REMARKS ON THE RIESZ DECOMPOSITION FOR SUPERMARTINGALES

NORIHIKO KAZAMAKI

(Received 26 December 1969)

In this paper we shall give an another proof of the Riesz decomposition theorem for supermartingales and we shall consider on the Riesz-type decomposition for local supermartingales.

1. Let $(\Omega, \mathfrak{F}, P)$ be the basic P-complete probability space and let \mathfrak{F}_n be a sub σ -field of \mathfrak{F} such that $\mathfrak{F}_m \subset \mathfrak{F}_n$ whenever m < n. It is clear that $E[x_n]$ decreases if (x_n, \mathfrak{F}_n) is a supermartingale. We assume here the integrability of x_n for each n.

Theorem 1. Let (x_n, \mathfrak{F}_n) be a supermartingale. Then x_n can be written as

$$x_n = x_n^* + y_n$$

where (x_n^*, \mathfrak{F}_n) is a martingale and (y_n, \mathfrak{F}_n) is a positive supermartingale if and only if

$$\inf_{n} E[x_n] > -\infty$$

(there is no uniqueness)

PROOF. The condition is obviously necessary. Let us prove the sufficiency. Since (x_n, \mathcal{F}_n) is a supermartingale, we have

$$E[x_{n+k+1}|\mathfrak{F}_n] \leq E[x_{n+k}|\mathfrak{F}_n] \leq x_n$$
.

Put for each n

$$x_n^* = \lim_{k \to \infty} E[x_{n+k} | \mathfrak{F}_n].$$

Clearly $x_n - x_n^* \ge 0$ and x_n^* is \mathfrak{F}_n -measurable. If the condition (A) is fulfilled, then from the monotone convergence theorem we have

$$\begin{split} E[x_n - x_n^*] &= E[\lim_{n \to \infty} (x_n - E[x_{n+k} | \mathfrak{F}_n])] \\ &= \lim_{k \to \infty} E[x_n - E[x_{n+k} | \mathfrak{F}_n]] \\ &= E[x_n] - \lim_{k \to \infty} E[x_{n+k}] \\ &= E[x_n] - \inf_{m} E[x_m] < + \infty \; . \end{split}$$

Therefore $x_n - x_n^*$ is integrable and so x_n^* is integrable. Moreover for each pair m < n

$$\begin{split} E[x_n^* | \mathfrak{F}_m] &= \lim_{k \to \infty} E[\{E[x_{n+k} | \mathfrak{F}_n]\} | \mathfrak{F}_m] \\ &= \lim_{k \to \infty} E[x_{n+k} | \mathfrak{F}_m] \\ &= \lim_{k \to \infty} E[x_{m+k} | \mathfrak{F}_m] \\ &= x_m^*. \end{split}$$

This implies that (x_n^*, \mathfrak{F}_n) is a martingale and so it follows from $x_n^* \leq x_n$ that (y_n, \mathfrak{F}_n) , where $y_n = x_n - x_n^*$, is a positive supermartingale. This completes the proof.

COROLLARY. If the condition (A) is fulfilled, then one may assume that (y_n, \mathfrak{F}_n) is a potential. (the Riesz decomposition theorem)

PROOF. In order to prove this corollary, it is sufficient to prove that the process (y_n, \mathcal{F}_n) constructed in the proof of Theorem 1 is a potential. It follows from (1) that

$$E[y_n] = E[x_n] - \inf_{n} E[x_n]$$

and so $\lim_{n\to\infty} E[y_n] = 0$. This implies that (y_n, \mathfrak{F}_n) is a potential.

REMARK. If a supermartingale (x_n, \mathfrak{F}_n) is decomposable into a martingale and a potential, then the decomposition is unique. Indeed we suppose that (x_n, \mathfrak{F}_n) has two such decompositions:

$$x_n = x_n^{*(1)} + y_n^{(1)}$$
$$= x_n^{*(2)} + y_n^{(2)}.$$

Then for each k, we have

$$x_n^{*(1)} - x_n^{*(2)} = E[y_{n+k}^{(2)} | \mathfrak{F}_n] - E[y_{n+k}^{(1)} | \mathfrak{F}_n].$$

Since each $(y_n^{(i)}, \mathfrak{F}_n)$, (i = 1, 2), is a potential, we have

$$E[\lim_{k\to\infty} E[y_{n+k}^{(i)} \mid \mathfrak{F}_n]] \leq \lim_{k\to\infty} E[y_{n+k}^{(i)}] = 0.$$

Thus $\lim_{k\to\infty} E[y_{n+k}^{(i)}|\mathfrak{F}_n] = 0$. This implies that $x_n^{*(1)} = x_n^{*(2)}a$. s. and so $y_n^{(1)} = y_n^{(2)}a$. s.

