Tôhoku Math. Journ. 24 (1972), 207-221.

ON POWER SERIES WITH NEGATIVE ZEROS*

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

W. B. JURKAT (Syracuse) and A. PEYERIMHOFF (Ulm)

(Received Oct. 1, 1971)

It is well known [3] that the functions $f_{\kappa}(z) = \sum_{n=0}^{\infty} n^{\kappa} z^{n} (\kappa > 0)$ and $g_{\kappa}(z) = \sum_{n=0}^{\infty} (1-c^{n})^{\kappa} z^{n} (\kappa > 0, 0 < c < 1)$ admit (unique) analytic extensions onto $C^{*} = \{z = x + iy \mid y \neq 0 \text{ if } x \ge 1\}$. Both functions have a finite number of zeros only. Moreover, all zeros are ≤ 0 and simple, and their number is k, where $k - 1 < \kappa \le k, k = 1, 2, \cdots$. In this paper we will give some general theorems on the zeros of power series, and these results contain the information on f_{κ} and g_{κ} as special cases. Further examples are mentioned in Section 4.

We remark that our functions need not be meromorphic (like f_{ϵ}) or may have infinitely many zeros and poles on $(1, \infty)$ (like g_{ϵ}) so that known results on zeros of analytic functions like those in [1] cannot be applied. Theorem 1 gives an upper estimate for the number of zeros of certain power series $\sum a_n z^n$, and Theorem 2 gives a lower estimate. In Theorem 1 we require that certain differences of the coefficients a_n form a completely monotone sequence (we use the definitions given in [6]). In discussing special cases it will be more convenient to require that $a_n = a(n)$, where a(x) satisfies a linear differential equation with completely monotone right hand side (Theorems 3 and 4).

0. In what follows we will denote by $[x_1, \dots, x_n]_{f(v)}$ the divided differences of f (see [2]). If C is a simple closed curve containing x_1, \dots, x_n in its interior, and if f is holomorphic inside and on C, then

$$[x_{\scriptscriptstyle 1}, \, \cdots, \, x_{\scriptscriptstyle n}]_{f(v)} = rac{1}{2\pi i} \int_{s} rac{f(z)}{p(z)} \, dz \; , \qquad p(z) \, = \, \prod_{\scriptscriptstyle 1}^{n} \, (z - x_{i}) \; .$$

The differential equation

(1)
$$\left\{\prod_{i=1}^{k} (D-x_i)\right\} y(x) = \varphi(x), \quad x_i \text{ constant, } D = \frac{d}{dx}, k = 0, 1, \cdots$$

where

^{*} The research of both authors was supported in part by the National Science Foundation.

$$(2) \qquad \varphi(x) = \int_{+0}^{1} w^x \, dg(w) \,, \, \begin{cases} g \in V[\varepsilon, 1] \text{ for every } \varepsilon > 0 \,, \\ \int_{+0}^{1} w^x \, |\, dg(w) \,| < \infty \text{ for every } x > 0 \end{cases}$$

has the particular solution

(3)
$$y(x) = \int_{+0}^{1} w dg(w) [x_1, \cdots, x_k, \log w]_{e^{(x-1)v}}, x > 0.$$

In order to prove this we first show that (3) exists. Let C be a simple closed curve containing x_1, \dots, x_k , and let $\log w$ be outside of C for $0 < w \leq w_0 < 1$. Writing $p(z) = \prod_{i=1}^{k} (z - x_i)$ we have for $0 < w \leq w_0$

$$(4) \qquad \begin{cases} [x_1, \, \cdots, \, x_k, \, \log w]_{e^{(x-1)v}} = \frac{w^{x-1}}{p(\log w)} + \frac{1}{2\pi i} \int_{c} \frac{e^{(x-1)z}}{p(z)} \frac{dz}{z - \log w} \\ = \frac{w^{x-1}}{p(\log w)} + O\left(\frac{1}{\log w}\right) \, (w \longrightarrow 0) \end{cases}$$

where the O-term is uniform in x when x is restricted to a compact interval. This shows that (3) exists. It follows from

(5)
$$(D-\alpha) [x_1, \cdots, x_n, \alpha]_{e^{xv_f(v)}} = [x_1, \cdots, x_n]_{e^{xv_f(v)}}$$

that

$$\begin{cases} \prod_{i=1}^{k} (D-x_{i}) \} y(x) = \int_{+0}^{1} w dg(w) \left\{ \prod_{i=1}^{k} (D-x_{i}) \right\} [x_{i}, \dots, x_{k}, \log w]_{e^{xv}e^{-v}} \\ = \int_{+0}^{1} w [\log w]_{e^{(x-1)v}} dg(w) = \varphi(x) , \end{cases}$$

and this shows that (3) is a solution of (1).

1. Given a sequence $\{t_n\}_0^\infty$, let

$$arDelta(c)t_n=egin{cases} t_n-ct_{n-1} & ext{for} \ n\ge 1\ ,\ t_0 & ext{for} \ n=0\ . \end{cases}$$

THEOREM 1. Let $\{a_n\}_0^{\infty}$ be a real sequence and such that for certain integers $0 \leq k \leq p$ and constants $c_i \in (0, 1]$

$$\left\{\prod_{i=1}^{k} \varDelta(c_i)\right\} a_{n+p} = b_n (n=0, 1, \cdots)$$

defines a completely monotone sequence $\{b_n\}_0^{\infty}$. Then $f(z) = \sum_{n=0}^{\infty} a_n z^n$ defines on $C^*(uniquely)$ a holomorphic function which has at most p zeros unless $f \equiv 0$.

PROOF. This follows from the identity

$$\left(\prod_{1}^{k}\left(1-c_{i}z\right)\right)\sum_{0}^{\infty}a_{n}z^{n}=\sum_{1}^{\infty}z^{n}\left(\prod_{1}^{k}\varDelta(c_{i})\right)a_{n}=\sum_{0}^{p-1}z^{n}\left(\prod_{1}^{k}\varDelta(c_{i})\right)a_{n}+z^{p}\sum_{0}^{\infty}b_{n}z^{n}$$

by Theorem 1 of [3].

