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It is well known [3] that the functions fκ(z) = Σ?=o w's* (Λ; > 0) and
9κ(z) = Σ?=o(l — cnYzn(/c>0, 0 < c < l ) admit (unique) analytic extensions
onto C* = {z = x + iy\y^0 if x^l}. Both functions have a finite number
of zeros only. Moreover, all zeros are ^ 0 and simple, and their number
is k, where k — 1 < K ̂  k, k = 1, 2, . In this paper we will give some
general theorems on the zeros of power series, and these results contain
the information on fκ and gκ as special cases. Further examples are
mentioned in Section 4.

We remark that our functions need not be meromorphic (like fκ) or
may have infinitely many zeros and poles on (1, oo) (like gκ) so that
known results on zeros of analytic functions like those in [1] cannot be
applied. Theorem 1 gives an upper estimate for the number of zeros of
certain power series Σ anZ%> and Theorem 2 gives a lower estimate. In
Theorem 1 we require that certain differences of the coefficients an form
a completely monotone sequence (we use the definitions given in [6]). In
discussing special cases it will be more convenient to require that an = a(ri),
where a(x) satisfies a linear differential equation with completely monotone
right hand side (Theorems 3 and 4).

0. In what follows we will denote by [xu , xn]f{v) the divided dif-
ferences of / (see [2]). If C is a simple closed curve containing Xi, ,xn

in its interior, and if / is holomorphic inside and on C, then

[ 4τα Jc p(z)

The differential equation

(1) {Π (D-xΛ y(x) = φ(x) , Xi constant, D - - £ - , Λ = 0, 1,
I i ) ax

where

* The research of both authors was supported in part by the National Science Foundation.
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(ge V[e, 1] for every ε > 0 ,

( 2 ) φ(χ) = wx dg(w) , J f i , , , , ,, ^ - ^ ΛJ +o I vf I dflr(te ) | < <χ> for e v e r y a? > 0
V J+o

has the particular solution

( 3 ) y(x) = \ wdg(w) [xl9 •••,%, l o g w]e(x_ι)v, x > 0 .
J+o

In order to prove this we first show that (3) exists. Let C be a
simple closed curve containing xu •••,%, and let logw be outside of C
for 0 < w ^ w0 < 1. Writing p(z) — Tlϊ(z — Xi) we have for 0 < w ^ w0

[xlf ...,xt, log«,],,._„, = _iu + J H - - 1 —
p(\ogw) 2π% Jo p(«) 2—

where the O-term is uniform in x when x is restricted to a compact
interval. This shows that (3) exists. It follows from

( 5 ) {D-oc) [xl9 ••-,&», oc]eXVf{υ) = [xu , xn]eχvfM

t h a t

{-Λ- /r^ Ί f1 ( k Ί

Π (D — Xi) > y(x) = \ wdg(w) \ Π (D — Xt) >[xί9 •••,#*, , l o g tt J X7; _v
1 J J+O I 1 J

= I w[logw],x-1)vdg(w) = φ(x) ,
J+o

and this shows that (3) is a solution of (1).

1. Given a sequence {tn}~, let

ίtn — cίw_! for w >̂ 1 ,
(ί0 for n = 0 .

THEOREM 1. Lei {an}~ be a real sequence and such that for certain
integers 0 5g k ^ p and constants ct e (0, 1]

defines a completely monotone sequence {bn}~. Then f(z) = ^Σi?anz
n defines

on C*(uniquely) a holomorphic function which has at most p zeros unless

f = 0.

PROOF. This follows from the identity

Σ
0
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by Theorem 1 of [3].

Our next theorem gives a lower estimate for the number of zeros of
functions of the type

Σ ( ) )zn , τ e ( 0 ,
Fm(z) = Fm(z; τ) =

Σ nmc(n)zn , τ = 0 ,

(m = 0, 1, •••), where the function c(x), x > 0, satisfies a differential equa-
tion

I n (D-ξΛφ) = [ wxdh(w), ξi constant, he V[e, 1]
U = l J J+0

for every s > 0, r = 0, 1, .

