Tôhoku Math. Journ. 23(1971), 245-258.

SOME REMARKS ON SEMI-GROUPS OF NONLINEAR OPERATORS

ISAO MIYADERA

(Rec. Aug. 29, 1970)

1. Let X be a Banach space, and let X_0 be a subset of X. By a contraction semi-group on X_0 we mean a family $\{T(t); t \ge 0\}$ of operators from X_0 into X_0 satisfying the following conditions:

(1.1) $T(0) = I \text{ (the identity)}, T(t+s) = T(t)T(s) \text{ for } t, s \ge 0;$

(1.2) $||T(t)x - T(t)y|| \le ||x - y||$ for $t \ge 0$ and $x, y \in X_0$;

(1.3)
$$\lim_{t\to 0^+} T(t)x = x \quad \text{for } x \in X_0.$$

We define the *infinitesimal generator* A_0 of $\{T(t); t \ge 0\}$ by $A_0 x = \lim_{h \to 0^+} h^{-1}(T(h)x - x)$ and the *weak infinitesimal generator* A' by $A'x = \underset{h \to 0^+}{\text{w-lim}} h^{-1}(T(h)x - x)$ whenever the right sides exist.

We shall deal with multi-valued operators. By a multi-valued operator A in X we mean that A assigns to each $x \in D(A)$ a subset $Ax \neq \emptyset$ of X, where $D(A) = \{x \in X; Ax \neq \emptyset\}$. And D(A) is called the domain of A, and the range of A is defined by $R(A) = \bigcup_{x \in D(A)} Ax$. We define $|||Ax||| = \inf\{||x'||; x \in Ax\}$ for $x \in D(A)$ and $A^{\circ}x = \{x' \in Ax; ||x|| = |||Ax|||\}$. A° is called the *canonical restriction* of A. A multi-valued operator A in X is said to be closed, if the graph $G(A) = \bigcup_{x \in D(A)} [x, Ax]$ is closed in the product space $X \times X$ where $[x, Ax] = \{[x, x'] \in X \times X; x' \in Ax\}$ for $x \in D(A)$.

We now introduce the notion of dissipativity. Let X^* be the dual space of X and (x, x^*) denote the value of $x^* \in X^*$ at $x \in X$. A multi-valued operator A in X is said to be *dissipative* if for each $x, y \in D(A)$ and $x' \in Ax$, $y' \in Ay$ there exists a $\xi^* \in F(x-y)$ such that

(1.4)
$$\operatorname{Re}(x'-y',\zeta^*) \leq 0,$$

where $F(x) = \{x^* \in X^*; (x, x^*) = \|x\|^2 = \|x^*\|^2\}$ for $x \in X$ and Re (x, x^*) means the

real part of (x, x^*) . It is known that A is dissipative if and only if

(1.5)
$$||x-y-\lambda(x'-y')|| \ge ||x-y||$$

for $\lambda > 0$, $x, y \in D(A)$ and $x' \in Ax$, $y' \in Ay$ (see[5]). Recently Crandall and Liggett [3] proved the following

THEOREM A. If A is a dissipative operator satisfying

(c₁)
$$R(I-\lambda A)\supset D(A)$$
 for $\lambda > 0$,

then there exists a contraction semi-group $\{T(t); t \ge 0\}$ on $\overline{D(A)}$ such that for each $x \in R \cap \overline{D(A)}$

(1.6)
$$T(t)x = \lim_{\lambda \to 0^+} (I - \lambda A)^{-[t/\lambda]} x$$

uniformly on every bounded interval of $[0, \infty)$, and

(1.7)
$$||T(t)x-T(s)x|| \leq |||Ax||| |t-s| \text{ for } x \in D(A) \text{ and } t, s \geq 0,$$

where $R = \bigcap_{\lambda>0} R(I - \lambda A)$ and [] denotes the Gaussian bracket.

In Section 2 we shall prove the following

THEOREM 1. In addition to the assumption of Theorem A, suppose that A is closed. Let $\{T(t); t \ge 0\}$ be the contraction semi-group on $\overline{D(A)}$ given by Theorem A. If $x \in \overline{D(A)}$ and if T(t)x is strongly differentiable at $t_0>0$, then

$$T(t_0)x \in D(A) \text{ and } [(d/dt)T(t)x]_{t=t_0} \in AT(t_0)x.$$

This theorem has been proved in [3] under the condition

(c₂)
$$R(I-\lambda A)\supset \operatorname{co} D(A)$$
 for $\lambda > 0$,

where $\operatorname{co} D(A)$ denotes the convex hull of D(A).

The proof of Theorem 1 is based on Lemma 1. By using the same lemma we have the following

THEOREM 3. Let A be maximal dissipative in $\overline{D(A)}$ satisfying (c_1) , and let $\{T(t); t \ge 0\}$ be the contraction semi-group on $\overline{D(A)}$ given by Theorem A. Assume that A^0 is single valued.