2. We assume here that we are given on the basic probability space $(\Omega, \mathfrak{F}, P)$ a right continuous, increasing family $(\mathfrak{F}_t)_{0 \le t < \infty}$ of sub σ -fields of \mathfrak{F} . We may, and do, suppose that each \mathfrak{F}_t contains all \mathfrak{F} -sets of P-measure zero.

To begin with, we shall consider on the Riesz decomposition for right continuous supermartingales.

DEFINITION 1. Let $X = (x_t, \mathfrak{F}_t)$ and $Y = (y_t, \mathfrak{F}_t)$ be two stochastic processes. We say that Y is a modification of X if for each t $P(x_t = y_t) = 1$.

In the followings we assume the integrability of x_t for each t if $X = (x_t, \mathfrak{F}_t)$ is a supermartingale.

LEMMA. Let $X = (x_t, \mathfrak{F}_t)$ be a supermartingale. Then there exists a right continuous modification of X if and only if the function $t \to E[x_t]$ is right continuous.

PROOF. We designate by S a countable set which is dense in $[0, \infty[$. We consider a sequence $(t_n)_{n=1,2,\dots}$ of elements of S such that $t_n > t$ which decreases to t. Then the random variables x_{t_n} are uniformly integrable. Thus it follows from $E[x_{t_n}|\mathfrak{F}_t] \leq x_t$ for each n that we have

$$E[x_{t+}|\mathfrak{F}_t] \leq x_t$$
.

From the assumption on the right continuity of the family (\mathfrak{F}_t) we have

$$P(x_{t+} \leq x_t) = 1$$

for each t. Clearly $P(x_{t+}=x_t)=1$ if and only if

$$E[x_t] = E[x_{t+}] = \lim_{n \to \infty} E[x_{t_n}].$$

Therefore if there exists a right continuous modification $Y = (y_t, \mathfrak{F}_t)$ of X, then it

follows from $E[x_t] = E[y_t]$ for each t that the function $t \to E[x_t]$ is right continuous. Conversely if the mapping $t \to E[x_t]$ is right continuous, then the stochastic process $\widetilde{X} = (x_{t+}, \mathfrak{F}_t)$ is a desired right continuous modification of X. Hence the lemma is established. (This proof is due to P. A. Meyer [1]).

THEOREM 2. Let $X = (x_t, \mathfrak{F}_t)$ be a right continuous supermartingale. Then there exist a right continuous martingale $X^* = (x_t^*, \mathfrak{F}_t)$ and a positive right continuous supermartingale $Y = (y_t, \mathfrak{F}_t)$ satisfying

$$P(x_t = x_t^* + y_t, \quad \forall t \ge 0) = 1$$

if and only if

$$\inf_{0 \le t < +\infty} E[x_t] > -\infty.$$

PROOF. The condition (B) is obviously necessary. Let us prove the sufficiency. For each t $E[x_{n\vee t}|\mathfrak{F}_t]$ decreases with respect to n. We define:

$$x_t^* = \lim_{n \to \infty} E[x_n | \mathfrak{F}_t].$$

Clearly x_t^* is \mathfrak{F}_t -measurable and $P(x_t - x_t^* \ge 0) = 1$ for each t. It follows from the condition (B) that

$$(2) E[x_t - x_t^*] = E[x_t] - \inf_{0 \le t < +\infty} E[x_t] < +\infty.$$

Thus $x_t - x_t^*$ is integrable and so x_t^* is integrable. Moreover for each pair s < t we have

$$\begin{split} E[x_t^* | \mathfrak{F}_s] &= E[\lim_{n \to \infty} E[x_n | \mathfrak{F}_t] | \mathfrak{F}_s] \\ &= \lim_{n \to \infty} E[x_n | \mathfrak{F}_s] \\ &= x_s^* \end{split}$$

from the monotone convergence theorem. Thus $X^* = (x_t^*, \mathfrak{F}_t)$ is a martingale. From the assumption on the right continuity of the family (\mathfrak{F}_t) there exists a right continuous modification of X^* . Without loss of generality we may assume that X^* is right continuous. Then the stochastic process $Y = (y_t, \mathfrak{F}_t)$, where $y_t = x_t - x_t^*$, is a desired positive right continuous supermartingale. This completes the proof.

