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SOME REMARKS ON SEMI-GROUPS OF NONLINEAR OPERATORS

IsA0 MIYADERA

(Rec. Aug. 29, 1970)

1. Let X be a Banach space, and let X, be a subset of X. By a contraction
semi-group on X, we mean a family {7(¢); t=0} of operators from X, into X,
satisfying the following conditions :

1.1 T'(0) = I (the identity), T(¢ +s)=T()T(s) for ¢,s=0;
(1.2) [T(t)x — T@)y|=lx—y| for =0 and x,y€ X,;
(1.3) tl—l}?-fl- T@)x=x for xze X,.

We define the infinitesimal generator A, of {T(¢); t=0} by A0x=’ limA (T (h)x—zx)
-0+
and the weak infinitesimal generator A’ by A'xzwl:lim h (T (h)x—zx) whenever
—0+
the right sides exist.
We shall deal with multi-valued operators. By a multi-valued operator A in

X we mean that A assigns to each xe D(A) a subset Az+ @ of X, where
D(A)={xe X; Ax+ §}. And D(A) is called the domain of A, and the range

of A is defined by R(A)=\_Jecpw Az. We define || Azl =inf{|z|; z ¢ Az}

for xe D(A) and A'z={x'c Ax; |z |=lAzll|}. A® is called the canonical
restriction of A. A multi-valued operator A in X is said to be closed, if the graph
G(A)= Uupu) [x, Az] is closed in the product space XxX where [z, Ax]
={lx,x2]e XxX; ' ¢ Ax} for xc D(A).

We now introduce the notion of dissipativity. Let X* be the dual space of
X and (x, £*) denote the value of x*e X* at x< X. A multi-valued operator A
in X is said to be dissipative if for each x,y<€ D(A) and x’' € Ax, y' € Ay there
exists a {*¥e F(x—y) such that

(1.4 Re(z'—y,8%) =0,

where F(z)= {z*e X*; (x, 2%)=|z|?*=|2*||’} for x€ X and Re (z, 2*) means the
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real part of (x,x*). It is known that A is dissipative if and only if
(1.5) lz—y—Mz' =y)lI=lz—yl

for A>0,z,ye D(A) and '€ Ax, y' < Ay (see[5]).
Recently Crandall and Liggett [3] proved the following

THEOREM A. If A is a dissipative operator satisfying
(cy) R(I-AA)DD(A) for A>0,

then there exists a contraction semi-group {T(t); t=0} on D(A) such that for
each xe RND(A)

(1.6) T(t)x = lim(I-1A)"*M 2

uniformly on every bounded interval of [0, ), and
1.7 1T()x—T(s)x|= | Azl |£—s]| for x< D(A) and t,5=0,

where R= ﬂ»o R(I—AA) and | ] denotes the Gaussian bracket.

In Section 2 we shall prove the following

THEOREM 1. In addition to the assumption of Theorem A, suppose that
A is closed. Let {T(t); t=0} be the contraction semi-group on D(A) given by
Theorem A. If x< D(A) and if T(¢)x is strongly differentiable at t,>0, then

T(t)xe D(A) and [(d/dtYT(t)x),—,, < AT(t)x.

This theorem has been proved in [3] under the condition

(c2) R(I-AA)DcoD(A) for A>0,

where co D(A) denotes the convex hull of D(A).
The proof of Theorem 1 is based on Lemma 1. By using the same lemma we
have the following

THEOREM 3. Let A be maximal dissipative in D(A) satisfying (c,), and
let {T(t); t=0}be the contraction semi-group on D(A) given by Theorem A.
Assume that A® is single valued.
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(i) If X is reflexive, then D(A°)=D(A), A° is the weak infinitesimal
generator of {T(t); t=0} on D(A) and

(w-D)T(t)x = AT ()x for xc< D(A) and t=0.

(i) 1f X is uniformly convex, then D(A°)=D(A), A° is the infinitesimal
generator of {T(¢); t =0} on D(A) and

D*T(t)x = AT(t)x for xe D(A) and t=0.