(i') If X is reflexive, then $D(A^0)=D(A)$, A^0 is the weak infinitesimal generator of $\{T(t); t \ge 0\}$ on $\overline{D(A)}$ and

$$(w-D^+)T(t)x = A^\circ T(t)x$$
 for $x \in D(A)$ and $t \ge 0$.

(ii') If X is uniformly convex, then $D(A^0)=D(A)$, A^0 is the infinitesimal generator of $\{T(t); t \ge 0\}$ on $\overline{D(A)}$ and

$$D^+T(t)x = A^{\circ}T(t)x$$
 for $x \in D(A)$ and $t \ge 0$.

Here $D^+T(t)x$ (or $(w-D^+)T(t)x$) denotes the strong (or weak) right derivative of T(t)x.

And it follows from Theorem 3 that if X and X^* are uniformly convex and if A is closed dissipative satisfying (c₁), then A^0 is single valued with $D(A^0) = D(A)$ and it is the infinitesimal generator of a unique contraction semi-group on $\overline{D(A)}$ (Corollary 2).

In Section 3 we shall deal with approximation of contraction semi-groups. And we may obtain the following

THEOREM 4. Let $\{T(t); t \ge 0\}$ be a contraction semi-group on a closed convex set X_0 , and put $E = \{x \in X_0; ||A^h x|| = O(1) \text{ as } h \to 0+\}$, where $A^h = h^{-1}(T(h)-I)$. Then for each $x \in \overline{E}$

(1.8)
$$T(t)x = \lim_{(\lambda,h) \to (0,0)} (I - \lambda A^{h})^{-[t/\lambda]} x$$

uniformly on every bounded interval of $[0, \infty)$.

For $\{T(t); t \ge 0\}$ in Theorem 4, we have also that for each $x \in E$

(1.9)
$$T(t)x = \lim_{t \to \infty} \{(1-t)I + t T(1/n)\}^n x$$

uniformly in $t \in [0, 1]$ (Corollary 3).

Theorem 4 is somewhat sharper than a theorem due to Neuberger [9], and (1.9) is well known in linear case (see [4, Theorem 10. 4. 3]).

REMARK. Theorem A can be extended to the following form (see [3]). If $A - \omega I$ is dissipative for some $\omega \ge 0$ and $R(I - \lambda A) \supset D(A)$ for $\lambda \in (0, 1/\omega)$, then there exists a semi-group $\{T(t); t \ge 0\} \in Q_{\omega}(\overline{D(A)})$ satisfying (1.6) with $R = \bigcap_{\lambda \in (0, 1/\omega)} R(I - \lambda A)$ and

(1.7)
$$||T(t)x - T(s)x|| \leq e^{\omega \max(t,s)} |||Ax||| |t-s|$$

for $x \in D(A)$ and $t, s \ge 0$. And the results mentioned in Section 2 may be also extended to this type. Here by $\{T(t); t \ge 0\} \in Q_{\omega}(X_0)$ we mean that $T(t), t \ge 0$ are operators from X_0 into itself with the properties (1, 1), (1, 3) and

(1.2)
$$||T(t)x - T(t)y|| \leq e^{\omega t} ||x - y||$$
 for $t \geq 0$ and $x, y \in X_0$.

Our results in Section 3 also hold true for semi-groups of class $Q_{\omega}(X_0)$.

2. We define < , $>_s : X \times X \rightarrow (-\infty, \infty)$ by

$$< x, y >_s = \sup \{ \operatorname{Re}(x, y^*) ; y^* \in F(y) \}.$$

It is shown that $|\langle x, y \rangle_s | \leq ||x|| ||y||$ and

 $(2,1) < , >_s: X \times X \rightarrow (-\infty, \infty)$ is upper semicontinuous (see [3, Lemma 2.16]).

Let A be dissipative satisfying the condition

(c₁')
$$R(I-\lambda A) \supset \overline{D(A)}$$
 for $\lambda > 0$.

Since A is dissipative one can define for each $\lambda > 0$ a single valued operator $J_{\lambda} = (I - \lambda A)^{-1} : R(I - \lambda A) \rightarrow D(A)$ such that

$$||J_{\lambda}x - J_{\lambda}y|| \leq ||x - y||$$
 for $x, y \in R(I - \lambda A)$.