THEOREM 2. Lei & ^ 0, and assume that

(6) , r
J+0

2%en -Pm is (uniquely) defined on C*. Let Fo have (at least) the follow-
ing zeros:

zv < zv^ < < zγ < 0 < z[ < zί < < z'μ < 1 (v, μ = 0, 1, •) .

Then Fm(m = l, 2, •••) has (at least) zeros of the following kind

ζ w + , < - - < Ci ^ p < c < - - - < c; < l ,

and ζί < 0 if r e ( 0 , 1).

PROOF. We mention first two consequences of (6):

(7) xΛU'υ>* j d h { ^ I = o ( l ) (x ,oo, r e (0,1)),
J+o (logl/w)r+o

8 > χτ~l L ^ - 1

 n ' ΐ i t L = o(X) (* —> -. r 6 [0, 1)) .

Writing dh*(w) for (|dft(tι;) |)/((l+log l/i(;)r) the relation (7) follows from
(6) and

wτdh*(w) = a;Γ I w ^ d \
+0 J+0 J

- a? (1/βί(2Λ*(ί) + ( l - r J ^ p w ^ f A (" tdh*(t)\dw ,
J+o J+o V w J+o /

and the relation (8) follows from (6) and
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wτ~ιdh*{w) = x'-1 [ wT~2d (" tdh*(t)
ίJx J I/a; J+0

tdh*(t) - x\UXtdh*(t)
J++0

W J+o

We note that (7) implies

( 9 ) 1 w* I dh(w) I < oo for every x > 01 .
J+0

Next we wish to show that Fm exists on C* and that

(Fm(-x;0) >0 for x > oo , m = l , 2, •

^ί— [° tdh*(t))dw .
\W J+o /

(αΓί^-a; r) > 0 for x > oo , τ e (0,1) , m = 0,1,

In order to prove this we note first that (3) and (9) imply

c(x) = cQ(x) + 1 wdh(w)[ξl9 , ζr, log w]e(x^1)v, x > 0 ,

Denoting by Py polynomials of degree ^ j , we have for p = 0,1, and
α e ( - o o , oo) a representation

(12, Σ(«+«>* ) p ^ ) / ( 1 ί r , £ o r α =

(This follows from a short induction-type proof; see also [4].)
According to (11) we write Fm as a sum Fi + Fm (where Fl is

generated by c0). It follows from (11) that co(x) is a linear combination
of functions of the type xxexξi for some λ = 0, 1, , and it follows from
(12) that Fl is a linear combination of terms of the type

eTξίPm+x(zeζή/(l-zeξήm+λ+1 for r e (0,1), m = 0,1, ,
;i+1 for r = 0, m = 1, 2, ,

and this shows that F^ is defined on C* (note that ξ{ ^ 0) and that (10)
is true when Fm is replaced by iC

Using a representation similar to (4) for the divided difference in (11)
we have for τ e (0,1), m = 0,1,

1 Actually more is true, namely γ+0 (| dh(w) |)/((l+logl/w)r+J7) < oo for every -η > 1.
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" y PJwz) dh(w)
+o (1 — WZ)m+1 p(lθg W)

) d ζΓ wdh{w) -L 1 e^P
J+o v } 2πi)c (l-ze - log w)

wdh(w)±-\

+

1 p(ζ)(ζ-\ogw)

= I + II + III

( d denotes a simple closed curve containing ξl9 , ξr and log w for w0 ^
w ^ 1). The same representation holds for τ — 0 and m = 1, 2, ,
where Pm(z) contains a factor z.