Our next theorem gives a lower estimate for the number of zeros of functions of the type

 $(m=0, 1, \dots)$, where the function c(x), x > 0, satisfies a differential equation

$$\left\{\prod_{i=1}^{r} (D-\xi_i)\right\} c(x) = \int_{+0}^{1} w^x dh(w), \ \xi_i \text{ constant}, \ h \in V[\varepsilon, 1]$$

for every $\varepsilon > 0$, $r = 0, 1, \cdots$.

THEOREM 2. Let $\xi_i \leq 0$, and assume that

(6)
$$x \int_{+0}^{1/x} w \frac{|dh(w)|}{(\log 1/w)^r} = o(1) \quad (x \to \infty) .$$

Then F_m is (uniquely) defined on C^* . Let F_0 have (at least) the following zeros:

 $z_{\nu} < z_{\nu-1} < \cdots < z_1 < 0 < z'_1 < z'_2 < \cdots < z'_{\mu} < 1 \ (
u, \mu = 0, 1, \cdots)$. Then $F_m(m=1, 2, \cdots)$ has (at least) zeros of the following kind

$$\zeta_{\scriptscriptstyle m+
u} < \cdots < \zeta_{\scriptscriptstyle 1} \leq 0 < \zeta_{\scriptscriptstyle 1}' < \cdots < \zeta_{\scriptscriptstyle \mu}' < 1$$
 ,

and $\zeta_1 < 0$ if $\tau \in (0, 1)$.

PROOF. We mention first two consequences of (6):

(7)
$$x^{\tau} \int_{+0}^{1/x} w^{\tau} \frac{|dh(w)|}{(\log 1/w)^{\tau}} = o(1) \quad (x \longrightarrow \infty, \tau \in (0, 1)),$$

(8)
$$x^{\tau-1} \int_{1/x}^{1} w^{\tau-1} \frac{|dh(w)|}{(1+\log 1/w)^r} = o(1) \quad (x \longrightarrow \infty, \ \tau \in [0, 1))$$
.

Writing $dh^*(w)$ for $(|dh(w)|)/((1+\log 1/w)^r)$ the relation (7) follows from (6) and

$$\begin{aligned} x^{\tau} \int_{+0}^{1/x} w^{\tau} dh^{*}(w) &= x^{\tau} \int_{+0}^{1/x} w^{\tau-1} d \int_{+0}^{w} t dh^{*}(t) \\ &= x \int_{+0}^{1/x} t dh^{*}(t) + (1-\tau) x^{\tau} \int_{+0}^{1/x} w^{\tau-1} \left(\frac{1}{w} \int_{+0}^{w} t dh^{*}(t) \right) dw , \end{aligned}$$

and the relation (8) follows from (6) and

W. B. JURKAT AND A. PEYERIMHOFF

$$\begin{split} x^{\tau-1} \int_{1/x}^{1} w^{\tau-1} dh^*(w) &= x^{\tau-1} \int_{1/x}^{1} w^{\tau-2} d \int_{+0}^{w} t dh^*(t) \\ &= x^{\tau-1} \int_{+0}^{1} t dh^*(t) - x \int_{+0}^{1/x} t dh^*(t) \\ &+ (2-\tau) x^{\tau-1} \int_{1/x}^{1} w^{\tau-2} \Big(\frac{1}{w} \int_{+0}^{w} t dh^*(t) \Big) dw \; . \end{split}$$

We note that (7) implies

(9)
$$\int_{+0}^{1} w^{x} |dh(w)| < \infty$$
 for every $x > 0^{1}$.

Next we wish to show that F_m exists on C^* and that

(10)
$$\begin{cases} F_m(-x; 0) \longrightarrow 0 \quad \text{for} \quad x \longrightarrow \infty, \quad m = 1, 2, \cdots, \\ x^{\tau} F_m(-x; \tau) \longrightarrow 0 \quad \text{for} \quad x \longrightarrow \infty, \quad \tau \in (0, 1), \quad m = 0, 1, \cdots. \end{cases}$$

In order to prove this we note first that (3) and (9) imply

(11)
$$\begin{cases} c(x) = c_0(x) + \int_{+0}^1 w dh(w) [\xi_1, \dots, \xi_r, \log w]_{e^{(x-1)v}}, x > 0, \\ \left\{ \prod_{i=1}^r (D - \xi_i) \right\} c_0(x) = 0. \end{cases}$$

Denoting by P_j polynomials of degree $\leq j$, we have for $\rho = 0, 1, \cdots$ and $\alpha \in (-\infty, \infty)$ a representation

(12)
$$\sum_{n=0}^{\infty} (n+\alpha)^{\rho} z^n = \begin{cases} P_{\rho}(z)/(1-z)^{\rho+1} \\ P_{\rho-1}(z)/(1-z)^{\rho+1} & \text{for} \quad \alpha = 1, \ \rho = 1, 2, \cdots . \end{cases}$$

(This follows from a short induction-type proof; see also [4].)

According to (11) we write F_m as a sum $F_m^0 + \tilde{F}_m$ (where F_m^0 is generated by c_0). It follows from (11) that $c_0(x)$ is a linear combination of functions of the type $x^{\lambda}e^{x\xi_i}$ for some $\lambda = 0, 1, \dots$, and it follows from (12) that F_m^0 is a linear combination of terms of the type

$$e^{\tau \epsilon_i} P_{m+\lambda}(ze^{\epsilon_i})/(1-ze^{\epsilon_i})^{m+\lambda+1}$$
 for $\tau \in (0, 1), m = 0, 1, \cdots,$
 $ze^{\epsilon_i} P_{m+\lambda-1}(ze^{\epsilon_i})/(1-ze^{\epsilon_i})^{m+\lambda+1}$ for $\tau = 0, m = 1, 2, \cdots,$

and this shows that F_m^0 is defined on C^* (note that $\xi_i \leq 0$) and that (10) is true when F_m is replaced by F_m^0 .

Using a representation similar to (4) for the divided difference in (11) we have for $\tau \in (0, 1)$, $m = 0, 1, \cdots$

¹ Actually more is true, namely $\int_{+0}^{1} (|dh(w)|)/((1+\log 1/w)^{r+\eta}) < \infty$ for every $\eta > 1$.