We set $A_{\lambda} = \lambda^{-1}(J_{\lambda} - I)$ for $\lambda > 0$. The following properties of A_{λ} are well known:

(2.2)
$$A_{\lambda}x \in AJ_{\lambda}x$$
 for $x \in R(I - \lambda A)$;

$$(2.3) ||A_{\lambda}x|| \leq |||Ax||| for x \in D(A) ext{ and } \lambda > 0.$$

Theorem A shows that

(2.4)
$$\lim_{\lambda \to 0+} J_{\lambda}^{l_t/\lambda_1} x \text{ exists for } x \in \overline{D(A)} \text{ and } t \ge 0,$$

and if T(t)x is defined as the limit in (2.4) then $\{T(t); t \ge 0\}$ is a contraction semi-group on $\overline{D(A)}$ satisfying

(2.5)
$$||T(t)x - T(s)x|| \leq |||Ax||| |t - s|$$
 for $x \in D(A)$ and $t, s \geq 0$.

LEMMA 1. Let A be dissipative satisfying (c_1) and let $\{T(t); t \ge 0\}$ be the contraction semi-group on $\overline{D(A)}$ defined by the limit in (2.4). If $x \in \overline{D(A)}$ and $y_0 \in Ax_0$, then

(2.6)
$$\sup_{\zeta^* \in F(x-x_0)} \limsup_{t\to 0+} \operatorname{Re}\left(\frac{T(t)x-x}{t}, \zeta^*\right) \leq \langle y_0, x-x_0 \rangle_s.$$

PROOF. Since $\|J_{\lambda}^{[t/\lambda]}x_0 - x_0\| \leq [t/\lambda] \|J_{\lambda}x_0 - x_0\| \leq t \|\|Ax_0\|\|$, we have

$$(2.7) \quad \|J_{\lambda}^{[t/\lambda]}x - x_0\| \leq \|J_{\lambda}^{[t/\lambda]}x - J_{\lambda}^{[t/\lambda]}x_0\| + \|J_{\lambda}^{[t/\lambda]}x_0 - x_0\| \leq \|x - x_0\| + t \|\|Ax_0\|\|$$

for $\lambda > 0$ and $t \ge 0$. For each $\lambda > 0$ and positive integer k,

$$y_{\lambda,k} \equiv \lambda^{-1} (J_{\lambda}{}^k x - J_{\lambda}{}^{k-1} x) = A_{\lambda} J_{\lambda}{}^{k-1} x \in A J_{\lambda}{}^k x$$

by (2.2). Since A is dissipative, there is an $\eta^* \in F(J_{\lambda}{}^k x - x_0)$ such that

(2.8)
$$\operatorname{Re}(y_{\lambda,k} - y_0, \eta^*) \leq 0$$
.

Now

$$\begin{aligned} \operatorname{Re}(y_{\lambda,k},\eta^*) &= \lambda^{-1} \operatorname{Re}(J_{\lambda}{}^k x - x_0 - \{J_{\lambda}{}^{k-1} x - x_0\}, \eta^*) \\ &\geq \lambda^{-1}(\|J_{\lambda}{}^k x - x_0\|^2 - \|J_{\lambda}{}^{k-1} x - x_0\| \|J_{\lambda}{}^k x - x_0\|) \\ &\geq (2\lambda)^{-1}(\|J_{\lambda}{}^k x - x_0\|^2 - \|J_{\lambda}{}^{k-1} x - x_0\|^2); \end{aligned}$$

and hence

$$\begin{split} \|J_{\lambda}{}^{k}x - x_{0}\|^{2} - \|J_{\lambda}{}^{k-1}x - x_{0}\|^{2} &\leq 2\lambda \operatorname{Re}(y_{\lambda,k}, \eta^{*}) \\ &= 2\lambda \operatorname{Re}(y_{\lambda,k} - y_{0}, \eta^{*}) + 2\lambda \operatorname{Re}(y_{0}, \eta^{*}) \\ &\leq 2\lambda \operatorname{Re}(y_{0}, \eta^{*}) \ (by(2, 8)) \\ &\leq 2\lambda < y_{0}, J_{\lambda}{}^{k}x - x_{0} > s. \end{split}$$

Since $J_{\lambda}^{[\tau/\lambda]}x = J_{\lambda}{}^kx$ for $k\lambda \leq \tau < (k+1)\lambda$,

(2.9)
$$\|J_{\lambda}^{k}x - x_{0}\|^{2} - \|J_{\lambda}^{k-1}x - x_{0}\|^{2}$$
$$\leq 2 \int_{k\lambda}^{(k+1)\lambda} \langle y_{0}, J_{\lambda}^{[\tau/\lambda]}x - x_{0} \rangle_{s} d\tau$$

Let $t \ge \lambda$ and add (2.9) for $k = 1, 2, \dots, [t/\lambda]$. Then we have

$$\begin{split} \|J_{\lambda}^{\lfloor t/\lambda \rfloor} x - x_0\|^2 - \|x - x_0\|^2 \\ & \leq 2 \int_{\lambda}^{(\lfloor t/\lambda \rfloor + 1)\lambda} < y_0, J_{\lambda}^{\lfloor t/\lambda \rfloor} x - x_0 > s \ d\tau \end{split}$$

