ON POWER SERIES WITH NEGATIVE ZEROS*

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

W. B. Jurkat (Syracuse) and A. Peyerimhoff (Ulm)

(Received Oct. 1, 1971)

It is well known [3] that the functions $f_{\kappa}(z)=\sum_{n=0}^{\infty} n^{\kappa} z^{n}(\kappa>0)$ and $g_{\kappa}(z)=\sum_{n=0}^{\infty}\left(1-c^{n}\right)^{\kappa} z^{n}(\kappa>0,0<c<1)$ admit (unique) analytic extensions onto $C^{*}=\{z=x+i y \mid y \neq 0$ if $x \geqq 1\}$. Both functions have a finite number of zeros only. Moreover, all zeros are $\leqq 0$ and simple, and their number is k, where $k-1<\kappa \leqq k, k=1,2, \cdots$. In this paper we will give some general theorems on the zeros of power series, and these results contain the information on f_{κ} and g_{κ} as special cases. Further examples are mentioned in Section 4.

We remark that our functions need not be meromorphic (like f_{k}) or may have infinitely many zeros and poles on ($1, \infty$) (like g_{κ}) so that known results on zeros of analytic functions like those in [1] cannot be applied. Theorem 1 gives an upper estimate for the number of zeros of certain power series $\sum a_{n} z^{n}$, and Theorem 2 gives a lower estimate. In Theorem 1 we require that certain differences of the coefficients a_{n} form a completely monotone sequence (we use the definitions given in [6]). In discussing special cases it will be more convenient to require that $a_{n}=a(n)$, where $a(x)$ satisfies a linear differential equation with completely monotone right hand side (Theorems 3 and 4).
0. In what follows we will denote by $\left[x_{1}, \cdots, x_{n}\right]_{f(v)}$ the divided differences of f (see [2]). If C is a simple closed curve containing x_{1}, \cdots, x_{n} in its interior, and if f is holomorphic inside and on C, then

$$
\left[x_{1}, \cdots, x_{n}\right]_{f(v)}=\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{p(z)} d z, \quad p(z)=\prod_{1}^{n}\left(z-x_{i}\right)
$$

The differential equation

$$
\begin{equation*}
\left\{\prod_{1}^{k}\left(D-x_{i}\right)\right\} y(x)=\varphi(x), \quad x_{i} \text { constant }, D=\frac{d}{d x}, k=0,1, \cdots \tag{1}
\end{equation*}
$$

where

[^0]\[

\varphi(x)=\int_{+0}^{1} w^{x} d g(w),\left\{$$
\begin{array}{l}
g \in V[\varepsilon, 1] \text { for every } \varepsilon>0, \tag{2}\\
\int_{+0}^{1} w^{x}|d g(w)|<\infty \text { for every } x>0
\end{array}
$$\right.
\]

has the particular solution

$$
\begin{equation*}
y(x)=\int_{+0}^{1} w d g(w)\left[x_{1}, \cdots, x_{k}, \log w\right]_{e(x-1) v}, x>0 \tag{3}
\end{equation*}
$$

In order to prove this we first show that (3) exists. Let C be a simple closed curve containing x_{1}, \cdots, x_{k}, and let $\log w$ be outside of C for $0<w \leqq w_{0}<1$. Writing $p(z)=\Pi_{1}^{k}\left(z-x_{i}\right)$ we have for $0<w \leqq w_{0}$

$$
\left\{\begin{align*}
{\left[x_{1}, \cdots, x_{k}, \log w\right]_{e}(x-1) v } & =\frac{w^{x-1}}{p(\log w)}+\frac{1}{2 \pi i} \int_{c} \frac{e^{(x-1) z}}{p(z)} \frac{d z}{z-\log w} \tag{4}\\
& =\frac{w^{x-1}}{p(\log w)}+O\left(\frac{1}{\log w}\right)(w \longrightarrow 0)
\end{align*}\right.
$$

where the O-term is uniform in x when x is restricted to a compact interval. This shows that (3) exists. It follows from

$$
\begin{equation*}
(D-\alpha)\left[x_{1}, \cdots, x_{n}, \alpha\right]_{e^{x v_{f}(v)}}=\left[x_{1}, \cdots, x_{n}\right]_{e^{x v} f(v)} \tag{5}
\end{equation*}
$$

that

$$
\begin{aligned}
\left\{\prod_{1}^{k}\left(D-x_{i}\right)\right\} y(x) & =\int_{+0}^{1} w d g(w)\left\{\prod_{1}^{k}\left(D-x_{i}\right)\right\}\left[x_{1}, \cdots, x_{k}, \log w\right]_{e^{x v_{e}-v}} \\
& =\int_{+0}^{1} w[\log w]_{e^{(x-1) v}} d g(w)=\varphi(x)
\end{aligned}
$$

and this shows that (3) is a solution of (1).