ON POWER SERIES WITH NEGATIVE ZEROS

$$\begin{split} \widetilde{F}_{m}(z) &= \int_{+0}^{w_{0}} w^{\tau} \, \frac{P_{m}(wz)}{(1-wz)^{m+1}} \, \frac{dh(w)}{p(\log w)} \\ &+ \int_{+0}^{w_{0}} wdh(w) \, \frac{1}{2\pi i} \int_{\sigma} \frac{e^{(\tau-1)\zeta} P_{m}(ze^{\zeta})}{(1-ze^{\zeta})^{m+1}} \, \frac{d\zeta}{p(\zeta) \, (\zeta-\log w)} \\ &+ \int_{w_{0}}^{1} wdh(w) \, \frac{1}{2\pi i} \int_{\sigma_{1}} \frac{e^{(\tau-1)\zeta} P_{m}(ze^{\zeta})}{(1-ze^{\zeta})^{m+1}} \, \frac{d\zeta}{p(\zeta) \, (\zeta-\log w)} \\ &= \mathrm{I} + \mathrm{II} + \mathrm{III} \end{split}$$

 $(C_1 \text{ denotes a simple closed curve containing } \xi_1, \dots, \xi_r \text{ and } \log w \text{ for } w_0 \leq w \leq 1).$ The same representation holds for $\tau = 0$ and $m = 1, 2, \dots$, where $P_m(z)$ contains a factor z.

It follows from this representation that \widetilde{F}_m is defined on C^* (choose C, C_1 suitably). Moreover, we see that for z = -x < 0 and $x \to \infty$

$$\mathrm{II} = O\Bigl(rac{1}{x}\Bigr) \ , \quad \mathrm{III} = O\Bigl(rac{1}{x}\Bigr) \ ,$$

and that

$$|x^{\tau} I| = O(1) x^{\tau} \int_{+0}^{1/x} w^{\tau} \frac{|dh(w)|}{(\log 1/w)^{r}} + O(1) x^{\tau-1} \int_{1/x}^{w_{0}} w^{\tau-1} \frac{|dh(w)|}{(\log 1/w)^{r}} = o(1)$$

by (7) and (8) $(\tau \neq 0)$ or by (6) and (8) $(\tau = 0)$. This proves (10). We observe that for $\tau \in [0, 1)$

(13)
$$\frac{d}{dx}\left((-x)^{r}F_{m}(x)\right) = -(-x)^{r-1}F_{m+1}(x) \text{ for } x < 0,$$

and

(14)
$$\frac{d}{dx}(x^{r}F_{m}(x)) = x^{r-1}F_{m+1}(x) \text{ for } x > 0.$$

Let F_i (for some $i = 1, 2, \dots$) have the zeros

$$z_{
ho} < z_{
ho - 1} < \cdots < z_{
m \scriptscriptstyle 1} < 0 < z_{
m \scriptscriptstyle 1}' < \cdots < \, z_{
m \scriptscriptstyle \sigma}' < 1$$
 ,

and let $\phi_i(x) = (-x)^{\tau} F_i(x)$ $(x \leq 0), \ \phi_i(x) = x^{\tau} F_i(x)$ $(x \geq 0)$. Then $\phi_i(x) = 0$ when $F_i(x) = 0$, and $\phi_i(0) = 0$ (note that $F_i(0) = 0$ when $\tau = 0$). Furthermore, $\phi_i(x) \to 0$ $(x \to -\infty)$ by (10). It follows from (13) and (14) by Rolle's theorem that F_{i+1} has zeros $\zeta_1, \dots, \zeta_{\rho+1}, \zeta'_1, \dots, \zeta'_{\sigma}$ with

$$\zeta_{
ho+1} < z_
ho < \zeta_
ho < \cdots < z_1 < \zeta_1 < 0 < \zeta_1' < z_1' < \cdots < \zeta_\sigma' < z_\sigma' < 1$$
 .

If $\tau \in (0, 1)$ and i = 0, then this is also true, which proves Theorem 2 for $\tau \neq 0$. If $\tau = 0$ and i = 0, the foregoing argument only shows that zeros

 $\zeta_1, \dots, \zeta_{\rho}, \zeta'_1, \dots, \zeta'_{\sigma}$ exist $(\phi_0(x) \to 0 \text{ for } x \to -\infty \text{ may not be true, and} \zeta_{\rho+1} \text{ may be lost}$. But $F_i(0) = 0$ is true in this case, and this proves Theorem 2 for $\tau = 0$.

REMARKS. (i) Condition (6) is satisfied if h is absolutely continuous on $(0, \varepsilon]$ (for some $\varepsilon > 0$) and

(15)
$$wh'(w) = o((\log 1/w)^r)$$
 as $w \to 0$.

(ii) Let the assumptions of Theorem 2 be satisfied, and let F_m (or F_0) have a zero of order λ at z = 0. If $\tau \in (0, 1)$, then F_m has (at least) $m + \nu + \lambda$ zeros which are ≤ 0 $(m + \nu \text{ zeros are } <0)$, and if $\tau = 0$ and $m \geq 1$ then F_m has (at least) $m + \nu + \lambda - 1$ zeros which are ≤ 0 $(m + \nu - 1 \text{ zeros are } <0)$.

2. In this section we shall discuss special solutions of (1), (2) under various conditions on g and for special initial conditions. These results will be needed to prove Theorems 3 and 4.

LEMMA 1. Assume that (1), (2) with $g \uparrow$ has a solution $\tilde{y} \in C_p$ $[0, \infty)$ for some $p = 0, 1, \cdots$. Then

(16)
$$\int_{+0}^{1} \frac{dg(w)}{(1+\log 1/w)^{k-p}} < \infty .$$

PROOF. It follows from (3) and for some a_0 with $\{\prod_{i=1}^{k} (D-x_i)\} a_0 = 0$ that

$$\widetilde{y}(x) = a_{_{0}}(x) + \int_{_{+0}}^{_{1}} w dg(w) [x_{_{1}}, \cdots, x_{_{k}}, \log w]_{_{e^{(x-1)_{v}}}}, x > 0$$
,

and by differentiation

(17)
$$\widetilde{y}^{(p)}(x) = a_0^{(p)}(x) + \int_{+0}^1 w dg(w) [x_1, \cdots, x_k, \log w]_{v^{p_e(x-1)v}}.$$

Similarly to (4) the divided difference in this integral is $(0 < w \leq w_0)$.