Taking the lim sup as $\lambda \rightarrow 0+$ we have from (2.7), (2.1) and the Lebesgue convergence theorem that for $t \ge 0$

(2.10)
$$\|T(t)x - x_0\|^2 - \|x - x_0\|^2$$
$$\leq 2 \int_0^t \langle y_0, T(\tau)x - x_0 \rangle_s \, d\tau \, .$$

Since $||T(t)x - x_0||^2 - ||x - x_0||^2 \ge 2 \operatorname{Re}(T(t)x - x, \zeta^*)$ for any $\zeta^* \in F(x - x_0)$, (2.10) yields

(2.11)
$$\operatorname{Re}(T(t)x - x, \zeta^*) \leq \int_0^t \langle y_0, T(\tau)x - x_0 \rangle_s d\tau$$

for $t \ge 0$.

In view of (2, 1) and the strong continuity of $T(\tau)x$ in $\tau \ge 0, \langle y_0, T(\tau)x - x_0 \rangle_s$ is upper semicontinuous in $\tau \ge 0$. Thus for any $\varepsilon > 0$ there is a $\delta > 0$ such that

$$<\!\!y_{\scriptscriptstyle 0}, T(\tau)x - x_{\scriptscriptstyle 0}\!\!>_s < <\!\!y_{\scriptscriptstyle 0}, x - x_{\scriptscriptstyle 0}\!\!>_s + {\boldsymbol arepsilon} ext{ for } 0 \leq au < {\boldsymbol \delta}$$
 .

It follows from (2.11) that if $0 < t < \delta$ then

$$\operatorname{Re}\left(rac{T(t)x-x}{t},\zeta^{*}
ight) \leq <\!\!y_{\scriptscriptstyle 0}, x-x_{\scriptscriptstyle 0}\!\!>_{s}+arepsilon$$
 .

Consequently

$$\limsup_{t\to 0+} \operatorname{Re}\left(\frac{T(t)x-x}{t},\zeta^*\right) \leq \langle y_0, x-x_0 \rangle_s$$

for any $\zeta^* \in F(x-x_0)$. This completes the proof.

PROOF OF THEOREM 1. We note that under assumptions of Theorem 1, (2.6) in Lemma 1 holds true. In fact, $R(I-\lambda A)$ is closed for each $\lambda > 0$ because A is closed; and hence (c₁) implies (c₁'). Then, by using the same method as in the proof of Theorem II in [3], we obtain the conclusion. Q. E. D.

REMARK. In [3], the condition (c_2) has been used only to prove Lemma 1 above.

Let A_i , i=1, 2 be multi-valued operators in X. A_2 is an extension of A_1 , and A_1 is a restriction of A_2 , in symbol $A_2 \supset A_1$, $A_1 \subset A_2$, if $D(A_1) \subset D(A_2)$ and $A_1x \subset A_2x$ for $x \in D(A_1)$. If S is a subset of X and A is a dissipative operator, we say that A is maximal dissipative in S if $D(A) \subset S$ and A has not any proper dissipative extension \widetilde{A} such that $D(\widetilde{A}) \subset S$. Lemma 1 leads to the following

COROLLARY 1. Let A be maximal dissipative in D(A) satisfying (c₁), and let $\{T(t); t \ge 0\}$ be the contraction semi-group on $\overline{D(A)}$ defined by the limit in (2, 4). (Note that (c₁') is satisfied, since the maximality of A implies that A is closed.)

(i) If $x \in \overline{D(A)}$ and if $x' = \underset{t_n \to 0+}{\text{w-lim}} t_n^{-1}(T(t_n)x - x)$, then $x \in D(A^0)$, $x \in A^0x$ and

$$\lim_{t_n \to 0^+} t_n^{-1} \|T(t_n)x - x\| = \|x\| = \|Ax\|.$$

(ii) If X is reflexive, then

 $\{x \in \overline{D(A)}; \|T(t)x - x\| = O(t) \text{ as } t \to 0+\} = D(A) = D(A^{\circ})$

and for each x belonging to the set above

$$\lim_{t\to 0+} t^{-1} \|T(t)x - x\| = \|\|Ax\|\|.$$

PROOF. (i) We first note that there is a $y^* \in F(y)$ such that $\langle x, y \rangle_s = \operatorname{Re}(x, y^*)$ since F(y) is compact in the weak* topology of X^* .