1. Given a sequence $\left\{t_{n}\right\}_{0}^{\infty}$, let

$$
\Delta(c) t_{n}= \begin{cases}t_{n}-c t_{n-1} & \text { for } n \geqq 1 \\ t_{0} & \text { for } n=0\end{cases}
$$

Theorem 1. Let $\left\{\alpha_{n}\right\}_{0}^{\infty}$ be a real sequence and such that for certain integers $0 \leqq k \leqq p$ and constants $c_{i} \in(0,1]$

$$
\left\{\prod_{i=1}^{k} \Delta\left(c_{i}\right)\right\} a_{n+p}=b_{n}(n=0,1, \cdots)
$$

defines a completely monotone sequence $\left\{b_{n}\right\}_{0}^{\infty}$. Then $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ defines on C^{*} (uniquely) a holomorphic function which has at most p zeros unless $f \equiv 0$.

Proof. This follows from the identity

$$
\left(\prod_{1}^{k}\left(1-c_{i} z\right)\right) \sum_{0}^{\infty} a_{n} z^{n}=\sum_{1}^{\infty} z^{n}\left(\prod_{1}^{k} \Delta\left(c_{i}\right)\right) a_{n}=\sum_{0}^{p-1} z^{n}\left(\prod_{1}^{k} \Delta\left(c_{i}\right)\right) a_{n}+z^{p} \sum_{0}^{\infty} b_{n} z^{n}
$$

by Theorem 1 of [3].
Our next theorem gives a lower estimate for the number of zeros of functions of the type

$$
F_{m}(z)=F_{m}(z ; \tau)=\left\{\begin{array}{l}
\sum_{n=0}^{\infty}(n+\tau)^{m} c(n+\tau) z^{n}, \quad \tau \in(0,1) \\
\sum_{n=1}^{\infty} n^{m} c(n) z^{n}, \quad \tau=0,
\end{array}\right.
$$

($m=0,1, \cdots$), where the function $c(x), x>0$, satisfies a differential equation

$$
\begin{aligned}
\left\{\prod_{i=1}^{r}\left(D-\xi_{i}\right)\right\} c(x)=\int_{+0}^{1} w^{x} d h(w), \xi_{i} \text { constant, } h \in V[\varepsilon, 1] \\
\text { for every } \varepsilon>0, r=0,1, \cdots
\end{aligned}
$$

Theorem 2. Let $\xi_{i} \leqq 0$, and assume that

$$
\begin{equation*}
x \int_{+0}^{1 / x} w \frac{|d h(w)|}{(\log 1 / w)^{r}}=o(1) \quad(x \rightarrow \infty) \tag{6}
\end{equation*}
$$

Then F_{m} is (uniquely) defined on C^{*}. Let F_{0} have (at least) the following zeros:

$$
z_{\nu}<z_{\nu-1}<\cdots<z_{1}<0<z_{1}^{\prime}<z_{2}^{\prime}<\cdots<z_{\mu}^{\prime}<1(\nu, \mu=0,1, \cdots) .
$$

Then $F_{m}(m=1,2, \cdots)$ has (at least) zeros of the following kind

$$
\zeta_{m+\nu}<\cdots<\zeta_{1} \leqq 0<\zeta_{1}^{\prime}<\cdots<\zeta_{\mu}^{\prime}<1
$$

and $\zeta_{1}<0$ if $\tau \in(0,1)$.
Proof. We mention first two consequences of (6):

$$
\begin{gather*}
x^{\tau} \int_{+0}^{1 / x} w^{\tau} \frac{|d h(w)|}{(\log 1 / w)^{r}}=o(1) \quad(x \longrightarrow \infty, \tau \in(0,1)), \tag{7}\\
x^{\tau-1} \int_{1 / x}^{1} w^{\tau-1} \frac{|d h(w)|}{(1+\log 1 / w)^{r}}=o(1) \quad(x \longrightarrow \infty, \tau \in[0,1)) . \tag{8}
\end{gather*}
$$