(18)
$$\frac{(\log w)^p w^{x-1}}{\prod\limits_{1}^k (\log w - x_i)} + O\left(\frac{1}{\log w}\right) \qquad (w \longrightarrow 0) ,$$

where the O-term is uniform in x when x is restricted to a compact interval. The statement (16) now follows from (17) and (18) (note that $a_0^{(p)} \in C(-\infty, \infty)$, and that $g \uparrow$). In what follows we use the notation

$$a(x; x_1, \cdots, x_k; U(w)dg(w)) = \int_{+0}^{1} U(w)dg(w) [x_1, \cdots, x_k, \log w]_{e^{xv}}.$$

Our next Lemma is a kind of converse of Lemma 1.

ON POWER SERIES WITH NEGATIVE ZEROS

LEMMA 2. Let g satisfy (2), and assume that

(19)
$$\int_{+0}^{1} \frac{|dg(w)|}{(1+\log 1/w)^{k-p}} < \infty$$

for some $p = 0, 1, \dots, k - 1$ $(k \ge 1)$. Then, for $x > 0, c_{\nu} = e^{x\nu}$, the function $Y_{k,\nu}(x)$ defined by

$$egin{aligned} Y_{k,p}(x) &= \sum\limits_{
u=p+2}^k a\left(x;\,x_1,\,\cdots,\,x_
u;rac{w}{c_
u}\left(\prod\limits_{j=
u+1}^krac{1-w/c_j}{\log w/c_j}
ight)dg(w)
ight) \ &+ a\left(x;\,x_1,\,\cdots,\,x_{p+1};\,\left(\prod\limits_{j=p+2}^krac{1-w/c_j}{\log w/c_j}
ight)dg(w)
ight), \quad p \leq k-2 \ &Y_{k,k-1} = a\left(x,\,x_1,\,\cdots,\,x_k;\,dg(w)
ight), \end{aligned}$$

is a solution of (1), (2). Moreover, $Y_{k,p} \in C_p[0, \infty)$ and

(20)
$$Y_{k,p}(0) = Y'_{k,p}(0) = \cdots = Y^{(p)}_{k,p}(0) = 0$$

For x > 0 the general solution of (1), (2) with $y \in C_p[0, \infty)$ and $y(0) = y'(0) = \cdots = y^{(p)}(0) = 0$

(21)
$$y(x) = \begin{cases} Y_{k,k-1}(x) , & p = k-1 , \\ \sum_{\nu=p+2}^{k} C_{\nu} [x_{1}, \cdots, x_{\nu}]_{e^{xv}} + Y_{k,p}, C_{\nu} \text{ constant}, p \leq k-2 . \end{cases}$$

PROOF. It follows from

$$\left[x_{_{1}},\,\cdots,\,x_{_{k}},\,\log\,w
ight]_{_{v}{}^{p}e^{x\,v}} = egin{cases} rac{(\log\,w)^{p}\,w^{x}}{\prod\limits_{_{1}}^{k}\,(\log\,w-x_{_{i}})} + O\left(rac{1}{\log\,w}
ight) & ext{for } 0 < w \leq w_{_{0}} < 1 \;, \ 0 & ext{for } w \in (0,\,1] \;, \quad x = 0 \end{cases}$$

(see (18), and with the same remark on the O - term) that

$$a^{(p)}(x; x_1, \cdots, x_
u; dh(w)) \in C[0, \infty)$$
 , $a^{(\mu)}(0; x_1, \cdots, x_
u; dh(w)) = 0$

if $\nu \geq p+1, \ \mu=0, 1, \ \cdots, \ p, \ h \in V[\varepsilon, 1]$ for every $\varepsilon > 0$, and

$$\int_{+0}^1 rac{\mid dh(w)\mid}{(1+\log 1/w)^{
u-p}} < \infty$$
 .

This shows that (19) implies $Y_{k,p} \in C_p[0, \infty)$ and the conditions (20).

Now we show that the functions $Y_{k,p}$ are solutions of (1), (2). Using (5) this is obvious for p = k - 1, and it follows for $p \leq k - 2$ from

W. B. JURKAT AND A. PEYERIMHOFF

$$\begin{split} &\left\{\prod_{1}^{k} (D-x_{i})\right\} \, Y_{k,p}(x) \\ &= \sum_{\nu=p+2}^{k} \left\{\prod_{i=\nu+1}^{k} (D-x_{i})\right\} a\left(x; \frac{w}{c_{\nu}} \left(\prod_{j=\nu+1}^{k} \frac{1-w/c_{j}}{\log w/c_{j}}\right) dg(w)\right) \\ &+ \left\{\prod_{i=p+2}^{k} (D-x_{i})\right\} a\left(x; \left(\prod_{j=\nu+2}^{k} \frac{1-w/c_{j}}{\log w/c_{j}}\right) dg(w)\right) \\ &= \int_{+0}^{1} w^{x} \, dg(w) \left\{\sum_{\nu=p+2}^{k} \left(\prod_{j=\nu+1}^{k} \left(1-\frac{w}{c_{j}}\right) - \prod_{j=\nu}^{k} \left(1-\frac{w}{c_{j}}\right)\right) + \prod_{j=p+2}^{k} \left(1-\frac{w}{c_{j}}\right)\right\} \\ &= \int_{+0}^{1} w^{x} \, dg(w) = \varphi(x) \;. \end{split}$$

The statement on the general solution of (1), (2) follows from

$$\left\{\prod_{i=1}^{k} (D-x_{i})\right\} [x_{1}, \cdots, x_{\nu}]_{e^{2\nu}} = 0 \qquad (\nu = 1, \cdots, k)$$

(use (5)) and

$$D^q\left[x_{\scriptscriptstyle 1},\,\cdots,\,x_{\scriptscriptstyle
u}
ight]_{e^{xv}}ert_{x=0}=\left[x_{\scriptscriptstyle 1},\,\cdots,\,x_{\scriptscriptstyle
u}
ight]_{v^q}=egin{cases} 0 & ext{for } q<
u-1\ 1 & ext{for } q=
u-1\ . \end{cases}$$

(The functions $[x_1, \dots, x_{\nu}]_{e^{x\nu}}$, $\nu = 1, \dots, k$, represent a basis for the solutions of $\{\prod_{i=1}^{k} (D-x_i)\} y = 0$.)