Let $x_0 \in D(A)$ and let $y_0 \in Ax_0$. By Lemma 1,

$$\sup_{\boldsymbol{\zeta}^{*} \in F(\boldsymbol{x}-\boldsymbol{x}_{0})} \operatorname{Re}(\boldsymbol{x},\boldsymbol{\zeta}^{*}) \leq \operatorname{Re}(\boldsymbol{y}_{0},\boldsymbol{\eta}^{*}) \text{ for some } \boldsymbol{\eta}^{*} \in F(\boldsymbol{x}-\boldsymbol{x}_{0}).$$

So that

$$\operatorname{Re}(x'-y_0,\eta^*) \leq 0 \quad \text{for some } \eta^* \in F(x-x_0)$$

The maximal dissipativity of A implies that $x \in D(A)$ and $x' \in Ax$ (see [6, Lemma 3.4]). But, by (2.5), $||T(t_n)x-x|| \leq |||Ax||| t_n$. And hence

$$|||Ax||| \le ||x'|| \le \liminf_{t_n \to 0+} t_n^{-1} ||T(t_n)x - x||$$

$$\leq \limsup_{t_n \to 0^+} t_n^{-1} ||T(t_n) x - x|| \leq |||Ax|||.$$

Thus $\lim_{t_n \to 0^+} t_n^{-1}(\|T(t_n)x - x\|) = \|x\| = \||Ax\||$, $x \in D(A^\circ)$ and $x' \in A^\circ x$.

(ii) Clearly $\{x \in \overline{D(A)}; \|T(t)x-x\| = O(t) \text{ as } t \to 0+\} \supset D(A) \supset D(A^{0})$ by (2.5). Let $x \in \overline{D(A)}$ and let $\|T(t)x-x\| = O(t)$ as $t \to 0+$. It follows from the reflexivity of X that every sequence $\{t_{n}\}, t_{n} \to 0+$ has a subsequence $\{t_{n_{i}}\}$ such that $\{t_{n_{i}}^{-1}(T(t_{n_{i}})x-x)\}$ is weakly convergent. Therefore, by (i), $x \in D(A^{0})$ and $\lim_{t_{n_{i}}\to0+} t_{n_{i}}^{-1}\|T(t_{n_{i}})x-x\| = \|\|Ax\|\|$. And the uniqueness of the limit shows

$$\lim_{t \to 0+} t^{-1} ||T(t)x - x|| = |||Ax|||.$$

Q. E. D.

Let us now consider the Cauchy problem

(2.12) $(d/dt)u(t) \in Au(t)$ a. e. $t \in [0, \infty), u(0) = x$

where A is a given dissipative operator. A single valued mapping $u(t) : [0, \infty) \to X$ is called a *solution* of (2.12) if u(t) is Lipschitz continuous in $t \ge 0$, u(t) is strongly differentiable at a.e. $t \ge 0$, $u(t) \in D(A)$ for a.e. $t \in [0, \infty)$ and u(t)satisfies (2.12). It follows from the dissipativity of A that (2.12) has at most one solution (for example, see the proof of Theorem 3 in [8]).

In view of Theorem 1 we have the following

THEOREM 2. Let A be closed dissipative satisfying (c₁), and let $\{T(t); t \ge 0\}$ be the contraction semi-group on $\overline{D(A)}$ given by Theorem A.

(a) If T(t)x with $x \in D(A)$ is strongly differentiable at a.e. $t \in [0, \infty)$ then it is a unique solution of (2, 12).

(b) If X is reflexive then for each $x \in D(A)$ T(t)x is a unique solution of (2, 12).

PROOF. By (1.7), T(t)x is Lipschitz continuous in $t \ge 0$ if $x \in D(A)$. Therefore (a) follows from Theorem 1. If X is reflexive, then every Lipschitz continuous X-valued function in $t \ge 0$ is strongly differentiable at a.e. $t \in [0, \infty)$ (see [7, Appendix]). Hence (b) is obtained. Q. E. D.

REMARK. Let A be dissipative satisfying the condition (c_1) , and let $x \in D(A)$. It has been proved by Brezis and Pazy [1] that if u(t) is a solution of (2.12)

then $u(t) = \lim_{\lambda \to 0^+} (I - \lambda A)^{-[t/\lambda]} x$ uniformly on every bounded interval of $[0, \infty)$ and $(d/dt)u(t) \in A^0 u(t)$ for a.e. $t \in [0, \infty)$.

Theorem 2 (b) shows that if X is reflexive and if A is closed dissipative satisfying (c_1) , then $\{T(t); t \ge 0\}$ difined by

(2.13)
$$T(t)x = \lim_{\lambda \to 0+} (I - \lambda A)^{-[t/\lambda]} x \text{ for } x \in \overline{D(A)} \text{ and } t \ge 0$$

is a unique contraction semi-group on $\overline{D(A)}$ such that for each $x \in D(A)$,

$$||T(t)x - T(s)x|| \le |||Ax||| |t-s|$$
 for $t, s \ge 0$

and

$$(d/dt)T(t)x \in AT(t)x$$
 a.e. $t \in [0, \infty)$

(and hence $(d/dt)T(t)x \in A^{\circ}T(t)x$ a.e. $t \in [0, \infty)$).