Writing $d h^{*}(w)$ for $(|d h(w)|) /\left((1+\log 1 / w)^{r}\right)$ the relation (7) follows from (6) and

$$
\begin{aligned}
& x^{\tau} \int_{+0}^{1 / x} w^{\tau} d h^{*}(w)=x^{\tau} \int_{+0}^{1 / x} w^{\tau-1} d \int_{+0}^{w} t d h^{*}(t) \\
= & x \int_{+0}^{1 / x} t d h^{*}(t)+(1-\tau) x^{\tau} \int_{+0}^{1 / x} w^{\tau-1}\left(\frac{1}{w} \int_{+0}^{w} t d h^{*}(t)\right) d w,
\end{aligned}
$$

and the relation (8) follows from (6) and

$$
\begin{aligned}
x^{\tau-1} \int_{1 / x}^{1} w^{\tau-1} d h^{*}(w)= & x^{\tau-1} \int_{1 / x}^{1} w^{\tau-2} d \int_{+0}^{w} t d h^{*}(t) \\
= & x^{\tau-1} \int_{+0}^{1} t d h^{*}(t)-x \int_{+0}^{1 / x} t d h^{*}(t) \\
& +(2-\tau) x^{\tau-1} \int_{1 / x}^{1} w^{\tau-2}\left(\frac{1}{w} \int_{+0}^{w} t d h^{*}(t)\right) d w .
\end{aligned}
$$

We note that (7) implies

$$
\begin{equation*}
\int_{+0}^{1} w^{x}|d h(w)|<\infty \quad \text { for every } x>0^{1} \tag{9}
\end{equation*}
$$

Next we wish to show that F_{m} exists on C^{*} and that

$$
\left\{\begin{array}{l}
F_{m}(-x ; 0) \longrightarrow 0 \text { for } x \longrightarrow \infty, \quad m=1,2, \cdots, \tag{10}\\
x^{\tau} F_{m}(-x ; \tau) \longrightarrow 0 \text { for } x \longrightarrow \infty, \quad \tau \in(0,1), \quad m=0,1, \cdots
\end{array}\right.
$$

In order to prove this we note first that (3) and (9) imply

$$
\left\{\begin{array}{l}
c(x)=c_{0}(x)+\int_{+0}^{1} w d h(w)\left[\xi_{1}, \cdots, \xi_{r}, \log w\right]_{e(x-1) v}, x>0, \tag{11}\\
\left\{\prod_{1}^{r}\left(D-\xi_{i}\right)\right\} c_{0}(x)=0 .
\end{array}\right.
$$

Denoting by P_{j} polynomials of degree $\leqq j$, we have for $\rho=0,1, \cdots$ and $\alpha \in(-\infty, \infty)$ a representation

$$
\sum_{n=0}^{\infty}(n+\alpha)^{\rho} z^{n}=\left\{\begin{array}{l}
P_{\rho}(z) /(1-z)^{\rho+1} \tag{12}\\
P_{\rho-1}(z) /(1-z)^{\rho+1} \quad \text { for } \quad \alpha=1, \rho=1,2, \cdots
\end{array}\right.
$$

(This follows from a short induction-type proof; see also [4].)
According to (11) we write F_{m} as a sum $F_{m}^{0}+\widetilde{F}_{m}$ (where F_{m}^{0} is generated by c_{0}). It follows from (11) that $c_{0}(x)$ is a linear combination of functions of the type $x^{\lambda} e^{x_{i} i}$ for some $\lambda=0,1, \cdots$, and it follows from (12) that F_{m}^{0} is a linear combination of terms of the type

$$
\begin{array}{lr}
e^{\tau_{i}} P_{m+\lambda}\left(z e^{\xi_{i}}\right) /\left(1-z e^{\xi_{i}}\right)^{m+\lambda+1} & \text { for } \tau \in(0,1), m=0,1, \cdots, \\
z e^{\xi_{i}} P_{m+\lambda-1}\left(z e^{\xi_{i}}\right) /\left(1-z e^{\xi_{i}}\right)^{m+\lambda+1} & \text { for } \tau=0, m=1,2, \cdots,
\end{array}
$$

and this shows that F_{m}^{0} is defined on C^{*} (note that $\xi_{i} \leqq 0$) and that (10) is true when F_{m} is replaced by F_{m}^{0}.

