, &,) is decomposable into a martingale and
a potential, then the decomposition is unique. Indeed we suppose that (x,, &,) has
two such decompositions :
Tn = 3™ +yn(l)

=2} +y,®.

Then for each %, we have
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23 ® — 23® = E[yRi| Fal — ElyRe [l -
Since each (y®, &,), (¢ =1, 2), is a potential, we have
E[,}im Elyii | Tl é}cim Elyi] =0.
Thus }cim E[y2|$.] = 0. This implies that x®=z¥®a.s. and so yP=yPa.ss.

2. We assume here that we are given on the basic probability space (Q,,P)
a right continuous, increasing family (F;)o<¢<.. of sub o-fields of §. We may, and do,

suppose that each &, contains all F-sets of P-measure zero.
To begin with, we shall consider on the Riesz decomposition for right continuous
supermartingales.

DEFINITION 1. Let X=(x,, &) and Y ={(y,, &§:) be two stochastic processes.
We say that Y is a modification of X if for each ¢t P(x, =y, =1.

In the followings we assume the integrability of x, for each ¢ if X = (x,, §,)
is a supermartingale.

LEMMA. Let X = (x,, &) be a supermartingale. Then there exists a right
continuous modification of X if and only if the function t— Elx,] is right
continuous.

PROOF. We designate by S a countable set which is dense in [0, co[. We
consider a sequence (f,)p-1.s... of elements of S such that #,>¢ which decreases
to ¢. Then the random variables x;, are uniformly integrable. Thus it follows from
Elx,,|&,]=x, for each n that we have
Elz, |&] =z, .

From the assumption on the right continuity of the family (&) we have
P (xt+ é xt) == 1

for each ¢. Clearly P(x,.=x,) =1 if and only if

E[x,] = Elx,,] = li_IE Elx,,].

Therefore if there exists a right continuous modification Y = (y,, §;) of X, then it
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follows from E[x,]=E[y,] for each ¢ that the function ¢ — E[z,] is right continuous.
Conversely if the mapping ¢— E[x,] is right continuous, then the stochastic process

X=(x,+,$.) is a desired right continuous modification of X. Hence the lemma is
established. (This proof is due to P. A. Meyer [1]).

THEOREM 2. Let X=(x,, &) be a right continuous supermartingale. Then
there exist a right continuous martingale X*=(x*, §,) and a positive right
continuous supermartingale Y = (y,, §.) satisfying

Plx,=z*+y, Vt=0) =1
if and only if

(B) inf E[z]> —oo.

0st<+o0

PROOF. The condition (B) is obviously necessary. Let us prove the sufficiency.
For each t E[z,,,|J.] decreases with respect to n. We define :

@ = lim Bl | 5]

Clearly x* is §;,-measurable and P(x;—x*=0) =1 for each ¢
It follows from the condition (B) that

(2) Elx, — z*] = Elz] — inf Elx] < +oco.

Thus x,—x* is integrable and so x,* is integrable. Moreover for each pair s<t¢
we have

Elz*|§,] = Ellim Elz,| $|§.]
= lim E[z,|3.]

= x*

from the monotone convergence theorem. Thus X*=(x*, ;) is a martingale. From
the assumption on the right continuity of the family (&,) there exists a right
continuous modification of X*. Without loss of generality we may assume that X*
is right continuous. Then the stochastic process Y = (y,, ¥.), where vy, = x,—x,*,
is a desired positive right continuous supermartingale. This completes the proof.

COROLLARY. If the condition (B) is fulfilled, then one may assume that
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the positive supermartingale Y = (y,, §,) is a potential. (the Riesz decomposition
theorem).

If a right continuous supermartingale X = (x,, &;) is decomposable into a right
continuous martingale and a potential, then it is easy to show that the decomposition
is unique.

We are now going to investigate the Riesz-type decomposition for local
supermartingales. Let % be a real number, 0 =% < + oo, and let X = (x;, &) be a
right continuous stochastic process. We shall say that it belongs to the class (D)
if all the random variables x, are uniformly integrable, T being any finite-valued
stopping times with respect to the family ().