Here D*T(t)x (or (w-D*)T(t)x) denotes the strong (or weak) right derivative
of T(t)x.

And it follows from Theorem 3 that if X and X* are uniformly convex and
if A is closed dissipative satisfying (c,), then A° is single valued with D(A°)
=D(A) and it is the infinitesimal generator of a unique contraction semi-group

on D(A) (Corollary 2).

In Section 3 we shall deal with approximation of contraction semi-groups.
And we may obtain the following

THEOREM 4. Let {T(¢); t=0}be a contraction semi-group on a closed
convex set X,, and put E={xe X,;|A"x|=0Q1) as h—0+}, where A"

=h"YT(h)—1I). Then for each xz< E

_ 1 AR/
(1.8) T@)x (A”!)I_I}’(lo'w(l AA") x
uniformly on every bounded interval of [0, o).

For {T(¢); t=0} in Theorem 4, we have also that for each z¢ E

(1.9) T(t)x = Lifr;{(l —t) I+t TQA/n)}"x

uniformly in z< [0, 1] (Corollary 3).
Theorem 4 is somewhat sharper than a theorem due to Neuberger [9], and
(1.9) is well known in linear case (see [4, Theorem 10. 4. 3]).

REMARK, Theorem A can be extended to the following form (see [3]). If
A—ol is dissipative for some ®=0 and R(I—AA)DD(A) for A€ (0,1/0), then

there exists a semi-group {7°(¢); £=0} € Q.(D(A)) satisfying (1.6) with R
= [Mieoye RII-MA) and
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(1.7) [T(t)x — T(s)x| = e || Azl [£—s|

for xe D(A) and ¢,5=0. And the results mentioned in Section 2 may be also
extended to this type. Here by {7'(¢); t=0} € Q.(X,) we mean that T(¢), =0
are operators from X, into itself with the properties (1.1), (1.3) and

(1.2) 1T () x —T(t)y| = e*||lx —y|| for t=0 and z,y< X,.

Our results in Section 3 also hold true for semi-groups of class Q.(X,).

2. We define < , >;: XXX —(—o0, ) by
<z,y>, = sup{Re(z, y*) ; y*< F(y)}.
It is shown that|<x,y>,|=|lz||y| and
(2.1) <, >s: XxX—(—o0, 00) is upper semicontinuous (see [3, Lemma 2. 16]).
Let A be dissipative satisfying the condition

(cr) R(I-2\A)>D(A) for A>0.

Since A is dissipative one can define for each A >0 a single valued operator

Ji= (I—AA)": R(I—AA)—D(A) such that
IJix — Jyl=lz -yl for xyeR(I-rA).
We set A,=A"YJi—1I) for A>0. The following properties of Ay are well known :
(2.2) Ayxe Ahx for ze R(I—AA);
(2.3) Az = IlAzll for xe D(A) and A>0.

Theorem A shows that

(2.4) lim JiMx exists for x€ D(A) and t=0,

A0+

and if T'(¢)x is defined as the limit in (2.4) then {7°(¢); £=0} is a contraction

semi-group on D(A) satisfying

(2.5) IT()x — T(s)x|= | Azl |t —s| for ze D(A) and ¢ 5=0.
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LEMMA 1. Let A be dissipativz satisfying (c,') and let {T(¢); t=0} be

the contraction semi-group on D(A) defined by the limit in (2.4). If x< D(A)
and y,€ Ax,, then

(2.6) sup limsup Re

&*e F(x—xy) 0+

T(t)x—x
4

’ é‘*) é <yo’ X — Ty >>s.