Using a representation similar to (4) for the divided difference in (11) we have for $\tau \in(0,1), m=0,1, \cdots$

[^1]\[

$$
\begin{aligned}
\widetilde{F}_{m}(z)= & \int_{+0}^{w_{0}} w^{\tau} \frac{P_{m}(w z)}{(1-w z)^{m+1}} \frac{d h(w)}{p(\log w)} \\
& +\int_{+0}^{w_{0}} w d h(w) \frac{1}{2 \pi i} \int_{0} \frac{e^{(\tau-1) \zeta} P_{m}\left(z e^{\zeta}\right)}{\left(1-z e^{\zeta}\right)^{m+1}} \frac{d \zeta}{p(\zeta)(\zeta-\log w)} \\
& +\int_{w_{0}}^{1} w d h(w) \frac{1}{2 \pi i} \int_{c_{1}} \frac{e^{(\tau-1) \zeta} P_{m}\left(z e^{\zeta}\right)}{\left(1-z e^{\zeta}\right)^{m+1}} \frac{d \zeta}{p(\zeta)(\zeta-\log w)} \\
= & \mathrm{I}+\mathrm{II}+\mathrm{III}
\end{aligned}
$$
\]

(C_{1} denotes a simple closed curve containing ξ_{1}, \cdots, ξ_{r} and $\log w$ for $w_{0} \leqq$ $w \leqq 1$). The same representation holds for $\tau=0$ and $m=1,2, \cdots$, where $P_{m}(z)$ contains a factor z.

It follows from this representation that \widetilde{F}_{m} is defined on C^{*} (choose C, C_{1} suitably). Moreover, we see that for $z=-x<0$ and $x \rightarrow \infty$

$$
I I=O\left(\frac{1}{x}\right), \quad I I I=O\left(\frac{1}{x}\right)
$$

and that

$$
\begin{aligned}
\left|x^{\tau} \mathrm{I}\right| & =O(1) x^{\tau} \int_{+0}^{1 / x} w^{\tau} \frac{|d h(w)|}{(\log 1 / w)^{r}}+O(1) x^{\tau-1} \int_{1 / x}^{w_{0}} w^{\tau-1} \frac{|d h(w)|}{(\log 1 / w)^{r}} \\
& =o(1)
\end{aligned}
$$

by (7) and (8) $(\tau \neq 0)$ or by (6) and (8) $(\tau=0)$. This proves (10).
We observe that for $\tau \in[0,1)$

$$
\begin{equation*}
\frac{d}{d x}\left((-x)^{\tau} F_{m}(x)\right)=-(-x)^{\tau-1} F_{m+1}(x) \text { for } x<0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d x}\left(x^{\tau} F_{m}(x)\right)=x^{\tau-1} F_{m+1}(x) \quad \text { for } x>0 \tag{14}
\end{equation*}
$$

Let F_{i} (for some $i=1,2, \cdots$) have the zeros

$$
z_{\rho}<z_{\rho-1}<\cdots<z_{1}<0<z_{1}^{\prime}<\cdots<z_{\sigma}^{\prime}<1
$$

and let $\phi_{i}(x)=(-x)^{\tau} F_{i}(x)(x \leqq 0), \phi_{i}(x)=x^{\tau} F_{i}(x)(x \geqq 0)$. Then $\phi_{i}(x)=0$ when $F_{i}(x)=0$, and $\phi_{i}(0)=0$ (note that $F_{i}(0)=0$ when $\tau=0$). Furthermore, $\phi_{i}(x) \rightarrow 0(x \rightarrow-\infty)$ by (10). It follows from (13) and (14) by Rolle's theorem that F_{i+1} has zeros $\zeta_{1}, \cdots, \zeta_{\rho+1}, \zeta_{1}^{\prime}, \cdots, \zeta_{\sigma}^{\prime}$ with

$$
\zeta_{\rho+1}<z_{\rho}<\zeta_{\rho}<\cdots<z_{1}<\zeta_{1}<0<\zeta_{1}^{\prime}<z_{1}^{\prime}<\cdots<\zeta_{\sigma}^{\prime}<z_{\sigma}^{\prime}<1 .
$$

If $\tau \in(0,1)$ and $i=0$, then this is also true, which proves Theorem 2 for $\tau \neq 0$. If $\tau=0$ and $i=0$, the foregoing argument only shows that zeros
$\zeta_{1}, \cdots, \zeta_{\rho}, \zeta_{1}^{\prime}, \cdots, \zeta_{o}^{\prime}$ exist $\left(\phi_{0}(x) \rightarrow 0\right.$ for $x \rightarrow-\infty$ may not be true, and $\zeta_{\rho+1}$ may be lost). But $F_{i}(0)=0$ is true in this case, and this proves Theorem 2 for $\tau=0$.