LEMMA 3. Let g satisfy (2), and assume that (19) holds for some $p = 0, 1, \dots, k-1$ ($k \ge 1$). If y_p is a solution of (1), (2) with $x_i \le 0$, and if $y_p \in C_p[0, \infty)$ and $y_p(0) = y'_p(0) = \dots = y_p^{(p)}(0) = 0$ (i.e. y_p is one of the solutions (21)) then

(22)
$$\left\{\prod_{i=p+2}^{k} (D-x_i)\right\} \frac{y_p(x)}{x^{p+1}} = \int_0^1 t^x H(t) \frac{dt}{t}, \quad x > 0,$$

where

(23)
$$\begin{cases} \frac{1}{t} H(t) \in L[\varepsilon, 1] \text{ for every } \varepsilon > 0, \text{ and} \\ H(t) = o\left((\log 1/t)^{k-p-1} \right) \text{ as } t \longrightarrow 0. \end{cases}$$

PROOF. We may without loss of generality assume that $g \uparrow$. We discuss first the case p = k - 1, i.e. we show that (2) and

(24)
$$\int_{+0}^{1} \frac{|dg(w)|}{(1+\log 1/w)} < \infty \qquad \text{imply}$$
$$\frac{Y_{k,k-1}(x)}{x^{k}} = \int_{0}^{1} t^{x} H(t) \frac{dt}{t} , \quad x > 0 ,$$

where $1/t \ H(t) \in L[\varepsilon, 1]$ for every $\varepsilon > 0$ and $H(t) \to 0$ as $t \to 0$. Let (without loss of generality) $x_1 \leq x_2 \leq \cdots \leq x_k \leq 0$, and define $d_i \in (0, 1]$ by $\prod_i^k d_{\nu} = e^{x_i}$. Then

$$[x_1, \cdots, x_k, \log w]_{e^{xv}} = (d_1 \cdots d_k)^x \int_{0 \le t_k \le \cdots \le t_1 \le x} \cdots \int_{i=1}^k d_i^{-t_i} dt_i,$$

since both sides satisfy the differential equation (1) with $\varphi(x) = w^x$ (this follows for the right side from a short calculation, and from (5) for the left side) and initial conditions $y(0) = y'(0) = \cdots = y^{(k-1)} = 0$. Hence, $Y_{k,k-1}$ can be written in the form

$$Y_{k,k-1}(x) = x^k \int_{+0}^{1} dg(w) \int_{0 \le t_k \le \dots \le t_1 \le 1} w^{xt_k} \prod_{i=1}^k d_i^{x(1-t_i)} dt_i \; .$$

Denote the region $0 \leq t_{k-1} \leq \cdots \leq t_1 \leq 1$ by Δ , and let

$$ho \ (t_1, \ \cdots, \ t_{k-1}) = d_1^{1-t_1} d_2^{1-t_2} \ \cdots \ d_{k-1}^{1-t_{k-1}} d_k$$

The following computations simplify for k = 1 $(t_{k-1} = 1)$. We have

$$rac{Y_{k,k-1}(x)}{x^k} = \int \cdots \int dt_1 \cdots dt_{k-1} \,
ho^x \int_{+0}^1 dg(w) \int_0^{t_{k-1}} \Bigl(rac{w}{d_k}\Bigr)^{xt_k} dt_k \; .$$

But

$$\begin{split} \rho^x \int_{+0}^1 dg(w) \int_0^{t_{k-1}} & \left(\frac{w}{d_k}\right)^{xt_k} dt_k = \int_{+0}^1 \frac{dg(w)}{\log w/d_k} \frac{\rho^x (w/d_k)^{xt_{k-1}} - \rho^x}{x} \\ &= \int_{+0}^1 \frac{dg(w)}{\log w/d_k} \int_{\rho}^{\rho (w/d_k)^{t_{k-1}}} t^{x-1} dt \\ &= \int_0^\rho t^{x-1} dt \int_{+0}^{d_k (t/\rho)^{1/t_{k-1}}} \frac{dg(w)}{\log d_k/w} \\ &+ \int_{\rho}^{\rho (1/d_k)^{t_{k-1}}} t^{x-1} dt \int_{-1}^1 \frac{dg(w)}{\log w/d_k} \frac{dg(w)}{\log w/d_k} \end{split}$$

where (for $0 < d \leq 1$)

$$h_d(y) = egin{cases} \int_{+0}^y rac{dg(w)}{\log d/w} & ext{for} \quad 0 < y < d \ \int_y^1 rac{dg(w)}{\log w/d} & ext{for} \quad d < y \leq 1 \ 0 & ext{for} \quad y > 1 \end{cases}$$

(note that $\rho \leq d_k^{t_{k-1}}$).

It follows that

(25)
$$\begin{cases} \frac{Y_{k,k-1}(x)}{x^{k}} = \int_{0}^{1} t^{x-1} dt \int \cdots \int h_{d_{k}} \left(d_{k} \left(\frac{t}{\rho} \right)^{1/t_{k-1}} \right) dt_{1} \cdots dt_{k-1} \\ = \int_{0}^{1} t^{x} H(t) \frac{dt}{t}, \quad H(t) = \int \cdots \int h_{d_{k}} \left(d_{k} \left(\frac{t}{\rho} \right)^{1/t_{k-1}} \right) dt_{1} \cdots dt_{k-1}. \end{cases}$$

Obviously $H(t)/t \in L[\varepsilon, 1]$ for every $\varepsilon > 0$. Let $t < d_1 \cdots d_k$, then $t < \rho$ and

$$d_k \Big(rac{t}{
ho} \Big)^{{}^{_{1/t_{k-1}}}} \leqq d_k rac{t}{
ho} \leqq rac{t}{d_1 \cdots d_{k-1}}$$
 ,

hence

$$| H(t) | \leq \int \cdots_{A} \int dt_{1} \cdots dt_{k-1} \int_{+0}^{t/d_{1} \cdots d_{k-1}} \frac{| dg(w) |}{\log d_{k}/w} \leq \int_{+0}^{t/d_{1} \cdots d_{k-1}} \frac{| dg(w) |}{\log d_{k}/w} .$$

It follows that $H(t) \rightarrow 0$ as $t \rightarrow 0$, and this proves the case k = p - 1 of Lemma 3.