Our next problem is to find the infinitesimal generator of this semi-group.

THEOREM 3. Let A be maximal dissipative in $\overline{D(A)}$ satisfying (c₁), and let {T(t); $t \ge 0$ } be the contraction semi-group on $\overline{D(A)}$ defined by (2.13). Assume that A° is single valued. Then we have

(i') if X is reflexive, then $D(A^0) = D(A)$, A^0 is the weak infinitesimal generator of $\{T(t); t \ge 0\}$ on $\overline{D(A)}$ and

(2.14)
$$(w-D^+)T(t)x = A^{\circ}T(t)x \text{ for } x \in D(A) \text{ and } t \ge 0,$$

(ii) if X is uniformly convex, then $D(A^0)=D(A)$, A^0 is the infinitesimal generator of $\{T(t); t \ge 0\}$ on $\overline{D(A)}$ and

(2.15) $D^+T(t)x = A^{\circ}T(t)x$ for $x \in D(A)$ and $t \ge 0$.

PROOF. (i) We proved already

$$\{x \in \overline{D(A)}; \|T(h)x - x\| = O(h) \text{ as } h \to 0+\} = D(A) = D(A^{\circ})$$

(Corollary 1 (ii)). From this and $||T(h)T(t)x-T(t)x|| \leq ||T(h)x-x||, T(t)x \in D(A^{\circ})$ for $x \in D(A^{\circ})$ and $t \geq 0$. Thus it suffices to show that

(2.16) w-lim
$$t^{-1}(T(t)x - x) = A^{0}x$$
 for $x \in D(A^{0})$.

Let $x \in D(A^0)$ and let $\{t_n\}$ be a sequence such that $t_n \to 0+$ as $n \to \infty$. Since X is reflexive, there are an $x \in X$ and a subsequence $\{t_n\}$ of $\{t_n\}$ such that

$$x' = \underset{n_i \to \infty}{\text{w-lim}} t_{n_i}^{-1}(T(t_{n_i})x - x).$$

By Corollary 1(i),

$$A^{\circ}x = x = \operatorname{w-lim}_{n_{i} \to \infty} t_{n_{i}}^{-1}(T(t_{n_{i}})x - x).$$

From the uniqueness of the limit (2.16) follows.

(ii') Since X is also reflexive, the conclusions in (i') hold true. It is sufficient to show

$$\lim_{t\to 0^+} t^{-1}(T(t)x-x) = A^{\mathfrak{o}}x \quad \text{for} \quad x \in D(A^{\mathfrak{o}}).$$

But this is obtained from the uniform convexity of X, (2.16) and $\lim_{t\to 0+} t^{-1} ||T(t)x - x|| = ||A^o x||$ for $x \in D(A^o)$ (Corollary 1 (ii)). Q. E. D.

COROLLARY 2. Let X and X^* be uniformly convex, and let A be closed dissipative satisfying (c₁). Then

(a) A° is single valued with $D(A^{\circ}) = D(A)$,

(b) A° is the infinitesimal generator of a unique contraction semi-group on $\overline{D(A)}$.

PROOF. Let \widetilde{A} be a maximal dissipative operator in $\overline{D(A)}$ such that $\widetilde{A} \supset A$. Note that \widetilde{A}° is single valued with $D(\widetilde{A}^{\circ}) = D(\widetilde{A})$ (see [6, Lemma 3. 10]). Since $D(A) \subset D(\widetilde{A}) \subset \overline{D(A)}$ and $R(I - \lambda A) \supset \overline{D(A)}$ for $\lambda > 0$, we have

$$R(I-\lambda\widetilde{A})\supset D(\widetilde{A})(=\overline{D(A)}) \quad ext{for} \quad \lambda>0 \,.$$

Put

$$T(t)x = \lim_{\lambda \to 0+} (I - \lambda \widetilde{A})^{-[t/\lambda]} x(= \lim_{\lambda \to 0+} (I - \lambda A)^{-[t/\lambda]} x)$$

for $x \in \overline{D(A)}$ and $t \ge 0$. By Theorem 3 (ii), $\{T(t); t \ge 0\}$ is a unique contraction semi-group on $\overline{D(A)}$ with the infinitesimal generator \widetilde{A}^0 .

On the other hand it is shown that $D(\widetilde{A}) = D(A) = D(A^{\circ})$ and $\widetilde{A}^{\circ} = A^{\circ}$ (see [10, Proposition 4.2]). This completes the proof.