PROOF. Since |Ji¥™Mxy—zo| = [¢/MI|Jazo—2| = ¢ | Azy lll,  we have
(2.7)  |JMx—z,| = TV M2 =T Mz | + | TV M2y — 25 | S || 2= 200 || +2 || Ao
for A>0 and £t=0. For each A >0 and positive integer %,

nr=A"YNrre—J5x) = AWJi e AdVx

by (2.2). Since A is dissipative, there is an 7* e F(Ji*x—x,) such that

(2.8) Re(yrx — Yo n*) = 0.
Now
Re(yr, i 7%) = N7 Re(Sifx — 2y — {JE ' —x0}, 7%)
= N Y([Lakx — |2 = |57 — 2o || | ik — o))
= (20) ([N — zo]® = 57 — 20]%) 5
and hence
[Jikx — |2 — | JE 7' — 2, ||* = 2\ Re(yn i 0%)
=2\ Re(ya,k — Yo 77*) + 2\ Re(ym ")*)
= 2x Re(y0, 7*) (by(2.8))
é 2N <yo: Jhkx — Xy >,
Since JMx = Jikx for ea=t<(k+ 1)r,
(2. 9) l]JAkx_xol|2—||JAk—lx""xo“2

(k+1)A
§2f <yo7J[AT/Mx_'x0>sd'T.
kA

Let t= and add (2.9) for £=1,2,---,[t/A]. Then we have
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[J¥M 2 — 224> — [l — o

([e/A1+1)A

2_{ < Yo J¥Mx — 20 > 5 dl7.
A

A

Taking the lim sup as A—0+ we have from (2.7), (2.1) and the Lebesgue
convergence theorem that for £=0

(2.10) 1T (t)x — 2|2 — || — 2
ng <y (1) — 20> s drr.

Since || T'(£)x — x,|> — | — x,]|?= 2 Re(T'(t)x—x, §¥*) for any ¢* e F(x—x,), (2.10)
yields

(2.11) Re(T'(t)x — z, &*) = ft <yo T(t)x — 20> s dr

for t=0.
In view of (2. 1) and the strong continuity of 7'(7)x in 7=0, <¥,, T(7)x—2x>s
is upper semicontinuous in 7=0. Thus for any € >0 there is a § >0 such that

<y0, T(’T)x - xo>s < <yo; X — x0>3 + 8 for O é T < 8 .

It follows from (2.11) that if 0 <<¢z<(8 then

Re<7‘w:;r,§*)§ <y0ax—xo>s + €.

Consequently

T(t)x—x

limsup Re ( P

t—0+

C*) _S_. <y07 X — x0>8

for any ¢*e F(x—x,). This completes the proof.

PrROOF OF THEOREM 1. We note that under assumptions of Theorem 1,
(2.6) in Lemma 1 holds true. In fact, R(I—AA) is closed for each A >0 because
A is closed ; and hence (c;) implies (c,’). Then, by using the same method as in
the proof of Theorem II in [3], we obtain the conclusion. Q.E.D.
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REMARK, In [3], the condition (c;) has been used only to prove Lemma 1
above.

Let A,, 2=1, 2 be multi-valued operators in X. A, is an extension of Aj,
and A, is a restriction of A,, in symbol A;DA,, A,CA,, if D(A,)CcD(A,) and
A xc Ay,x for ze D(A,). If S is a subset of X and A is a dissipative operator,
we say that A is maximal dissipative in S if D(A)CS and A has not any

proper dissipative extension A such that D(A)cC.S. Lemma 1 leads to the following

COROLLARY 1. Let A be maximal dissipative in D(A) satisfying (ci),
and let {T(t); t=0} be the contraction semi-group on D(A) defined by the
limit in (2.4). (Note that (c,’) is satisfied, since the maximality of A implies
that A is closed.)

(i) If xze D(A) and if £’ =w-lim ¢,”Y(T (¢,)x—x), then xe D(A%), z € A’z

tn—0+
and

Jim £, T(ta)z — | =]z | = Az]l.
(ii) If X is reflexive, then
{xe D(A); |T(t)x—z|=0(t) as t—>0+}=D(A)=D(A")
and for each x belonging to the set above

lim £ T(t) — 2] = [| A=I.