We mention a special case of (24) which will be needed later on. Let g(w) = 0 for $w < e^{\delta}$, g(w) = 1 for $e^{\delta} \le w \le 1$ ($\delta \le 0$). Then

$$Y_{\scriptscriptstyle k,\,k-1}(x) = \left[x_{\scriptscriptstyle 1},\,\cdots,\,x_{\scriptscriptstyle k},\,\delta
ight]_{e^{xv}}$$
 ,

and it follows from (24) that

(26)
$$\frac{[x_1, \cdots, x_k, \delta]_{e^{vx}}}{x^k} = \int_0^1 t^x H(t) \frac{dt}{t}$$

where $H(t)/t \in L[\varepsilon, 1]$ for every $\varepsilon > 0$ and $H(t) \to 0$ as $t \to 0$ (even more is true, namely H(t) = 0 in a neighborhood of t = 0). We now turn to the case $p \leq k - 2$, and we will use the relation

(27)
$$\begin{cases} \prod_{i=1}^{\rho} (D-\eta_i) \} a(x) b(x) \\ = \sum_{\mu=0}^{\rho-1} (D^{\mu}a) \sum_{1 \le i_1 < \cdots < i_{\rho-\mu} \le \rho} (D-\eta_{i_{\rho-\mu}}) b + (D^{\rho}a) b \quad (\rho \ge 0) \end{cases}$$

which follows from a short induction-type proof. Let

$$y_p(x) = \sum_{\nu=p+2}^k C_{\nu}[x_1, \cdots, x_{\nu}]_{e^{xv}} + Y_{k,p}, \quad Y_{k,p} = \sum_{\nu=p+2}^k A_{\nu} + A,$$

where A, A_{ν} denote the functions occurring in $Y_{k,p}$. It follows from (5) and (27) that

$$\left\{\prod_{i=p+2}^{\nu-1} (D-x_i)\right\} \frac{[x_1, \cdots, x_{\nu}]_{e^{xv}}}{x^{p+1}}$$

is a linear combination of terms of the type

$$rac{[x_1,\,\cdots,\,x_{p+1},\,x_{i_1},\,\cdots,\,x_{i_{\mu+1}}]_{e^{xv}}}{x^{p+1+\mu}}\,,\quad \mu=0,\,1,\,\cdots,\,
u-p-2\,.$$

Hence we obtain from (26) a representation

$$\Big\{\prod_{i=p+2}^{\nu-1}(D-x_i)\Big\}\frac{[x_1,\cdots,x_{\nu}]_{e^{x\nu}}}{x^{p+1}}=\int_0^1t^{x-1}H_{\nu}(t)dt\,,$$

 $H_{\nu}(t) \rightarrow 0$ as $t \rightarrow 0$, and it follows that

$$\begin{split} \left\{ \prod_{i=p+2}^{k} (D-x_{i}) \right\}_{\nu=p+2}^{k} C_{\nu} \frac{[x_{1}, \cdots, x_{\nu}]_{x^{2\nu}}}{x^{p+1}} &= \sum_{\nu=p+2}^{k} C_{\nu} \left\{ \prod_{i=\nu}^{k} (D-x_{i}) \right\}_{0}^{1} t^{x-1} H_{\nu}(t) dt \\ &= \sum_{\nu=p+2}^{k} C_{\nu} \int_{0}^{1} t^{x-1} \left(\prod_{i=\nu}^{k} (\log t - x_{i}) \right) H_{\nu}(t) dt \\ &= \int_{0}^{1} t^{x-1} \hat{H}(t) dt \end{split}$$

where $\hat{H}(t) = o((\log 1/t)^{k-p-1})$ as $t \to 0$.

Similarly it follows from (5) and (24) that $\{\prod_{i=p+2}^{\nu} (D-x_i)\}A_{\nu}/x^{p+1}$ is a linear combination of terms of the type

$$rac{a(x;\,x_{\scriptscriptstyle 1},\,\cdots,\,x_{p+1},\,x_{i_{\scriptscriptstyle 1}},\,\cdots,\,x_{i_{\scriptstyle \mu}};\,dg_{\scriptscriptstyle
u}(w))}{x^{p+\mu+1}}\,,\ \ \mu=0,\,\cdots,\,
u-p-1$$
 $dg_{\scriptscriptstyle
u}(w)=rac{w}{c_{\scriptscriptstyle
u}}\prod\limits_{j=
u+1}^krac{1-w/c_j}{\log w/c_j}dg(w)\;.$

Hence, it follows like in (24) $(k=p+\mu+1)$ that

$$\begin{split} &\left\{\prod_{i=p+2}^{\nu} (D-x_i)\right\} \frac{A_{\nu}}{x^{p+1}} = \int_0^1 t^{x-1} \widetilde{H}_{\nu}(t) dt , \quad \widetilde{H}_{\nu}(t) \to 0 \quad \text{as} \quad t \to 0 , \\ &\left\{\prod_{i=p+2}^k (D-x_i)\right\} \frac{A_{\nu}}{x^{p+1}} = \int_0^1 t^{x-1} \left(\prod_{i=\nu+1}^k (\log t - x_i)\right) \widetilde{H}_{\nu}(t) dt \end{split}$$

where $(\prod_{i=\nu+1}^{k} (\log t - x_i)) \quad \widetilde{H}_{\nu}(t) = o ((\log 1/t)^{k-\nu}) = o ((\log 1/t)^{k-\nu-1}) \left(\text{note that} \right)$ $\int_{+0}^1 |dg_
u(w)|/(1+\log 1/w) < \infty$). Finally, it follows like in (24) $(k\!=\!p\!+\!1)$ that