COROLLARY. If the condition (B) is fulfilled, then one may assume that

the positive supermartingale $Y = (y_t, \mathfrak{F}_t)$ is a potential. (the Riesz decomposition theorem).

If a right continuous supermartingale $X = (x_t, \mathcal{F}_t)$ is decomposable into a right continuous martingale and a potential, then it is easy to show that the decomposition is unique.

We are now going to investigate the Riesz-type decomposition for local supermartingales. Let u be a real number, $0 \le u < +\infty$, and let $X = (x_t, \mathfrak{F}_t)$ be a right continuous stochastic process. We shall say that it belongs to the class (D) if all the random variables x_{τ} are uniformly integrable, τ being any finite-valued stopping times with respect to the family (\mathfrak{F}_t) .

DEFINITION 2. A right continuous process $X = (x_t, \mathfrak{F}_t)$ is a local supermartingale if and only if there exists an increasing sequence (τ_n) of stopping times with respect to the family (\mathfrak{F}_t) , such that

- 1) $P(\lim \tau_n = +\infty) = 1$
- 2) for every n, the process $(x_{t\wedge\tau_n}, \mathfrak{F}_{t\wedge\tau_n})$ is a supermartingale which belongs to the class (D).

To be short, we shall say that a stopping time τ reduces the right continuous process $X = (x_t, \mathfrak{F}_t)$ if $(x_{t \wedge \tau})_{0 \leq t < \infty}$ belongs to the class (D). Note that, in what follows, we shall not use the uniform integrability of the family $(x_{t \wedge \tau_n})_{0 \leq t < \infty}$ for each n.

THEOREM 3. Let $X = (x_t, \mathfrak{F}_t)$ be a local supermartingale. Then there exist a local martingale $X^* = (x_t^*, \mathfrak{F}_t)$ and a positive supermartingale $Y = (y_t, \mathfrak{F}_t)$ satisfying

$$P(x_t = x_t^* + y_t, \forall t \geq 0) = 1$$

if and only if there exists an increasing sequence (τ_n) of stopping times with respect to the family (\mathfrak{F}_t) , almost surely finite, reducing $X=(x_t,\mathfrak{F}_t)$ such that $P(\lim \tau_n = \infty) = 1$ and

$$\inf_{x} E[x_{\tau_n}] > -\infty.$$

PROOF. Necessity. Since $X^* = (x_t^*, \mathfrak{F}_t)$ is a local martingale, there exists an increasing sequence (τ_n) of stopping times, almost surely finite, reducing X^* such that $P(\lim_{n\to\infty}\tau_n=\infty)=1$. We may assume, without loss of generality, that for each n $P(\tau_n\leqq n)=1$ and τ_n reduces the process $X=(x_t,\mathfrak{F}_t)$. Then for each k $x_{\tau_k}^*$ is

integrable and for each pair m < n

$$E[x_{n\wedge\tau_n}^*|\mathfrak{F}_{(\tau_m\wedge\tau_n)\wedge\tau_n}]=x_{(\tau_m\wedge\tau_n)\wedge\tau_n}^*$$

because $\tau_m \wedge \tau_n$ is a stopping time with respect to the family $(\mathfrak{F}_{t \wedge \tau_n})_{0 \leq t < \infty}$. As $n \wedge \tau_n = \tau_n$ and $\tau_m \wedge \tau_n = \tau_m$, we have

$$E[x_{\tau_{m}}^{*}|\mathfrak{F}_{\tau_{m}}]=x_{\tau_{m}}^{*}$$
 a. s.

