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AN EXAMPLE OF RIEMANNIAN MANIFOLDS SATISFYING
R(X, Y)-R = 0 BUT NOT Vi2 = 0

HITOSHI TAKAGI

(Received Nov. 20, 1971)

If a Riemannian manifold M is locally symmetric, then its curvature
tensor R satisfies

(*) R(X, Y)-R = 0 for all tangent vectors X and Γ,

where the endomorphism R(X, Y) operates on R as a derivation of the
tensor algebra at each point of M. Conversely, does this algebraic condi-
tion (*) on the curvature tensor field R imply that M is locally symmetric
(i.e. VR = 0)? For this problem, K. Nomizu conjectured that the answer is
affirmative in the case where M is irreducible and complete and dim M ̂  3.

In the present paper, we shall show that, in a 4-dimensional Euclidean
space E\ there exists an irreducible and complete hypersurface M which
satisfies the condition (*) but is not locally symmetric.

The author wishes to express his sincere thanks to Prof. S. Sasaki
and Prof. S. Tanno who gave him many valuable suggestions and guidances.

1. Reduction of condition (*). Let M be a 3-dimensional Riemannian
manifold which is isometrically immersed in a Euclidean space E4. Let
U be a neighborhood of a point poe M on which we can choose a unit
vector field N normal to M. For any vector fields X and Y tangent to
M, we have the formulas of Gauss and Weingarten:

(1.1) DXY = VXY+H{X, Y)N ,

DXN = -AX,

where Dx and Vx denote covariant differentiations for the Euclidean con-
nection of E4 and the Riemannian connection on Λf, respectively. A is a
field of symmetric endomorphisms which corresponds to the second funda-
mental form H, that is, H(X, Y) = g(AX, Y) for tangent vectors X and
Y, g being the Riemannian metric induced from E\ The equation of Gauss
expresses the curvature tensor R of M by means of A:

R(X, Y)Z - g(Z, AY)AX - g(Z, AX)AY .

The type number t(p) at p e M is, by definition, the rank of A at p.
At a point peM, let {elf e2, e3} be an orthonormal basis of the tangent
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space TP(M) such that Ae{ = λ^* (i = 1, 2, 3).

LEMMA 1.1. (cf. [2]) At a point p, the condition (*) is equivalent to
XiXjXjciXi — λ, ) = 0 for k Φ i, j where i Φ j . Thus, the condition (*) is
satisfied at p if either

(a) t(p) = 3 and λx = λ2 = λ3

or

(b) t(p) ^ 2 .

From now on, we shall assume that the type number t(p) at p is not
greater than 2 for any point p e M and that there exists at least one
point poeM such that t(pQ) is equal to 2. By continuity of the eigenvalues
of A, there exists a neighborhood W on M at p0 such that t(p) = 2 for
all pe W.

We shall now define a 1-dimensional distribution on W as follows:

T0(p) = {XeTp(M):AX=0} .

LEMMA 1.2. (cf. [2]) To is differentiable and totally geodesic.

Let 7 e To be a unit vector field on W, then we have VVV = 0 by the
above lemma and hence DVV' — 0 by (1.1). This means that an integral
curve of V is a piece of a straight line in E\

LEMMA 1.3. To is parallel in M if and only if the family of integral
curves of V is parallel in E4.

PROOF. From (1.1), we have DXV = VXV for all vector fields X
tangent to M.

LEMMA 1.4. To is parallel in M, if M is either a locally symmetric
space or a locally product space as a Riemannian manifold.

PROOF. Assume that M is a locally product space, then it is locally
of the form M2 x ikP, where M2 and M1 are a 2-dimensional space and a
1-dimensional space, respectively. Then, the Ricci tensor field S of M is
recurrent (i.e. VXS = a(X)S for a certain 1-form a and for all vector fields
X on M). On the other hand, since S is given by

S(Z, Y) = g(AZ, Y) trace A - g(A2Z, Y)

for vector fields Y and Z, we have S( V, X) = 0 for any X. It is easy to
show that the rank of S is 2 on W, that is, S(Z, X) = 0 for any X im-
plies that Z = β V for a certain scalar field β. Since

a(Y)S(V, X) = (VyS)(F, X) = VT(S(V, X)) - S(VrF, X) - S(V, VYX) ,
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we have S(VYV, X) = 0 and hence DγV = VYV = 0 because V is unit. The
proof for a locally symmetric case is similar.

2. An example of Riemannian manifolds satisfying R(X, Y)*R — 0
but not VR = 0. In this section, the hypersurface M in consideration
will be one defined by the form w = f(x, y, z) where (x, y, z, w) is a Cartesian
coordinate system in E4 and/ is a C°° real valued function defined on Ed.
Of course, M is deffeomorphic to E3 and (x, y, z) is a coordinate system
globally defined on M.

M is represented by a position vector P as follows:

P = (a?, y, z, f(x, y, z)) .

Since Px = (1, 0, 0,/.), Py = (0, 1, 0,/,) and Pz = (0, 0,1JZ) are tangent to
M, the unit normal vector field on M is represented by

(-/., -Λ, -Λ,l),

where h = (1 + f* + /J + Λ2)1/2. Using the formula of Gauss, the second
fundamental form H is represented by the coordinates x, y, z as follows:

(2.1)

Then,

H= 1/h
J xx J xy J xz

J yx J yy J yz

_J zx J zy J zz_

det

'f f f '
J xx J xy J xz

J yx J yy J yz

= 0 for each (x, y, z) e E3

_«/ zx J zy J zz_

is a condition of the type number t(p) ^ 2 for each point p e M.
Using a theory of implicit functions, we have the following

LEMMA 2.1. Let F(ξ, rj, ζ) be a real valued C°° function defined on Ez

which has no singular point (i.e. F* +' F* + F\ Φ 0 anywhere in E3). If
f satisfies a partial differential equation

F(fx,fy,fz) = 0,

then t(p) ^ 2 for each point peM.

PROOF. It is obvious.

LEMMA 2.2. Let W be a neighborhood on M such that for each pe W,
t(p) = 2. Then, To is parallel if and only if there exist real constants
α, 6, c and d (a2 + b2 + c2 + d2 = 1) such that afx + bfx + cfz = d on W.
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PROOF. The condition afx + bfy + cfz- d is equivalent to iV V = 0
for the parallel vector field V = (α, 6, c, d) in E\ which means that V is
tangent to ikf. And moreover, VeT0 (i.e. A F = 0) is easily seen from
(2.1). Then, by lemma 1.3, To is parallel. The converse is clear.

Now, let us consider the hypersurface M defined by

w = (x2z - fz - 2xy)/2(z2 + 1)

or

2z2w - x2z + fz + 2w + 2xy = 0 ,

which satisfies the non-linear partial differential equation

w\ - w\ + 2wz = 0 .

By lemma 2.1, the type number t(p) ^ 2 at each point of M. In fact,
t(p) = 2 almost everywhere on M. Then the condition (*) is satisfied by
lemma 1.1. And there exists a neighborhood W such that t(p) = 2 for
each peW. But, by lemma 2.2, To is not parallel on W and hence M is
irreducible and not locally symmetric by lemma 1.4. Since M is isometric-
ally immersed and closed in E\ M is complete.

REFERENCES

[ 1 ] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol. I, Interscience

Publisher, New York, 1963.

[ 2 ] K. NOMIZU, On hypersurfaces satisfying a certain condition on the curvature tensor,

Tδhoku Math. J., 20 (1968), 46-59.

COLLEGE OF GENERAL EDUCATION,

TOHOKU UNIVERSITY

SENDAI, JAPAN