It follows from this representation that Fm is defined on C* (choose
C, d suitably). Moreover, we see that for z = — # < 0 and #—> oo

and that

[lx [ d h ^ [ 0(1) x^
J+o (logl/w)r

-0(1)

by (7) and (8) (τ Φ 0) or by (6) and (8) (r = 0). This proves (10).
We observe that for τ e [0, 1)

(13) 4~ U-x)TF«(x)) = -(-xy-'F.Λx) for x < 0 ,
dx V /

and

(14) A (^ΓFm(α;)) = ̂ - ι F. + 1 (») for x > 0 .

eta

Let i^i (for some i — 1, 2, •••) have the zeros

s, < v-i < — < «i < o < «ί < . — < «; < l ,

and let φt(x) = (-x)rFi(x) (x ̂  0), &(α?) = αj^ία?) (a? ̂  0). Then 4̂(a?) = 0
when Fi(x) = 0, and ^(0) = 0 (note that F^O) = 0 when r = 0). Further-
more, &(α;)—•()(#->-oo) by (10). It follows from (13) and (14) by Rolle's
theorem that Fi+ί has zeros ζlf , ζp+lf ζj, , ζά with

ζ,+ 1 < ̂  < ζp < . < z, < ζ t < o < c < z[ < . . . < c; < ̂  < l .

If T e (0,1) and i = 0, then this is also true, which proves Theorem 2 for
τ Φ 0. If r = 0 and ΐ = 0, the foregoing argument only shows that zeros
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Ci, , ζp, ζ[f , , Co exist (φo(x) —+ 0 for x —* — oo may not be true, and
ζp+ι may be lost). But F^O) = 0 is true in this case, and this proves
Theorem 2 for τ = 0.

REMARKS. ( i ) Condition (6) is satisfied if h is absolutely continuous
on (0, ε] (for some ε > 0) and

(15) wh'(w) = o((log l/w)r) as w — 0 .

(ii) Let the assumptions of Theorem 2 be satisfied, and let Fm (or
JPO) have a zero of order λ at z = 0. If r e (0,1), then F w has (at least)
m + v + λ zeros which are ^ 0 (m + y zeros are <0), and if τ = 0 and
m ^ 1 then jPm has (at least) m + v + λ — 1 zeros which are 5j 0 (ra + v — 1
zeros are <0).

2. In this section we shall discuss special solutions of (1), (2) under
various conditions on g and for special initial conditions. These results
will be needed to prove Theorems 3 and 4.

LEMMA 1. Assume that (1), (2) with g\ has a solution yeCp [0, oo)
for some p = 0,1, . Then

(16) Γ dg(w) ^
v ; J+o(l + logl/w)*-*

PROOF. I t follows from (3) and for some α0 with {JH(D—χi)} ao = °
t h a t

y(x) = αo(a) + I wdg(w) [xίy •••,%, log w] β ( ,_ 1 ) v , x > 0 ,
J+o

and by differentiation

(17) y{p){x) = a(

o

p)(x) + [ wdg(w) [xl9 •••,%, l o g w]vPe(x^)υ .
J+o

Similarly to (4) the divided difference in this integral is (0 < w ^ w0).

0 / i \ ( w _ 0 ) f

where the O-term is uniform in x when x is restricted to a compact in-
terval. The statement (16) now follows from (17) and (18) (note that
a(

o

p)eC(— oo, oo), and that g\). In what follows we use the notation

a(x; x l f , x k ; U{w)dg{w)) = Γ U(w)dg(w) [xlf •••,»*, l o g ̂ ] β X V .
J+o

Our next Lemma is a kind of converse of Lemma 1.
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LEMMA 2. Let g satisfy (2), and assume that

(19) [ I dg^w) 1 <
J + ( l + l l / ) * - *

for some p = 0, 1, , & - 1 (k ^ 1). Tfeew, /or x > 0, cv = e**,
έΐow Yfc,p(«) defined by

Yk,M = Σ α (*; *i, , *>; - ( Π ^ " ^ f i ) dg(w))
log

a (x; xlf , xP+ι; ( Π ^ " W ^ Λ dg{w)\ p ^ k-2

Yk.k-i = α (OJ, a?x, . . . , α;

is a solution of (1), (2). Moreover, Yk>peCp[0, oo)

(20) Γ4f,(0) - Γί i f(0) - . . . - Yϊfi(O) = 0 .