PROOF. (i) We first note that there is a y*e F(y) such that <z, y>,
=Re(x, y¥*) since F(y) is compact in the weak® topology of X*.
Let x,€ D(A) and let y,< Ax,. By Lemma 1,

oSup )Re(x » &%) = Re(yo, 7*) for some 9* e F(z—x,).

So that

Re(z’ — y4, 7%) =0 for some 7% e F(x — x,).

The maximal dissipativity of A implies that < D(A) and x" € Az (see [6, Lemma
3.4]). But, by (2.5), [|T(¢,)x—z|= || Ax|| ,. And hence

Azl = |« = ltifilainf t T (t)x — |
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= limsup £, | T(ta)x—2] = l| Azl.

Thus lim £,”Y(| T'(t)z—z])= |z | = ll Azl , z< D(A’) and "< A’z

(ii) Clearly {xe D(A); |T(t)x—x||=O0(t) as t—0+}DD(A)DD(A°) by
(2.5). Let e D(A) and let |T'(t)x—z|=O(t) as t—0+. It follows from the
reflexivity of X that every sequence {¢,}, £,—0+ has a subsequence {£,,}such that
{ta (T(t,)x—x)} is weakly convergent. Therefore, by (i), x< D(A°) and

,lin} t, T (t,)x—z|= Il Az|ll. And the uniqueness of the limit shows

lim ¢~ T'(t)z—z[|= | Az|f.

t—0+
Q.E.D.

Let us now consider the Cauchy problem
(2.12) (d/dt)u(t) € Au(t) a.e.te[0, ), u(0) =z

where A is a given dissipative operator. A single valued mapping %(t) : [0, co)—>X
is called a solution of (2.12) if wu(¢) is Lipschitz continuous in £=0, «(t) is
strongly differentiable at a.e. £=0, u(t)e D(A) for a.e. £€[0,0) and u(t)
satisfies (2.12). It follows from the dissipativity of A that (2.12) has at most
one solution (for example, see the proof of Theorem 3 in [8]).

In view of Theorem 1 we have the following

THEOREM 2. Let A be closed dissipative satisfying (c,), and let
{T(t); t=0} be the contraction semi-group on D(A) given by Theorem A.

(a) If T(t)x with xe D(A) is strongly differentiable at a.e. t< [0, o)
then it is a unique solution of (2.12).

(b) If X is reflexive then for each x< D(A) T(t)x is a unique solution
of (2.12).

PROOF. By (1.7), T(¢)x is Lipschitz continuous in £=0 if ze D(A).
Therefore (a) follows from Theorem 1. If X is reflexive, then every Lipschitz
continuous X-valued function in £=0 is strongly differentiable at a.e. < [0, o)
(see [7, Appendix]). Hence (b) is obtained. Q.E.D.

REMARK. Let A be dissipative satisfying the condition (c,), and let x€ D(A).
It has been proved by Brezis and Pazy [1] that if «(¢) is a solution of (2.12)
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then u(t)=£inol(I —AA)~®M x uniformly on every bounded interval of [0, o) and
(d/dt)u(t) e A%u(t) for a.e. te [0, o).

Theorem 2 (b) shows that if X is reflexive and if A is closed dissipative
satisfying (c,), then {T°(¢); t=0} difined by

(2.13) T(t)x = lim(I—AA)"“Mx for xe€ D(A) and £ =0

A0+

is a unique contraction semi-group on D(A) such that for each x< D(A),

|T@#)x—T(s)x| = | Azl |t—s| for £,s=0
and

(d/dt)T(t)xe AT(t)x a.e. t€ [0, o)

(and hence (d/dt)T(t)x e AT (t)x a.e. te [0, o0)).
Our next problem is to find the infinitesimal generator of this semi-group.