Thus $(x_{\tau_n}^*, \mathfrak{F}_{\tau_n})$ is a martingale and it follows from $P(x_t \ge x_t^*, \forall t \ge 0) = 1$ that

$$P(x_{\tau_{\bullet}} \geq x_{\tau_{\bullet}}^*) = 1$$

for each n. This implies that $-\infty < E[x_{\tau_1}^*] \leq \inf_{n} E[x_{\tau_n}]$.

Sufficiency. Without loss of generality, we may assume that for each $\omega \in \Omega$, the trajectory $t \to x_t(\omega)$ is right continuous. We may also assume that $P(\tau_n \leq n) = 1$ for all n. Then it is easy to show that $(x_{\tau_n}, \mathfrak{F}_{\tau_n})$ is a supermartingale. For each t and each k, we have

$$\begin{split} (\forall m=1,2,\cdots), \ E[x_{\tau_{\mathsf{m} \star \mathsf{k} \star \mathsf{l}}} | \, \mathfrak{F}_{t \wedge \tau_{\mathsf{k}}}] &= E[\{E[x_{\tau_{\mathsf{m} \star \mathsf{k} \star \mathsf{l}}} | \, \mathfrak{F}_{\tau_{\mathsf{m} \star \mathsf{k}}}]\} \, | \, \mathfrak{F}_{t \wedge \tau_{\mathsf{k}}}] \\ & \leqq E[x_{\tau_{\mathsf{m} \star \mathsf{k}}} | \, \mathfrak{F}_{t \wedge \tau} \,] \quad \text{on} \ (N_{t,k})^c \end{split}$$

where $N_{t,k}$ is a \mathfrak{F} -set of P-measure zero which may depend on t and k, and $(N_{t,k})^c$ is the complement of $N_{t,k}$ with respect to Ω . Since $E[x_{\tau_{-t,k}}|\mathfrak{F}_{t\wedge\tau_{-}}]$ decreases with respect to m on $(N_{t,k})^c$, we can now give the following definition:

$$x_t^k = egin{cases} \lim_{m o \infty} E[x_{ au_m} | \mathfrak{F}_{t \wedge au_k}] & ext{on} & (N_{t,k})^c \ x_{t \wedge au_k} & ext{on} & N_{t,k}. \end{cases}$$

Clearly x_t^k is $\mathfrak{F}_{t \wedge \tau_k}$ -measurable. It follows from $P(E[x_{\tau_{-k}} | \mathfrak{F}_{t \wedge \tau_k}] \leq x_{t \wedge \tau_k}, \forall m) = 1$ that for each t and each k we have

$$P(x_{tAT}, -x_t^k \ge 0) = 1$$
.

From the monotone convergence theorem we have for each pair s < t and each k

$$\begin{split} E[x_t^k | \mathfrak{F}_{s \wedge \tau_k}] &= E[\{\lim_{m \to \infty} E[x_{\tau_m} | \mathfrak{F}_{t \wedge \tau_k}]\} | \mathfrak{F}_{s \wedge \tau_k}] \\ &= \lim_{m \to \infty} E[x_{\tau_m} | \mathfrak{F}_{s \wedge \tau_k}] \end{split}$$

$$=x_s^k$$
 a.s.

Moreover it follows from the condition (C) that

$$(3) E[x_{t\wedge \tau_k} - x_t^k] = E[x_{t\wedge \tau_k}] - \inf_m E[x_{\tau_m}] < +\infty.$$

This implies that $x_{t \wedge \tau_k} - x_t^k$ is integrable. Thus x_t^k is integrable. Therefore for each k $X^k = (x_t^k, \mathfrak{F}_{t \wedge \tau_k})$ is a martingale. From the assumption on the right continuity of the family (\mathfrak{F}_t) there exists a right continuous modification $\widetilde{X}^k = (\mathfrak{F}_t^k, \mathfrak{F}_{t \wedge \tau_k})$ of X^k . It is clear that for each t and each k we have

$$P(\boldsymbol{\tilde{x}}_t^k = \lim_{m \to \infty} E[\boldsymbol{x}_{\tau_m} | \boldsymbol{\mathfrak{F}}_{t \wedge \tau_k}]) = 1$$

Next we shall investigate on the relation of \widetilde{X}^k and \widetilde{X}^{k+p} $(p=1,2,\cdots)$. Since for each $\Lambda \in \mathfrak{F}_{t \wedge \tau_{*p}}$ $(\Lambda \cap [t \leq \tau_k]) \cap [t \wedge \tau_k \leq u] \in \mathfrak{F}_u(\forall u \geq 0)$, we have

$$\Lambda \cap [t \leqq \tau_k] \in \mathfrak{F}_{t \wedge \tau_k} \subset \mathfrak{F}_{t \wedge \tau_{k+p}}$$
.