For x > 0 ί k general solution of (1), (2) m£fc ί/eCp[0, oo)

3,(0) = j/XO) = ••• = ^ ( 0 ) = 0

is

(21) i/ίa;) = \ *
v ; ί/v / Σ Gv [a?i, , a?J... + Yk,9, Cv constant, p ^ k - 2 .

PROOF. It follows from

. , ^ log

0 for w; G (0, 1] , x = 0

(see (18), and with the same remark on the O — term) that

a{p)(x;xl9 •••,&„; dΛ(w))eC[0, oo) ,

α(/z)(0; a?!, •••, x,; dh(w)) = 0

if v ^ p + 1, μ = 0, 1, , p, fee F[ε, 1] for every ε > 0, and

J+O (i+\ogi/wy-p

This shows that (19) implies Yk>peCp[0, oo) and the conditions (20).

Now we show that the functions YktP are solutions of (1), (2). Using
(5) this is obvious for p = k — 1, and it follows for p <; k — 2 from
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{π (D - xή YUX)

= Σ { Π (D-zΛaU-«L( Π

+ { Π (D-xAaU ( Π ±zA

= Γ **„{»){ Σ ( Π ( l - ^ ) - Π ( l - ^ ) ) + Π ( l - ^
J+0 lv = p+2\i = v+l \ Cy/ 3=v\ Cj// i = ?>+2\ Cy

= 1 wxdg(w) = φ(x) .
J+0

The statement on the general solution of (1), (2) follows from

\k{D-x%)][Xu , xλeXV = 0 (i; = 1, , A;)

(use (5)) and

Dq [xί9 , xv]eXV | . = 0 = [a?!, , α j , f f = ί
(0 for q < v - 1

1 f o r σ = y - l .

(The functions [a?!, •••, a?JβX1,, y = 1, •-•, k, represent a basis for the solu-

tions of {UkΛD-Xi)}y = 0.)

LEMMA 3. Let g satisfy (2), and assume that (19) holds for some p =
0, 1, , k — 1 (k ^ 1). If yp is a solution of (1), (2) with xi ^ 0 , and if
yp eCp[0, oo) and ^(0) = ^(0) = ••• = yp

p)(0) = 0 (i.e. yp is one of the
solutions (21)) then

(22) { Π (D-xΛ&& = [t'H(t)^9 x>0,
U = J>+2 J ^ P + JO t

where

ί— J5Γ(ί) G L [ε, 1] /or ew^/ ε > 0, and
(23) j £

[H(t) = o ((log W " * - 1 ) as t > 0 .

PROOF. We may without loss of generality assume that g f. We
discuss first the case p = k — 1, i.e. we show that (2) and

Γ
J+ <

+o(l + logl/w)
(24) Yk.k-i(x) = f V g ( t ) A , a ; > 0 ,

a;* J ί
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where l/tH(t)eL[ε, 1] for every e > 0 and H(t)-+0 as £ — 0. Let (with-
out loss of generality) xt ^ x2 <; <̂  #fe ^ 0, and define d{ e (0,1] by
Π? dv = ex*. Then

fo, , xk, log w ] f M = (^ dfc)* j j W* Π rfΓfί dί, ,

since both sides satisfy the differential equation (1) with φ(x) — wx (this
follows for the right side from a short calculation, and from (5) for the
left side) and initial conditions y(0) = y*(0) ~ = yik~ι) = 0. Hence, Yktk-ι

can be written in the form

*.*-i(s) = ^ [ dg(w) \
J+0 J

Denote the region 0 ^ ί*.! ^ ^ ^ ^ 1 by zf, and let

The following computations simplify for k = 1 (ίΛ_1 = 1). We have

M=M = t U
α;fe J J

But

J+o \ogw/dk x

= f1 dg{w) f^W*-^
J+o logw/du )p

Γ
+o

* f c - l

log dfc

dg{w)

where (for 0 < d ^ 1)

+o \ogd/w
1 dg(w)
y log w/d

0

for

for d < y ^

for 2/ > 1

(note that p ^ dfc'*-0.
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It follows that

(25) ,, ,.