Remarks. (i) Condition (6) is satisfied if h is absolutely continuous on ($0, \varepsilon$] (for some $\varepsilon>0$) and

$$
\begin{equation*}
w h^{\prime}(w)=o\left((\log 1 / w)^{r}\right) \quad \text { as } \quad w \rightarrow 0 . \tag{15}
\end{equation*}
$$

(ii) Let the assumptions of Theorem 2 be satisfied, and let F_{m} (or F_{0}) have a zero of order λ at $z=0$. If $\tau \in(0,1)$, then F_{m} has (at least) $m+\nu+\lambda$ zeros which are $\leqq 0(m+\nu$ zeros are $<0)$, and if $\tau=0$ and $m \geqq 1$ then F_{m} has (at least) $m+\nu+\lambda-1$ zeros which are $\leqq 0(m+\nu-1$ zeros are <0).
2. In this section we shall discuss special solutions of (1), (2) under various conditions on g and for special initial conditions. These results will be needed to prove Theorems 3 and 4.

Lemma 1. Assume that (1), (2) with $g \uparrow$ has a solution $\tilde{y} \in C_{p}[0, \infty)$ for some $p=0,1, \cdots$. Then

$$
\begin{equation*}
\int_{+0}^{1} \frac{d g(w)}{(1+\log 1 / w)^{k-p}}<\infty . \tag{16}
\end{equation*}
$$

Proof. It follows from (3) and for some a_{0} with $\left\{\prod_{1}^{k}\left(D-x_{i}\right)\right\} a_{0}=0$ that

$$
\widetilde{y}(x)=a_{0}(x)+\int_{+0}^{1} w d g(w)\left[x_{1}, \cdots, x_{k}, \log w\right]_{e^{(x-1) v}}, x>0,
$$

and by differentiation

$$
\begin{equation*}
\widetilde{y}^{(p)}(x)=a_{0}^{(p)}(x)+\int_{+0}^{1} w d g(w)\left[x_{1}, \cdots, x_{k}, \log w\right]_{v p_{e}(x-1) v} . \tag{17}
\end{equation*}
$$

Similarly to (4) the divided difference in this integral is $\left(0<w \leqq w_{0}\right)$.

$$
\begin{equation*}
\frac{(\log w)^{p} w^{x-1}}{\prod_{1}^{k}\left(\log w-x_{i}\right)}+O\left(\frac{1}{\log w}\right) \quad(w \longrightarrow 0) \tag{18}
\end{equation*}
$$

where the O-term is uniform in x when x is restricted to a compact interval. The statement (16) now follows from (17) and (18) (note that $a_{0}^{(p)} \in C(-\infty, \infty)$, and that $\left.g \uparrow\right)$. In what follows we use the notation

$$
a\left(x ; x_{1}, \cdots, x_{k} ; U(w) d g(w)\right)=\int_{+0}^{1} U(w) d g(w)\left[x_{1}, \cdots, x_{k}, \log w\right]_{e^{x v}}
$$

Our next Lemma is a kind of converse of Lemma 1.

Lemma 2. Let g satisfy (2), and assume that

$$
\begin{equation*}
\int_{+0}^{1} \frac{|d g(w)|}{(1+\log 1 / w)^{k-p}}<\infty \tag{19}
\end{equation*}
$$

for some $p=0,1, \cdots, k-1(k \geqq 1)$. Then, for $x>0, c_{\nu}=e^{x v}$, the function $Y_{k, p}(x)$ defined by

$$
\begin{aligned}
Y_{k, p}(x)= & \sum_{\nu=p+2}^{k} a\left(x ; x_{1}, \cdots, x_{\nu} ; \frac{w}{c_{\nu}}\left(\prod_{j=\nu+1}^{k} \frac{1-w / c_{j}}{\log w / c_{j}}\right) d g(w)\right) \\
+ & a\left(x ; x_{1}, \cdots, x_{p+1} ;\left(\prod_{j=p+2}^{k} \frac{1-w / c_{j}}{\log w / c_{j}}\right) d g(w)\right), \quad p \leqq k-2 \\
& Y_{k, k-1}=a\left(x, x_{1}, \cdots, x_{k} ; d g(w)\right)
\end{aligned}
$$

is a solution of (1), (2). Moreover, $Y_{k, p} \in C_{p}[0, \infty)$ and

$$
\begin{equation*}
Y_{k, p}(0)=Y_{k, p}^{\prime}(0)=\cdots=Y_{k, p}^{(p)}(0)=0 . \tag{20}
\end{equation*}
$$