DEFINITION 2. A right continuous process X=(x;, &,) is a local supermartingale
if and only if there exists an increasing sequence (r,) of stopping times with respect
to the family (&,), such that

1) P(limr, = +o0) =1

T—00

2) for every n, the process (&isr,, Jiar,) 1S a supermartingale which belongs
to the class (D).

To be short, we shall say that a stopping time T reduces the right continuous
process X = (x;, §:) if (Xipr)o<t< belongs to the class (D). Note that, in what
follows, we shall not use the uniform integrability of the family (xar,)osi<e for
each n.

THEOREM 3. Let X = (x,J,) be a local supermartingale. Then there
exist a local martingale X* =(x,*, §;) and a positive supermartingale Y =(y,, ;)
satisfying

P(xt = xt* ‘I"yt, VtzO) =1

if and only if there exists an increasing sequence (t,) of stopping times with
respect to the family (%), almost surely finite, reducing X=(x;, &) such that
P(limr,=c0) =1 and

(C) inf E[x,] > —oo.

PROOF. Necessity. Since X*=(x*, &) is a local martingale, there exists an
increasing sequence (7,) of stopping times, almost surely finite, reducing X* such
that P(lim 7,=o0) = 1. We may assume, without loss of generality, that for each

n—ro00

n P(r,=n)=1 and 7, reduces the process X = (x;, &:). Then for each & x¥ is
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integrable and for each pair m<n
E[x:/\f..lg:(rn /\Tn)/\fn] = x*(f.;/\fn)/\fn

because 7, /AT, is a stopping time with respect to the family (Fir,)ostcer As
nA\t,=7, and 7, AT, =7,, we have

Elx?,|8-.] = .

Tm

a.s.
Thus (x¥, &-,) is a martingale and it follows from P(x;=x*, Y ¢t=0) =1 that

Pz, =

w =1

for each 7. This implies that —oo<E[x¥*]=inf E[x.,].

Sufficiency. Without loss of generality, we may assume that for each we Q,
the trajectory t— x,(w) is right continuous. We may also assume that P(r,=n)=1
for all #. Then it is easy to show that (x., &) is a supermartingale. For each
t and each %, we have

(Vm =1,2,+-+), E[xr,4,|Firn] = EH{E[x.,...| Fepul} | Firnl
= Elx.,..|8in-] on (Nyx)®
where N is a §-set of P-measure zero which may depend on ¢ and %, and (N, )°

is the complement of N, with respect to Q. Since E[x...,|Jir.] decreases with
respect to m on (IN;x)¢, we can now give the following definition :

Xy =

k_{}niﬂE[x,J%M,.] on (Ng)°

Lipe, on Ni.

Clearly xf is &;p..-measurable. It follows from P(E[x. ..|&irel =Tipe, Vm) =1
that for each ¢ and each 2 we have

P(xtA,,—x;"_Z_O) =1.
From the monotone convergence theorem we have for each pair s <¢ and each %
Elzf|Fspe] = E[{vlni_{g Elz., | 8irel} | Finnl

= lim E[x:,,l gs/\ﬂ:]
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k

= Xs a. S.

Moreover it follows from the condition (C) that

(3) Elzip., — x] = Elxip.] — igf Elx. ]<+4oo.

This implies that s, —xf is integrable. Thus xf is integrable. Therefore for
each 2 X* = (x}, &ip.,) is a martingale. From the assumption on the right continuity

of the family () there exists a right continuous modification X* = (T, §ip) of
X*. Tt is clear that for each ¢ and each 2 we have

P(’ftk = ii—{l}o E[xr,.|%t/\rk]) = 1

Next we shall investigate on the relation of X* and X*+? p=1,2,-+-).
Since for each A€ Fin.., (ANE=T])N[EAT. =2l e F.(Vu=0), we have

AN [t é Tk] € %t/\u C %U\fmﬂ .