> ? , H(t)= \. . \hdk

Obviously H(t)/t e L[ε, 1] for every ε > 0. Let t < d1 dk, then t < p
and

V p J p dγ

hence

j
log (4/w J +o log dk/w

It follows that H{t) —»0 as ί —> 0, and this proves the case k = p — 1 of
Lemma 3.

We mention a special case of (24) which will be needed later on. Let
g(w) = 0 for w < eδ, g(w) = 1 for eδ ̂  w ̂  1 (δ ̂  0). Then

and it follows from (24) that

(26) [fli, " , a » , a ] β " = f1

α; f c Jo

where ίί(ί)/ί e L[ε, 1] for every ε > 0 and H(t) —> 0 as ί —> 0 (even more is
true, namely H(t) = 0 in a neighborhood of t = 0). We now turn to the
case p ̂  k — 2y and we will use the relation

(27) {U(D-vήa(x)b(x)

- Σ (D'a) Σ g - W ^ ; * (D~ViP-μ)t> + (^α)» G* ̂  0)

which follows from a short induction-type proof. Let

yp(x) = ^ 2 CJa?!, , α?JβM + Γ^p , YktP = Σ Av + A ,

where A, Av denote the functions occurring in YktP. It follows from (5)
and (27) that
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is a linear combination of terms of the type

[xlf •--, x p + l 9 x h , ••-, x i μ + ί ] e X V ^ μ = 0 1 . . v — p — 2 .

Hence we obtain from (26) a representation

{ϊϊ (D-x,)}1*1'"','^"' = \t^
U = P+2 ) XP + ί JO

Hv(t) — 0 as t —>0, and it follows that

p+2 XV^ v = p+2

= Σ
JO

where ^(ί) = o ((log 1/ί)*-*-1) as t-> 0.
Similarly it follows from (5) and (24) that {ΐ[UP+2 (D-Xi)}AJxp+1 is

a linear combination of terms of the type

a(x; x l 9 - - , x p + 1 , x i l 9 - - , x i μ ; dgv{w)) β = 0 . . . v _ / p _ 1

= — Π
C +

Π j r
Cυ i=v+i log W/C

Hence, it follows like in (24) (k = p + μ + l) that

JΠ Φ-»<)}-^:= t 1 * - 1 ^ ) ^ , HM^O as t —0,
U=P+2 J α ; p + 1 Jo

-^ [t*~{ Π (log t-xt))βu(t)dt
+ 1 Jo \*=>/+i /

= P + 2

where (Πf=,+i(log «-»•)) &M - o ((log 1/ί)*-1') - o ((log l/ί)*"*"1) (note that

Finally, it follows like in (24) (k = p + l) that

, H(t) -* 0 as t -> 0 ,
Xp+ι Jo

{ Π CD"**)} ^53= Γ ^ ( Π (logί-aj())^(ί)(ίί,
U=p+2 J α;p+ Jo \ί=p+2 /

where
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( Π Qog t-Xi))H(t) = o((logl/t)k-p-1) as £->0 .

(note that I
\ J+o +2 log w/Cj 1 + log 1/w

This proves the case p ^ k—2 of Lemma 3.

3. THEOREM 3. Lei α e C [ 0 , <χ>) 6e α rβα£ solution of the differential
equation

(28) J Π (D-xΛa = 9?(aj), α? > 0, α?< ^ 0 ,

φ completely monotone for x > 0 (& ̂  0) .

ΓAeti /(^ ) = *Σ£ a(n)zn defines on C* (uniquely) a holomorphic function
which has at most k zeros unless / = 0.