For $x>0$ the general solution of (1), (2) with $y \in C_{p}[0, \infty)$ and

$$
y(0)=y^{\prime}(0)=\cdots=y^{(p)}(0)=0
$$

is

$$
y(x)=\left\{\begin{array}{l}
Y_{k, k-1}(x), \quad p=k-1 \tag{21}\\
\sum_{\nu=p+2}^{k} C_{\nu}\left[x_{1}, \cdots, x_{\nu}\right]_{e^{x v}}+Y_{k, p}, C_{\nu} \text { constant, } p \leqq k-2
\end{array}\right.
$$

Proof. It follows from
$\left[x_{1}, \cdots, x_{k}, \log w\right]_{v^{p} p^{x v}}=\left\{\begin{array}{l}\frac{(\log w)^{p} w^{x}}{\prod_{1}^{k}\left(\log w-x_{i}\right)}+O\left(\frac{1}{\log w}\right) \text { for } 0<w \leqq w_{0}<1, \\ 0 \text { for } w \in(0,1], \quad x=0\end{array}\right.$
(see (18), and with the same remark on the O - term) that

$$
\begin{aligned}
& a^{(p)}\left(x ; x_{1}, \cdots, x_{\nu} ; d h(w)\right) \in C[0, \infty) \\
& a^{(\mu)}\left(0 ; x_{1}, \cdots, x_{\nu} ; d h(w)\right)=0
\end{aligned}
$$

if $\nu \geqq p+1, \mu=0,1, \cdots, p, h \in V[\varepsilon, 1]$ for every $\varepsilon>0$, and

$$
\int_{+0}^{1} \frac{|d h(w)|}{(1+\log 1 / w)^{2-p}}<\infty .
$$

This shows that (19) implies $Y_{k, p} \in C_{p}[0, \infty)$ and the conditions (20).
Now we show that the functions $Y_{k, p}$ are solutions of (1), (2). Using
(5) this is obvious for $p=k-1$, and it follows for $p \leqq k-2$ from

$$
\begin{aligned}
& \left\{\prod_{1}^{k}\left(D-x_{i}\right)\right\} Y_{k, p}(x) \\
= & \sum_{\nu=p+2}^{k}\left\{\prod_{i=\nu+1}^{k}\left(D-x_{i}\right)\right\} a\left(x ; \frac{w}{c_{\nu}}\left(\prod_{j=\nu+1}^{k} \frac{1-w / c_{j}}{\log w / c_{j}}\right) d g(w)\right) \\
& +\left\{\prod_{i=p+2}^{k}\left(D-x_{i}\right)\right\} a\left(x ;\left(\prod_{j=p+2}^{k} \frac{1-w / c_{j}}{\log w / c_{j}}\right) d g(w)\right) \\
= & \int_{+0}^{1} w^{x} d g(w)\left\{\sum_{\nu=p+2}^{k}\left(\prod_{j=\nu+1}^{k}\left(1-\frac{w}{c_{j}}\right)-\prod_{j=\nu}^{k}\left(1-\frac{w}{c_{j}}\right)\right)+\prod_{j=p+2}^{k}\left(1-\frac{w}{c_{j}}\right)\right\} \\
= & \int_{+0}^{1} w^{x} d g(w)=\varphi(x) .
\end{aligned}
$$

The statement on the general solution of (1), (2) follows from

$$
\left\{\prod_{1}^{k}\left(D-x_{i}\right)\right\}\left[x_{1}, \cdots, x_{\nu}\right]_{e^{x v}}=0 \quad(\nu=1, \cdots, k)
$$

(use (5)) and

$$
\left.D^{q}\left[x_{1}, \cdots, x_{\nu}\right]_{e^{x v}}\right|_{x=0}=\left[x_{1}, \cdots, x_{\nu}\right]_{v q}= \begin{cases}0 & \text { for } q<\nu-1 \\ 1 & \text { for } q=\nu-1 .\end{cases}
$$

(The functions $\left[x_{1}, \cdots, x_{\nu}\right]_{e^{x v}}, \nu=1, \cdots, k$, represent a basis for the solutions of $\left\{\prod_{1}^{k}\left(D-x_{i}\right)\right\} y=0$.)