Thus it follows that for each $\Lambda \in \mathfrak{F}_{t \wedge \tau_{t+n}}$

$$\begin{split} \int_{\Lambda \cap [\ell \leq \tau_k]} E[x_{\tau_m} | \mathfrak{F}_{t \wedge \tau_k}] dP &= \int_{\mathbf{V} \cap [\ell \leq \tau_k]} x_{\tau_m} dP \\ &= \int_{\Lambda \cap [\ell \leq \tau_k]} E[x_{\tau_m} | \mathfrak{F}_{t \wedge \tau_k}] dP \,. \end{split}$$

Since both $E[x_{\tau_m}|\mathfrak{F}_{t\wedge \tau_k}]$ and $E[x_{\tau_m}|\mathfrak{F}_{t\wedge \tau_k,\mathbf{p}}]$ are $\mathfrak{F}_{t\wedge \tau_k,\mathbf{p}}$ -measureable, we have that for each t

$$P(E[x_{\tau_{\mathbf{m}}}|\mathfrak{F}_{t\wedge\tau_{k}}] \neq E[x_{\tau_{\mathbf{m}}}|\mathfrak{F}_{t\wedge\tau_{k+\mathbf{m}}}], t \leq \tau_{k}) = 0.$$

Thus $P(\hat{x}_t^k \neq \tilde{x}_t^{k+p}, t \leq \tau_k) = 0$ for each t. Let Q^+ be the set of all positive rational numbers and we now put:

$$N_{r,k,p} = [\widetilde{x}_r^k + \widetilde{x}_r^{k+p}, r \leq \tau_k]$$

Then P(N) = 0 where $N = \bigcup_{\substack{k,p=1,2,\dots\\r \in O^*}} N_{r,k,p}$, and for each $\omega \notin N$ we have

$$\widetilde{x}_{r}^{k}(\boldsymbol{\omega}) = \widetilde{x}_{r}^{k+p}(\boldsymbol{\omega})$$

for all $p=1, 2, \cdots$. From the right continuities of \widetilde{X}^k and \widetilde{X}^{k+p} it follows that

$$P(\exists \ t \geq 0, \exists \ k, \exists \ p \ ; \ \widetilde{x}_t^{k}(\omega) \neq \widetilde{x}_{t \wedge \tau_k(\omega)}^{k+p}(\omega)) = 0.$$

We may assume, without loss of generality, that for each $\omega \in \Omega$ the trajectories $t \to \widetilde{x}_t^{\kappa}(\omega)$ and $t \to \widetilde{x}_t^{k+p}(\omega)$ are right continuous. This implies that

$$(\forall t \geq 0), \ \widehat{x}_t^k = \widetilde{x}_{t \wedge \tau}^{k+p} \ \text{on} \ N^c \ (k, p = 1, 2, \cdots).$$

Now we can give the following definition:

$$x_t^* = egin{cases} \lim_{j o \infty} \widetilde{x}_t^j & ext{ on } N^c \ x_t & ext{ on } N. \end{cases}$$

Then clearly x_{ι}^* is \mathfrak{F}_{ι} -measurable and we have

$$P(x_{t \wedge \tau_k}^* = \check{x}_t^k, \ \forall \ t \geq 0) = 1.$$

Since $X^k = (\tilde{x}_t^k, \mathfrak{F}_{t \wedge \tau_k})$ is a right continuous martingale which belongs to the class (D), $X^* = (x_t^*, \mathfrak{F}_t)$ is a local martingale. Then $Y = (y_t, \mathfrak{F}_t)$, where $y_t = x_t - x_t^*$, is a positive local supermartingale. It is easy to see that for each pair s < t and each k we have

$$E[y_{t \wedge \tau_k} | \mathfrak{F}_s] \leq y_{s \wedge \tau_k}$$
.