PROOF. It follows from (3) that

a(x) = aQ(x) + I wdg(w) [xlf •••,%, log w]β<*-1)v, J Π φ - ^ ) } α 0 = 0 ,
J+0 I 1 J

and Lemma 1 shows that

/OQ\ I OsgyU)) ^

J+o (1 +log 1/w)*

A short calculation shows that (JJi 4(e**)) ao(n + k) = 0, and writing an —
a(n) we find

k

K = (Π 4(e'()) an+k - Γ wdg(w) -±^ \ -. r 7

L-
— logw)

log W — Xi

(Cw denotes a simple closed curve containing xu , xk and log w in its
interior). This shows that bn is completely monotone (observe (29)), and
Theorem 3 follows from Theorem 1.

REMARKS. ( i ) Let τ ^ 0, and let a(x) satisfy the assumptions of
Theorem 3. Then Σ f Φ + Φ 1 1 is defined on C* and has at most k zeros
(unless it is Ξ 0), This follows immediately from Theorem 3 when a(x)
is replaced by a*(x) = a(x + τ).

(ii) Replace in the assumptions of Theorem 3 C[0, °o) and x > 0 by
C[v, oo) and x > v(v = l, 2, . . . ) . Then it follows that bn = (Π.ϊ(e*i))an+k+y

is completely monotone, and Theorem 1 shows that Pv^{z) + Σ̂ Γ=v a(n)zn,
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Pv-ι(z) any real polynomial of degree ^ v — 1 is (uniquely) defined on C*
and has at most ft + v zeros (unless it is = 0).

THEOREM 4. Let aeCp [0, ©o) for some p = 0, 1, , ft — 1 (ft ^ 1) be
a real solution of the differential equation (28). Moreover, let

α(0) - α'(0) = . . . = α(p)(0) = 0 .22

Then f(z) = Σo°α(n + r)«n, ΓG [0, 1), defines on C*(uniquely) a holomorphic
function which has at most ft zeros (unless f = 0) and at least p + 1
different zeros which are ^ 0.

PROOF. On account of Theorem 3 it remains to prove the lower
estimate for the number of zeros.

It follows from Lemma 1 that (19) holds, and Lemma 3 shows that

Π (D-a

where H satisfies (23). Theorem 2 and Remark (i) after Theorem 2

( φ ) = a(x)/xp+1, h'(t) = H(t)/t, m = j> + 1, r = Jc - p - 1, v = μ = 0)

now show that / has at least p + 1 different zeros which are ^ 0.

REMARK. The example Σ Γ (w + l ) V = (l + z)/(l-z)3 shows that
Theorem 4 cannot be extended to τ = 1 (fc = 2, p = l) .

4. Applications of Theorem 4.
( i ) Let a(x) = x% x ^ 0, ft —1 < £ ^ft, ft = 1, 2, . Here αe (?*_!

[0, oo), and Dka = Ca?*""* is completely monotone for # > 0; moreover,

o(0) - α'(0) = . . . = α(fc-1J(0) - 0 .

Jί follows from Theorem 4 ίΛαί /c(») = Σ Γ (n + τ)κzn, re [0, 1), Λαs exactly
k zeros in C*, α^d ίAese are simple and fg 0.

(ii) Let a(a?) = ( l-c β )% a ^ O , 0 < c < 1, k - 1< ΪC ^ k. The rela-
tion (D—ic\ogc)a(x) = fc\ogl/c(l — cxy~ι shows that a(x) satisfies a dif-
ferential equation (28) (φ(x) = C(l-c*y-k), and we have αe C ^ [0, oo)
and α(0) = α'(0) = ••• = α(fc"υ(0) = 0. It follows from Theorem 4 that
Qκ(z) — Σo° (1 — cn+τ)κzn, τe [0, 1), Λαs exactly ft zeros m C*, and these zeros
are different and ^ 0.