3. Throughout this section it is assumed that X_0 is a closed convex subset of X. We start from the following

LEMMA 2. Suppose that C is a contraction from X_0 into itself $(i. e_{,} || Cx - Cy || \leq || x - y ||$ for $x, y \in X_0$, and put $C^h = h^{-1}(C-I)$ for h > 0.

(i) There exists a unique contraction semi-group $\{T(t; C-I); t \ge 0\}$ on X_0 such that (d/dt) T(t; C-I)x = (C-I)T(t; C-I)x for $x \in X_0$, $t \ge 0$ and

(3.1)
$$||T(m; C-I)x - C^m x|| \leq \sqrt{m} ||(C-I)x||$$

for $x \in X_0$, $m = 1, 2, \cdots$.

(ii) For each h > 0 there exists a unique contraction semi-group $\{T(t; C^h); t \ge 0\}$ on X_0 such that $(d/dt)T(t; C^h)x = C^hT(t; C^h)x$ for $x \in X_0$, $t \ge 0$ and

(3.2)
$$||T(t; C^{h})x - C^{[t/h]}x|| \leq (\sqrt{th} + h)||C^{h}x||$$

for $x \in X_0$, $t \ge 0$.

PROOF. For the proof of (i), refer to [1, Lemma 2.4] or [8, Appendix]. (ii) is easily obtained from (i). In fact, $T(t; C^h) = T(t/h; C-I)$. By (3.1)

$$||T([t/h]h; C^{h})x - C^{[t/h]}x|| \leq \sqrt{th} ||C^{h}x||$$

for $t \ge 0$, $x \in X_0$. Moreover

$$\|T(t; C^{h})x - T([t/h]h; C^{h})x\| \leq \int_{[t/h]h}^{t} \|C^{h}T(s; C^{h})x\| ds$$

$$\leq h\|C^{h}x\| \text{ for } t \geq 0, x \in X_{0}.$$

From these inequalities (3.2) follows.

Let $\{T(t); t \ge 0\}$ be a contraction semi-group on X_0 , and set

$$A^{h} = h^{-1}(T(h) - I) \text{ for } h > 0.$$

Using Lemma 2 (ii) with C=T(h) and $C^{h}=A^{h}$, we see that there is a unique contraction semi-group $\{T(t; A^{h}); t \geq 0\}$ on X_{0} such that

(3.3)
$$(d/dt)T(t; A^h)x = A^hT(t; A^h)x \text{ for } x \in X_0, t \ge 0$$

Q. E. D.

and

(3.4)
$$||T(t; A^{h})x - T([t/h]h)x|| \leq (\sqrt{th} + h)||A^{h}x||$$

for $x \in X_0$, $t \ge 0$.

Next for any fixed $\xi \in [0, 1]$ and h > 0 we define $C(\xi, h)$ by

 $C(\xi, h) = \xi T(h) + (1 - \xi)I.$

Obviously $C(\xi, h)$ is a contraction from X_0 into itself. Put

$$A^{h}(\xi) = h^{-1}(C(\xi, h) - I)$$
.

In view of Lemma 2 (ii) (with $C = C(\xi, h)$ and $C^{h} = A^{h}(\xi)$), there is a unique contraction semi-group $\{T(t; A^{h}(\xi)); t \ge 0\}$ on X_{0} such that $(d/dt) T(t; A^{h}(\xi))x = A^{h}(\xi)T(t; A^{h}(\xi))x$ for $x \in X_{0}$, $t \ge 0$ and

(3.5)
$$||T(t; A^{h}(\xi))x - C(\xi, h)^{\lfloor t/h \rfloor}x|| \leq (\sqrt{th} + h)||A^{h}(\xi)x||$$

for $x \in X_0$, $t \ge 0$. Since $A^h(\xi) = \xi A^h$,

$$T(t; A^{h}(\xi)) = T(t\xi; A^{h})$$

Combining this with (3.5)

$$||T(t\xi; A^h)x - C(\xi, h)^{[t/h]}x|| \le (\sqrt{th} + h)||A^hx||$$

for $x \in X_0$, $t \ge 0$. Setting t = 1 in the inequality above, we have

(3.6)
$$||T(\xi; A^{h})x - \{(1-\xi)I + \xi T(h)\}|^{[1/h]}x|| \leq (\sqrt{h} + h)||A^{h}x||$$

for $x \in X_0$, $\xi \in [0, 1]$ and h > 0.

Since $||T(t)x - T([t/h]h)x|| \leq ||T(t-[t/h]h)x-x|| \to 0$ uniformly in $t \geq 0$, as $h \to 0+$, for any $x \in X_0$, (3.4) and (3.6) show the following

COROLLARY 3. Set $E = \{x \in X_0; ||A^h x|| = O(1) \text{ as } h \to 0+\}.$

(a) For each $x \in \overline{E}$

$$T(t)x = \lim_{h \to 0+} T(t; A^h)x$$

uniformly on every bounded interval of $[0, \infty)$.