THEOREM 3. Let A be maximal dissipative in D(A) satisfying (c,), and

let {T(t); t=0} be the contraction semi-group on D(A) defined by (2.13).
Assume that A° is single valued. Then we have

(1) if X is reflexive, then D(A’)=D(A), A° is the weak infinitesimal

generator of {T'(t); t=0} on D(A) and
(2.14) (w-D*)T(t)x = AT (t)x for xe D(A) and t=0,

(ii) if X is uniformly convex, then D(A°)=D(A), A° is the infinitesimal
generator of {T'(t); t=0} on D(A) and

(2.15) D*T(t)x=AT({t)x for xe D(A) and t=0.
PROOF. (i) We proved already
{xe D(A); |T(h)xz—x||= O(h) as h—0+}= D(A) = D(A")

(Corollary 1 (ii)). From this and |T'(h)T(t)x—T (t)x|=||T(h)x—z|, T(¢)x < D(A®)
for e D(A°) and ¢=0. Thus it suffices to show that

(2.16) w-lim ¢ (T (¢)x — x) = A’z for xe D(A").

t—0+



254 1. MIYADERA

Let xe D(A®) and let {¢,} be a sequence such that ¢, >0+ as n— oo, Since
X is reflexive, there are an o € X and a subsequence {¢,} of {£,} such that

x = w-limt, Y T(¢,)x — x) .

By Corollary 1(i),

A’z = x = w-lim¢,, Y (T(t,)r— z) .
From the uniqueness of the limit (2. 16) follows.

(ii') Since X is also reflexive, the conclusions in (i') hold true. It is sufficient
to show

}ugl t (T(t)x—x) = A2 for xe D(AY).
But this is obtained from the uniform convexity of X, (2.16) and li:gl t T (t)x— x|
=|A’z| for xe D(A®) (Corollary 1 (ii)). Q.E.D.

COROLLARY 2. Let X and X* be uniformly convex, and let A be
closed dissipative satisfying (c,). Then

(a) A°is single valued with D(A°) = D(A),

(b) A°is the infinitesimal generator of a unique contraction semi-group

on D(A).

PROOF. Let A be a maximal d1551pat1ve operator in D(A) such that ADA.
Note that A is single valued with D(A) D(A) (see [6, Lemma 3.10]). Since

D(A)c D(A)cD(A) and R(I-AA)DD(A) for >0, we have

R(I—- A,A)DD(A)( D(A)) for A>0,
Put

T(t)z = lim (I — AA)"M z( = lim (I — MA)~"“M 2)

A0+ A0+

for £e D(A) and £=0. By Theorem 3 (ii), {7(¢); t>0} is a unique contraction
semi-group on D(A) with the infinitesimal generator A’

On the other hand it is shown that D(A)= D(A)= D(A° and A°= A°
(see [10, Proposition 4.2]). This completes the proof.
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3. Throughout this section it is assumed that X, is a closed convex subset
of X. We start from the following

LEMMA 2. Suppose that C is a contraction from X, into itself
(E e,|Cx—Cy|=|xz—y| for x,ye X,), and put C*=h ' (C—1I) for h>0.

(1) There exists a unique contraction semi-group {T'(t; C—1I); t=0} on
X, such that (d/de) T(t; C—I)x=(C—I)T(t; C—I)x for zc X, t=0 and

(3.1) IT(m; C—I)z—C"z| = /m |(C—I)x]|
for xe Xy, m=1,2,+--,

(i) For each h>0 there exists a unique contraction semi-group {T'(t; C*);
t=0} on X, such that (d/dt)T(¢t; C"Yx=C"T'(t; C")x for xe X, t=0 and

(3.2) IT@; Cx—C*"z| = (Jth +h)|C|

Jfor xe X,, t=0.

PROOF. For the proof of (i), refer to [1, Lemma 2. 4] or [8, Appendix].
(i) is easily obtained from (i). In fact, 7°(¢; C*) =T(t/h; C—1I). By (3.1)

IT((/R)R; C*)x—C"Mz| = &/th || C'x]|

for £t =0, x< X,. Moreover

75 Ca—T(e/hh; Y= [ 1OT(s; Clal ds
=h|C'z|| for t=0,z¢X,. -
From these inequalities (3.2) follows. Q.E.D.
Let {T'(t); t=0} be a contraction semi-group on X,, and set

A=Y T(h)—1) for h>0.