$$\begin{split} \frac{A(x)}{x^{p+1}} &= \int_0^1 t^{x-1} \widetilde{H}(t) dt , \quad \widetilde{H}(t) \longrightarrow 0 \quad \text{as} \quad t \longrightarrow 0 , \\ \left\{ \prod_{i=p+2}^k \left(D - x_i \right) \right\} \frac{A(x)}{x^{p+1}} &= \int_0^1 t^{x-1} \left(\prod_{i=p+2}^k \left(\log t - x_i \right) \right) \widetilde{H}(t) dt , \end{split}$$

where

W. B. JURKAT AND A. PEYERIMHOFF

$$\begin{split} \Big(\prod_{i=p+2}^k (\log t - x_i)\Big)\widetilde{H}(t) &= o\Big((\log 1/t)^{k-p-1}\Big) \quad \text{as} \quad t \to 0 \ . \\ \Big(\text{note that} \int_{+0}^1 \Big|\prod_{j=p+2}^k \frac{1 - w/c_j}{\log w/c_j} \frac{dg(w)}{1 + \log 1/w} \Big| < \infty \Big) \ . \end{split}$$

This proves the case $p \leq k-2$ of Lemma 3.

3. THEOREM 3. Let $a \in C[0, \infty)$ be a real solution of the differential equation

(28)
$$\begin{cases} \prod_{i=1}^{k} (D-x_{i}) \\ \\ \varphi \text{ completely monotone for } x > 0 \ (k \ge 0) \end{cases},$$

Then $f(z) = \sum_{0}^{\infty} a(n)z^{n}$ defines on C^{*} (uniquely) a holomorphic function which has at most k zeros unless $f \equiv 0$.

PROOF. It follows from (3) that

$$a(x) = a_0(x) + \int_{+0}^1 w dg(w) [x_1, \cdots, x_k, \log w]_{e^{(x-1)v}}, \left\{\prod_{i=1}^k (D-x_i)\right\} a_0 = 0,$$

and Lemma 1 shows that

(29)
$$\int_{+0}^{1} \frac{dg(w)}{(1+\log 1/w)^{k}} < \infty .$$

A short calculation shows that $(\prod_{i=1}^{k} \Delta(e^{x_i})) a_0(n+k) = 0$, and writing $a_n = a(n)$ we find

$$b_{n} = \left(\prod_{1}^{k} \varDelta(e^{x_{i}})\right) a_{n+k} = \int_{+0}^{1} w dg(w) \frac{1}{2\pi i} \int_{e_{w}} \frac{e^{(n-1)z} \prod_{1}^{k} (e^{z} - e^{x_{i}}) dz}{(z - x_{1}) \cdots (z - x_{k}) (z - \log w)}$$
$$= \int_{+0}^{1} w^{n} \left(\prod_{1}^{k} \frac{w - e^{x_{i}}}{\log w - x_{i}}\right) dg(w)$$

 $(C_w$ denotes a simple closed curve containing x_1, \dots, x_k and $\log w$ in its interior). This shows that b_n is completely monotone (observe (29)), and Theorem 3 follows from Theorem 1.

REMARKS. (i) Let $\tau \ge 0$, and let a(x) satisfy the assumptions of Theorem 3. Then $\sum_{0}^{\infty} a(n+\tau)z^{n}$ is defined on C^{*} and has at most k zeros (unless it is $\equiv 0$). This follows immediately from Theorem 3 when a(x) is replaced by $a^{*}(x) = a(x+\tau)$.

(ii) Replace in the assumptions of Theorem 3 $C[0, \infty)$ and x > 0 by $C[\nu, \infty)$ and $x > \nu(\nu=1, 2, \cdots)$. Then it follows that $b_n = (\prod_{i=\nu}^{k} (e^{x_i}))a_{n+k+\nu}$ is completely monotone, and Theorem 1 shows that $P_{\nu-1}(z) + \sum_{i=\nu}^{\infty} a(n)z^n$,

 $P_{\nu-1}(z)$ any real polynomial of degree $\leq \nu - 1$ is (uniquely) defined on C^* and has at most $k + \nu$ zeros (unless it is $\equiv 0$).

THEOREM 4. Let $a \in C_p[0, \infty)$ for some $p = 0, 1, \dots, k-1$ $(k \ge 1)$ be a real solution of the differential equation (28). Moreover, let

$$a(0) = a'(0) = \cdots = a^{(p)}(0) = 0$$
.²

Then $f(z) = \sum_{0}^{\infty} a(n+\tau)z^n$, $\tau \in [0, 1)$, defines on $C^*(uniquely)$ a holomorphic function which has at most k zeros (unless $f \equiv 0$) and at least p + 1 different zeros which are ≤ 0 .

PROOF. On account of Theorem 3 it remains to prove the lower estimate for the number of zeros.

It follows from Lemma 1 that (19) holds, and Lemma 3 shows that

$$\left\{\prod_{i=p+2}^{k} (D-x_i)\right\} \frac{a(x)}{x^{p+1}} = \int_{0}^{1} t^{x-1} H(t) dt$$
 ,

where H satisfies (23). Theorem 2 and Remark (i) after Theorem 2

 $(c(x) = a(x)/x^{p+1}, h'(t) = H(t)/t, m = p + 1, r = k - p - 1, \nu = \mu = 0)$ now show that f has at least p + 1 different zeros which are ≤ 0 .

REMARK. The example $\sum_{0}^{\infty} (n+1)^{2} z^{n} = (1+z)/(1-z)^{3}$ shows that Theorem 4 cannot be extended to $\tau = 1$ (k=2, p=1).

4. Applications of Theorem 4.

(i) Let $a(x) = x^{\kappa}$, $x \ge 0$, $k-1 < \kappa \le k$, $k = 1, 2, \cdots$. Here $a \in C_{k-1}$ [0, ∞), and $D^k a = C x^{\kappa-k}$ is completely monotone for x > 0; moreover,

$$a(0) = a'(0) = \cdots = a^{(k-1)}(0) = 0$$
.

It follows from Theorem 4 that $f_{x}(z) = \sum_{0}^{\infty} (n+\tau)^{x} z^{n}$, $\tau \in [0, 1)$, has exactly k zeros in C^{*} , and these are simple and ≤ 0 .