Thus it follows that for each A € Fiae,.,

[ Ew.®wdap=[  z.ap

AN[t=sT VNS

-[  Bw.Bu.14p.

AN[t=til
Since both Elx.,|8s.] and Elx.,|Firc.,] are Fiae.,-measureable, we have that for
each ¢
P(Elx..|8ir] = Elz., | Sire, ) t =76) = 0.

Thus P(ZfxZf*?, t =7,)=0 for each z. Let Q* be the set of all positive rational
numbers and we now put :

P Sk
Nr,k,p = [xrk Xzt r = Tk]

Then P(N) =0 where N = U N, i, and for each 0o & N we have

k,p=1,2,¢°
PR

Z' (o) = Zr*7(o)

for all p=1,2,+--. From the right continuities of X* and X**? it follows that
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P(3t=0,3k3p; xf(0) ¥ Ziihw(@) =0.

We may assume, without loss of generality, that for each o< Q the trajectories
t—zf(w) and t— Tf*?(») are right continuous. This implies that

(VtZO), it":?’itk;t‘: on N° (k,?:l’z’-o.).
Now we can give the following definition :

lim x/ on N°¢
L —
aZ® = { e

X on N.

Then clearly x,* is §-measurable and we have
Plat., =xf Yt=0)=1.

Since X* = (xF, Tipe,) is a right continuous martingale which belongs to the class
(D), X*=(a/*, &) is a local martingale. Then Y = (y;, &), where y,=x,—x/*, is a

positive local supermartingale. It is easy to see that for each pair s<t and each
k we have

E[yt/\rk | %}s] _—<—_ys/\r,, .
From the Fatou’s lemma we have

E[ytlg's] éy s

Since Yy, = Zor,,—Lir., Is integrable, Y = (y, &) is a positive right continuous
supermartingale. This completes the proof.

COROLLARY. If the condition (C) is fulfilled, then one may assume that
the positive supermartingale is a potential. (the Riesz-type decomposition theorem
for local supermartingales). :

PROOF. In order to prove this corollary it is sufficient to prove that the process
Y =(y,3:) constructed in the proof of Theorem 3 is a potential. It follows from ( 3)
that
lim Ey,] = lim Eflim(a.., — zi).,)]

= lim lim inf Elx;,., — &,
t—oo k=~

= ltim lim E[x;.,] — inf Elx,,] .

00 koo
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Since P(r,=n) =1 and lkim Elxip.,] = Elxip.,] for every n, we have

11m lim E[x:p.] = Elx.,] .

t—oo k—roo

for every n. Therefore for every n

%im Ely:)] = E[x.,] — inf E[z.,] .
This inequality implies that ltim E[y,]=0. Hence the corollary is established.

REMARK. If a local supermartingale X = (x;, &:) is decomposable into a local
martingale and a potential which belongs to the class (D), then the decomposition
is unique. In fact, we suppose that X has two such decompositions :

x=x Y+ yP
= xf® 4y,
Then there exists an increasing sequence (7,) of stopping times with respect to

the family (&) reducing X = (x, &) and X*O= (¥, &), (6=1,2), such that
P(lim m,=c0) = 1. Without loss of generality, we may assume that P(r,=n)=1

Nn—oco

for every n. It is easy to see that for each =0 we have

xi"ﬁZ x*/\(?,). = E[y(z+u)/\r.. ‘%t/\‘rn] - E[y(t+u)/\r, |%}t/\rn] .

Since each Y®= (y{», ), ( =1, 2), is a potential which belongs to the class (D),
we have
E[lim lim E yE?lm Atn i %t/\r,.]]

n—o0 Y—»co

= Ellim E[y:?|Sie,]]

=lim E[y®] = 0.

n—so0

Therefore 2}V = x}® a.s. and so y¥ =y{» a.s. for each ¢.

REFERENCE

[1] P.A.MEYER, Probabilités et potentiel, Hermann, Paris, 1966.

MATHEMATICAL INSTITUTE
A

TOHOKU UNIVERSITY

SENDAI, JAPAN