Lemma 3. Let g satisfy (2), and assume that (19) holds for some $p=$ $0,1, \cdots, k-1(k \geqq 1)$. If y_{p} is a solution of (1), (2) with $x_{i} \leqq 0$, and if $y_{p} \in C_{p}[0, \infty)$ and $y_{p}(0)=y_{p}^{\prime}(0)=\cdots=y_{p}^{(p)}(0)=0$ (i.e. y_{p} is one of the solutions (21)) then

$$
\begin{equation*}
\left\{\prod_{i=p+2}^{k}\left(D-x_{i}\right)\right\} \frac{y_{p}(x)}{x^{p+1}}=\int_{0}^{1} t^{x} H(t) \frac{d t}{t}, \quad x>0 \tag{22}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\frac{1}{t} H(t) \in L[\varepsilon, 1] \text { for every } \varepsilon>0, \text { and } \tag{23}\\
H(t)=o\left((\log 1 / t)^{k-p-1}\right) \text { as } t \longrightarrow 0
\end{array}\right.
$$

Proof. We may without loss of generality assume that $g \uparrow$. We discuss first the case $p=k-1$, i.e. we show that (2) and

$$
\int_{+0}^{1} \frac{|d g(w)|}{(1+\log 1 / w)}<\infty
$$

imply

$$
\begin{equation*}
\frac{Y_{k, k-1}(x)}{x^{k}}=\int_{0}^{1} t^{x} H(t) \frac{d t}{t}, \quad x>0 \tag{24}
\end{equation*}
$$

where $1 / t H(t) \in L[\varepsilon, 1]$ for every $\varepsilon>0$ and $H(t) \rightarrow 0$ as $t \rightarrow 0$. Let (without loss of generality) $x_{1} \leqq x_{2} \leqq \cdots \leqq x_{k} \leqq 0$, and define $d_{i} \in(0,1]$ by $\Pi_{i}^{k} d_{\nu}=e^{x_{i}}$. Then

$$
\left[x_{1}, \cdots, x_{k}, \log w\right]_{e^{x v}}=\left(d_{1} \cdots d_{k}\right)^{x} \int_{0 \leq t_{k} \leq \cdots \leq t_{1} \leq x} \cdots \int_{1} w^{t_{k}} \prod_{i=1}^{k} d_{i}^{-t_{i}} d t_{i}
$$

since both sides satisfy the differential equation (1) with $\varphi(x)=w^{x}$ (this follows for the right side from a short calculation, and from (5) for the left side) and initial conditions $y(0)=y^{\prime}(0)=\cdots=y^{(k-1)}=0$. Hence, $Y_{k, k-1}$ can be written in the form

$$
Y_{k, k-1}(x)=x^{k} \int_{+0}^{1} d g(w) \int_{0 \leq t_{k} \leq \cdots \leq t_{1} \leq 1} \cdots \int_{i=1} w_{i}^{x t_{k}} \prod_{i=1}^{k} d_{i}^{x\left(1-t_{i}\right)} d t_{i}
$$

Denote the region $0 \leqq t_{k-1} \leqq \cdots \leqq t_{1} \leqq 1$ by Δ, and let

$$
\rho\left(t_{1}, \cdots, t_{k-1}\right)=d_{1}^{1-t_{1}} d_{2}^{1-t_{2}} \cdots d_{k-1}^{1-t_{k-1}} d_{k}
$$

The following computations simplify for $k=1\left(t_{k-1}=1\right)$. We have

$$
\frac{Y_{k, k-1}(x)}{x^{k}}=\int_{\Delta} \cdots \int d t_{1} \cdots d t_{k-1} \rho^{x} \int_{+0}^{1} d g(w) \int_{0}^{t_{k-1}}\left(\frac{w}{d_{k}}\right)^{x t_{k}} d t_{k}
$$