From the Fatou's lemma we have

$$E[y_t|\mathfrak{F}_s] \leq y_s$$
.

Since $y_0 = x_{0 \wedge \tau_k} - x_{0 \wedge \tau_k}^*$ is integrable, $Y = (y_t, \mathfrak{F}_t)$ is a positive right continuous supermartingale. This completes the proof.

COROLLARY. If the condition (C) is fulfilled, then one may assume that the positive supermartingale is a potential. (the Riesz-type decomposition theorem for local supermartingales).

PROOF. In order to prove this corollary it is sufficient to prove that the process $Y = (y_t, \mathfrak{F}_t)$ constructed in the proof of Theorem 3 is a potential. It follows from (3) that

$$\begin{split} \lim_{t \to \infty} E[y_t] &= \lim_{t \to \infty} E[\lim_{k \to \infty} (x_{t \wedge \tau_k} - x_{t \wedge \tau_k}^*)] \\ &\leq \lim_{t \to \infty} \liminf_{k \to \infty} E[x_{t \wedge \tau_k} - x_{t \wedge \tau_k}^*] \\ &\leq \lim_{t \to \infty} \lim_{k \to \infty} E[x_{t \wedge \tau_k}] - \inf_{m} E[x_{\tau_m}] \,. \end{split}$$

Since $P(\tau_n \leq n) = 1$ and $\lim_{k \to \infty} E[x_{t \wedge \tau_k}] \leq E[x_{t \wedge \tau_n}]$ for every n, we have

$$\lim_{t\to\infty}\lim_{k\to\infty}E[x_{t\wedge\tau_k}]\leqq E[x_{\tau_n}].$$

for every n. Therefore for every n

$$\lim_{t\to\infty} E[y_t] \leq E[x_{\tau_n}] - \inf_m E[x_{\tau_m}].$$

This inequality implies that $\lim_{t\to\infty} E[y_t] = 0$. Hence the corollary is established.

REMARK. If a local supermartingale $X = (x_t, \mathfrak{F}_t)$ is decomposable into a local martingale and a potential which belongs to the class (D), then the decomposition is unique. In fact, we suppose that X has two such decompositions:

$$x_t = x_t^{*(1)} + y_t^{(1)}$$
$$= x_t^{*(2)} + y_t^{(2)}.$$

Then there exists an increasing sequence (τ_n) of stopping times with respect to the family (\mathfrak{F}_t) reducing $X=(x_t,\mathfrak{F}_t)$ and $X^{*(i)}=(x_t^{*(i)},\mathfrak{F}_t)$, (i=1,2), such that $P(\lim_{n\to\infty}\tau_n=\infty)=1$. Without loss of generality, we may assume that $P(\tau_n\leq n)=1$ for every n. It is easy to see that for each $u\geq 0$ we have

$$x_{\iota\wedge\tau_n}^{*(1)} - x_{\iota\wedge\tau_n}^{*(2)} = E[y_{(\iota+u)\wedge\tau_n}^{(2)} \,|\, \mathfrak{F}_{\iota\wedge\tau_n}] - E[y_{(\iota+u)\wedge\tau_n}^{(1)} \,|\, \mathfrak{F}_{\iota\wedge\tau_n}] \;.$$

Since each $Y^{(i)} = (y_t^{(i)}, \mathfrak{F}_t)$, (i = 1, 2), is a potential which belongs to the class (D), we have

$$\begin{split} E[\lim_{n\to\infty} \lim_{u\to\infty} E[\mathcal{Y}_{(t+u)\wedge\tau_n}^{(t)}|\,\mathfrak{F}_{t\wedge\tau_n}]] \\ &= E[\lim_{n\to\infty} E[\mathcal{Y}_{\tau_n}^{(t)}|\,\mathfrak{F}_{t\wedge\tau_n}]] \\ &\leq \lim_{n\to\infty} E[\mathcal{Y}_{\tau_n}^{(t)}] = 0 \;. \end{split}$$

Therefore $x_t^{*(1)} = x_t^{*(2)}$ a.s. and so $y_t^{(1)} = y_t^{(2)}$ a.s. for each t.

REFERENCE

[1] P. A. MEYER, Probabilités et potentiel, Hermann, Paris, 1966.

MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY SENDAI, JAPAN