(ii) Let $a(x) = (1-c^x)^{\epsilon}$, $x \ge 0$, 0 < c < 1, $k-1 < \kappa \le k$. The relation $(D-\kappa \log c) a(x) = \kappa \log 1/c (1-c^x)^{\kappa-1}$ shows that a(x) satisfies a differential equation (28) $(\varphi(x) = C (1-c^x)^{\kappa-k})$, and we have $a \in C_{k-1}[0, \infty)$ and $a(0) = a'(0) = \cdots = a^{(k-1)}(0) = 0$. It follows from Theorem 4 that $g_{\kappa}(z) = \sum_{0}^{\infty} (1-c^{n+\tau})^{\kappa} z^{n}$, $\tau \in [0, 1)$, has exactly k zeros in C^* , and these zeros are different and ≤ 0 .

(iii) Let a(x) be the incomplete Γ -function

$$\int_{_0}^x t^{\kappa-1} e^{-t} dt, \; x \geqq 0, \; k-1 < \kappa \leqq k \; .$$

² This is equivalent to a(0) = 0, $\{\prod_{i=1}^{\nu} (D - x_i)\}a|_{x=0} = 0, \nu = 1, \dots, p$.

Then $Da = x^{\kappa-1}e^{-x}$, (D+1) $Da = (\kappa-1)x^{\kappa-2}e^{-x}$. It follows from Theorem 4 that $\sum_{0}^{\infty} a(n+\tau)z^{n}$, $\tau \in [0, 1)$, has exactly k zeros in C^{*} , and these are simple and ≤ 0 .

(iv) Let $a(x) = x^{\kappa} \log x$, $x \ge 0$, $k - 1 < \kappa \le k$. We have

$$D^q a \,=\, q \, ! \, igg({\kappa \atop q} igg) \, x^{\kappa - q} \, (\log x \,+\, A_q) \, , \hspace{0.5cm} A_q \, \, ext{constant} \, ,$$

for $\kappa \neq 1, 2, \cdots$ or $q \leq k$. This shows that $a \in C_{k-1}[0, \infty)$ and

$$a(0) = a'(0) = \cdots = a^{(k-1)}(0) = 0$$
.

Let $\kappa = k$. Then $D^{k+1}a = k!/x$ is completely monotone. Let $\kappa \neq k$. Then it follows from

$$\frac{1}{x^{\alpha}} = \frac{1}{\Gamma(\alpha)} \int_{0}^{1} t^{x-1} \left(\log \frac{1}{t} \right)^{\alpha-1} dt$$

$$\frac{\log x}{x^{\alpha}} = \frac{1}{\varGamma(\alpha)} \int_0^1 t^{x-1} \Big(\log \frac{1}{t} \Big)^{\alpha-1} \Big\{ \frac{\varGamma'(\alpha)}{\varGamma(\alpha)} - \log \log \frac{1}{t} \Big\} dt \quad (\alpha > 0, \ x > 0)$$

(differentiate with respect to α to obtain the second formula from the first) that

$$(D-\xi)D^{k}a = k! \binom{\kappa}{k} \frac{1}{\Gamma(k-\kappa)} \int_{0}^{1} t^{x-1} \left(\log \frac{1}{t}\right)^{k-\kappa-1} (\log t-\xi) \left\{\frac{\Gamma'(k-\kappa)}{\Gamma(k-\kappa)} - \log \log \frac{1}{t} + A_{k}\right\} dt$$

is completely monotone for a suitable $\xi < 0$. It follows from Theorem 4 that $F_{\kappa}(z) = \sum_{0}^{\infty} (n+\tau)^{\kappa} \log (n+\tau) z^{n}$ has at most k+1 zeros and at least k zeros which are different and ≤ 0 .

Let $\tau = 0$. Then F_{κ} has a zero of order 2 at z = 0, so that F_{κ} actually has k + 1 zeros (and all zeros are ≤ 0). Let $\tau \in (0, 1)$. Then $F_{\kappa}(0) < 0$, $F_{\kappa}(x) \to \infty$ as $x \to 1$, and it follows that F_{κ} has at least one zero which is > 0, hence F_{κ} has again exactly k + 1 zeros. These are simple, and k zeros are < 0, one zero is > 0. (A lower estimate for the number of zeros of F_{κ} follows from Wirsing [7].)

Subbotin [5] has shown that $\sum_{0}^{\infty} z^{n} \int_{0}^{1} f(t)(n+t)^{2k} dt$ $(f \ge 0, k=0,1,\cdots)$ has exactly 2k zeros (unless $\equiv 0$) in C^{*} , and these are simple and negative. This result is not a consequence of Theorem 4; however, using our results on the zeros of $\sum (n+\tau)^{\kappa} z^{n}$ and the fact that these zeros are monotone functions of τ (which was observed by Subbotin for $\kappa = 2k$) we are in a position to discuss the zeros of the more general functions

$$\sum z^n \int_0^1 f(t)(n+t)^* dt$$
.

References

- A. EDREI, Proof of a conjecture of Schoenberg on the generating function of a totally positive sequence. Canad. J. Math. 5 (1953), 86-94.
- [2] G. G. LORENTZ, Bernstein Polynomials. Univ. of Toronto Press, Toronto 1953.
- [3] A. PEYERIMHOFF, On the zeros of power series. Mich. Math. J. 13 (1966), 193-214.
- [4] G. POLYA UND G. SZEGÖ, Aufgaben und Lehrsätze aus der Analysis. Springer, Berlin, 1954.
- [5] JU. N. SUBBOTIN, Funktionelle Interpolation im Mittel mit kleinster n-ter Ableitung (Russian). Trudy mat. Inst. Steklov. 88 (1967), 30-60.
- [6] D. V. WIDDER, The Laplace Transform. Princeton 1946.
- [7] E. WIRSING, On the monotonicity of the zeros of two power series. Mich. Math. J. 13 (1966), 215-218.

W.B. JURKAT, SYRACUSE UNIVERSITY,

DEPT. OF MATHEMATICS, SYRACUSE, N.Y. U.S.A.

A. PEYERIMHOFF, UNIVERSITÄT ULM DONAU ABT.

FÜR MATHEMATIK, GERMANY