(iii) Let a(x) be the incomplete /"-function

["t'-'e-'dt, x^0, ft - 1 < K ̂  ft .
Jo

2 This is equivalent to α(0) = 0, {Πϊ(-D - »ί)}α|»=o = 0, v = l,
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Then Da = xκ~γe~\ (D + l) Da = (/c-ΐ)xκ~2e-χ. It follows from Theorem 4
that ΣίΓ a(n + τ)zn, τe[0, 1), Λαs exactly k zeros in C*, αraί £feese are
simple and r̂ O.

(iv) Let a(a ) = x* log sc, a? ̂ > 0, fc — 1 < K ̂  A:. We have

Dqa = q ! a;*-* (log a? + Aq) , A, constant ,

for K Φ 1, 2, or q ^ k. This shows that ae C*_i [0, c>o) and

α(0) = α'(0) r= . . . = α(fc-1)(0) - 0 .

Let K — k. Then Dfc+1α = Λ!/a? is completely monotone.
Let fc Φk. Then it follows from

xa Γ{a) Jo V ^ t

l U (α > 0, α; > 0)Γ t(log ! l o g

xa Γ(a) Jo V * ί/ lΓ(α) t

(differentiate with respect to a to obtain the second formula from the
first) that

(D-ξ)Dka

yhjΓik — ήJo \ t> ιΓ(k — fc) t

is completely monotone for a suitable £ < 0. It follows from Theorem 4
that Fκ(z) = ΣΓ (W + Γ)* log (w + τ) «n has at most k + 1 zeros and at least
/c zeros which are different and ^ 0.

Let τ = 0. Then Fκ has a zero of order 2 at z = 0, so that Fκ actual-
ly has k + 1 zeros {and all zeros are ^ 0). Let τe (0, 1). Then Fκ(0) < 0,
Fκ(x) —• oo as a; —> 1, and iί follows that Fκ has at least one zero which
is > 0, hence Fκ has again exactly k + 1 zeros. These are simple, and k
zeros are < 0, one zero is > 0. (A lower estimate for the number of zeros
of Fκ follows from Wirsing [7].)

Subbotin [5] has shown that Σo"sw [ f(t)(n + t)2kdt ( / ^ 0, fc = 0,l, )
Jo

has exactly 2k zeros (unless = 0) in C*f and these are simple and negative.
This result is not a consequence of Theorem 4; however, using our results
on the zeros of Σ(w + r)*zn and the fact that these zeros are monotone
functions of τ (which was observed by Subbotin for K = 2k) we are in a
position to discuss the zeros of the more general functions



ON POWER SERIES WITH NEGATIVE ZEROS 2 2 1

REFERENCES

[ 1 ] A. EDREI, Proof of a conjecture of Schoenberg on the generating function of a totally
positive sequence. Canad. J. Math. 5 (1953), 86-94.

[ 2 ] G. G. LORENTZ, Bernstein Polynomials. Univ. of Toronto Press, Toronto 1953.
[ 3 ] A. PEYERIMHOFF, On the zeros of power series. Mich. Math. J. 13 (1966), 193-214.
[4] G. POLYA UND G. SZEGO, Aufgaben und Lehrsatze aus der Analysis. Springer, Berlin,

1954.
[ 5 ] Ju. N. SUBBOTIN, Funktionelle Interpolation im Mittel mit kleinster n-ter Ableitung

(Russian). Trudy mat. Inst. Steklov. 88 (1967), 30-60.
[6] D. V. WIDDER, The Laplace Transform. Princeton 1946.
[ 7 ] E. WIRSING, On the monotonicity of the zeros of two power series. Mich. Math. J. 13

(1966), 215-218.

W.B. JURKAT, SYRACUSE UNIVERSITY,

DEPT. OF MATHEMATICS, SYRACUSE, N.Y. U.S.A.

A. PEYERIMHOFF, UNIVERSITA"T ULM DONAU ABT.

FUR MATHEMATIK, GERMANY