(b) For each $x \in \overline{E}$

$$T(t)x = \lim_{h \to 0+} \{(1-t)I + tT(h)\}^{[1/h]}x$$

uniformly in $t \in [0, 1]$.

REMARK. Let A_0 be the infinitesimal generator of $\{T(t); t \ge 0\}$. Chambers [2] showed that the above (b) holds true for each $x \in \overline{D}_0$, where D_0 is a subset of $D(A_0)$ such that if $x \in D_0$ then $T(t)x \in D(A_0)$ for a. e. $t \ge 0$.

It is easily shown that for each h > 0, A^h is dissipative and

$$(3.7) R(I - \lambda A^{h}) \supset X_{0} = D(A^{h}) \text{ for } \lambda > 0.$$

We now consider the behavior of $(I - \lambda A^h)^{-[t/\lambda]} x$ as $(\lambda, h) \to (0, 0)$. An estimation by Crandall and Liggett [3, (1, 9)] shows that

(3.8)
$$\|(I - \lambda A^{h})^{-[t/\lambda]} x - (I - \mu A^{h})^{-[t/\mu]} x\|$$
$$\leq 2(\lambda^{2} + t(\lambda - \mu))^{1/2} \|A^{h} x\|$$

for $x \in X_0$, $t \ge 0$ and $\lambda > \mu > 0$.

Note that $T(t; A^h)x = \lim_{\lambda \to 0+} (I - \lambda A^h)^{-[t/\lambda]}x$ for $x \in X_0$ and $t \ge 0$. (For example, this follows from the remark after Theorem 2 because by (3.3) $T(t; A^h)x$ with $x \in X_0$ is a solution of the Cauchy problem $(d/dt)u(t) = A^hu(t), u(0) = x$.) Letting $\mu \to 0$ in (3.8), we have

$$||(I - \lambda A^{h})^{-[t/\lambda]} x - T(t; A^{h})x|| \leq 2(\lambda^{2} + \lambda t)^{1/2} ||A^{h}x||$$

for $x \in X_0$, $t \ge 0$ and $\lambda > 0$. Combining this with (3.4),

(3.9)
$$||T([t/h]h)x - (I - \lambda A^{h})^{-[t/\lambda]}x||$$

$$\leq \sqrt{th} + h + 2(\lambda^2 + \lambda t)^{1/2} \|A^h x\|$$

for $x \in X_0$, $t \ge 0$, $\lambda > 0$ and h > 0.

Thus we obtain the following

THEOREM 4. Let $\{T(t); t \ge 0\}$ be a contraction semi-group on a closed

convex subset X_0 of X, and put $E = \{x \in X_0; ||A^h x|| = O(1) \text{ as } h \to 0+\}$, where $A^h = h^{-1}(T(h) - I)$. Then for each $x \in \overline{E}$

(3.10)
$$T(t)x = \lim_{(\lambda,h) \to (0,0)} (I - \lambda A^h)^{-[t/\lambda]} x$$

uniformly on every bounded interval of $[0, \infty)$.

Added in Proof. Under the assumptions that X^* is uniformly convex and A is *m*-dissipative, the conclusion of Corollary 1 (ii) has been obtained by Brezis (On a problem of T. Kato, to appear).

REFERENCES

- [1] H. BREZIS AND A. PAZY, Accretive sets and differential equations in Banach spaces, to appear.
- [2] J. T. CHAMBERS, Some remarks on the approximation of nonlinear semi-groups, Proc. Japan Acad., 46(1970),
- [3] M. G. CRANDALL AND T. M. LIGGETT, Generation of semigroups of nonlinear transformations on general Banach spaces, to appear.
- [4] E. HILLE AND R. S. PHILLIPS, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., (1957).
- [5] T. KATO, Nonlinear semi-groups and evolution equations, J. Math. Soc. Japan, 19(1967), 508-520.
- [6] T. KATO, Accretive operators and nonlinear evolution equations in Banach spaces, Proc. Symp. Nonlinear Functional Analysis, Chicago, Amer. Math. Soc., (1968).
- [7] Y. KOMURA, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19(1967), 493-507.
- [8] I. MIYADERA AND S. OHARU, Approximation of semi-groups of nonlinear operators, Tôhoku Math. J., 22(1970), 24-47.
- [9] J. W. NEUBERGER, An exponential formula for one-parameter semi-groups of nonlinear transformations, J. Math. Soc. Japan, 18(1966), 154-157.
- [10] S. OHARU, On the generation of semi-groups of nonlinear contractions, J. Math. Soc. Japan, 22(1970), 526-550.

DEPARTMENT OF MATHEMATICS WASEDA UNIVERSITY TOKYO, JAPAN