Using Lemma 2 (ii) with C=T'(h) and C*=A", we see that there is a unique
contraction semi-group {7°(¢; A"); =0} on X, such that

(3.3) (d/d0)T(t; ANz = APT(t; ANz for zeXo t=0
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and

(3.4) IT(t; AYx—T([t/Rh)x| = (Vth +h)| Atz

for x¢ X,, t=0.
Next for any fixed £<[0,1] and 2>0 we define C(§, h) by

CEh) =ET(h)+ (L—-§)L
Obviously C(£, h) is a contraction from X, into itself. Put
AME) =hHC(ER) — ).
In view of Lemma 2 (ii) (with C=C(§ h) and C*= A")), there is a unique
contraction semi-group {7T°(¢; A™E)); t=0} on X, such that (d/dt) T'(¢; A*&))x
=A"E)T(t; A"E))x for xe X,, t=0 and
(3.5) IT(; AME)x— C(E b)) "Mzl = (th + h)|AME)x|
for x¢ X,, t=0. Since A"E)=EA*,
T(t; AME)) = T(t€; A"
Combining this with (3.5)
T AMx—C(§ h)""z| = (J2h +h)[ Arz]
for ze X, t=0. Setting £=1 in the inequality above, we have
(3.6) IT(E; AMx— {1~ &I+ ET(R)} x| = (v h + k)| Arx|
for ze X, £<[0,1] and A>0.
Since |T'{t)x — T([¢/h)h)x|=|T(t—[t/hlh)x—x|—0 uniformly in £=0, as
h—0+, for any x< X,, (3.4) and (3. 6) show the following
COROLLARY 3. Set E={zxec X,; |A"x|=0(Q1) as h--0+}.
(a) For each x< E
T@t)x=1limT(¢t; At)x

h—0+

uniformly on every bounded interval of [0, o).
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(b) For each x< E

T(t)x = rlblrg] (=) I+tT(h)}Vmg
uniformly in te [0, 1].

REMARK. Let A, be the infinitesimal generator of {7°(¢); £=0}. Chambers

[2] showed that the above (b) holds true for each xe D,, where D, is a subset
of D(A,) such that if x< D, then T(¢)x<c D(A,) for a.e. t=0.

It is easily shown that for each A>0, A" is dissipative and
(3.7) R(I-AAMDX,= D(A* for A>0.

We now consider the behavior of (I—AA")"“Mx as (A, h) —(0,0). An estimation
by Crandall and Liggett [3, (1.9)] shows that

5.8) | = AN 2 — (I = pAP) 1 2

=20\ + 2y — )| A
for xe X,,2=0 and A > p>0.

Note that T'(t; AMx = ;]L (I—AAM) "Mz for £e X, and t=0. (For example,

—0+

this follows from the remark after Theorem 2 because by (3.3) 7T°(¢; A*)x with
xe X, is a solution of the Cauchy problem (d/dt)u(t) =A"u(t), #(0) = x.) Letting
p—0 in (3.8), we have
[(I = NAP)- Mz — T(t; AY)x| = 2(A2 + at)V2|| Az
for xe X,, £=0 and A >0. Combining this with (3. 4),
(3.9) 1T((¢/RlA)x — (I — AAM)" "Mz
= {Wth + h+2(\* + A2)V?} | Arz|

for ze X,, t=0, A>0 and 2>0.
Thus we obtain the following

THEOREM 4. Let {T(t); t=0} be a contraction semi-group on a closed
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convex subset X, of X, and put E={xec X,; |A*z|=0O(1) as h—0+}, where
A= (T (h)—1I). Then for each xz< E

(3.10) T(t)x = lim ([—-AAM) Mg

A,1)-(0,0)
uniformly on every bounded interval of [0, ).

Added in Proof. Under the assumptions that X* is uniformly convex and
A is m-dissipative, the conclusion of Corollary 1 (ii) has been obtained by Brezis
(On a problem of T.Kato, to appear).
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