But

$$
\begin{aligned}
\rho^{x} \int_{+0}^{1} d g(w) \int_{0}^{t_{k-1}}\left(\frac{w}{d_{k}}\right)^{x t_{k}} d t_{k}= & \int_{+0}^{1} \frac{d g(w)}{\log w / d_{k}} \frac{\rho^{x}\left(w / d_{k}\right)^{x t_{k-1}}-\rho^{x}}{x} \\
= & \int_{+0}^{1} \frac{d g(w)}{\log w / d_{k}} \int_{\rho}^{\rho\left(w / d_{k}\right)^{t_{k-1}}} t^{x-1} d t \\
= & \int_{0}^{\rho} t^{x-1} d t \int_{+0}^{d_{k}(t / \rho)^{1 / t_{k-1}}} \frac{d g(w)}{\log d_{k} / w} \\
& +\int_{\rho}^{\rho\left(1 / d_{k}\right)^{t_{k-1}}} t^{x-1} d t \int_{d_{k}(t / \rho)}^{1}{ }^{1 / t_{k-1}} \frac{d g(w)}{\log w / d_{k}} \\
= & \int_{0}^{1} t^{x-1} h_{d_{k}}\left(d_{k}\left(\frac{t}{\rho}\right)^{1 / t_{k-1}}\right) d t
\end{aligned}
$$

where (for $0<d \leqq 1$)

$$
h_{d}(y)=\left\{\begin{array}{ll}
\int_{+0}^{y} \frac{d g(w)}{\log d / w} & \text { for } \\
\left\{\begin{array}{c}
1 \\
\int_{y}^{1} \frac{d g(w)}{\log w / d} \\
\text { for }
\end{array} d<y \leqq 1\right. \\
0 & \text { for }
\end{array} y>1 .\right.
$$

(note that $\rho \leqq d_{k}^{t_{k-1}}$).

It follows that

$$
\left\{\begin{align*}
\frac{Y_{k, k-1}(x)}{x^{k}} & =\int_{0}^{1} t^{x-1} d t \int_{\Delta} \cdots \int_{d_{k}}\left(d_{k}\left(\frac{t}{\rho}\right)^{1 / t_{k-1}}\right) d t_{1} \cdots d t_{k-1} \tag{25}\\
& =\int_{0}^{1} t^{x} H(t) \frac{d t}{t}, \quad H(t)=\int_{\Delta} \cdots \int h_{d_{k}}\left(d_{k}\left(\frac{t}{\rho}\right)^{1 / t_{k-1}}\right) d t_{1} \cdots d t_{k-1}
\end{align*}\right.
$$

Obviously $H(t) / t \in L[\varepsilon, 1]$ for every $\varepsilon>0$. Let $t<d_{1} \cdots d_{k}$, then $t<\rho$ and

$$
d_{k}\left(\frac{t}{\rho}\right)^{1 / t_{k-1}} \leqq d_{k} \frac{t}{\rho} \leqq \frac{t}{d_{1} \cdots d_{k-1}}
$$

hence

$$
|H(t)| \leqq \int_{\Delta} \cdots \int d t_{1} \cdots d t_{k-1} \int_{+0}^{t / d_{1} \cdots d_{k-1}} \frac{|d g(w)|}{\log d_{k} / w} \leqq \int_{+0}^{t / d_{1} \cdots d_{k-1}} \frac{|d g(w)|}{\log d_{k} / w}
$$

It follows that $H(t) \rightarrow 0$ as $t \rightarrow 0$, and this proves the case $k=p-1$ of Lemma 3.

We mention a special case of (24) which will be needed later on. Let $g(w)=0$ for $w<e^{\delta}, g(w)=1$ for $e^{\delta} \leqq w \leqq 1(\delta \leqq 0)$. Then

$$
Y_{k, k-1}(x)=\left[x_{1}, \cdots, x_{k}, \delta\right]_{e^{x v}},
$$

and it follows from (24) that

$$
\begin{equation*}
\frac{\left[x_{1}, \cdots, x_{k}, \delta\right]_{e^{v x}}}{x^{k}}=\int_{0}^{1} t^{x} H(t) \frac{d t}{t} \tag{26}
\end{equation*}
$$

where $H(t) / t \in L[\varepsilon, 1]$ for every $\varepsilon>0$ and $H(t) \rightarrow 0$ as $t \rightarrow 0$ (even more is true, namely $H(t)=0$ in a neighborhood of $t=0$). We now turn to the case $p \leqq k-2$, and we will use the relation

$$
\begin{align*}
& \left\{\prod_{i=1}^{\rho}\left(D-\eta_{i}\right)\right\} a(x) b(x) \tag{27}\\
& \quad=\sum_{\mu=0}^{\rho-1}\left(D^{\mu} a\right) \sum_{1 \leqq i_{1}<\cdots<i_{\rho-\mu} \leq \rho}\left(D-\eta_{i_{1}}\right) \cdots\left(D-\eta_{i_{\rho-\mu}}\right) b+\left(D^{\rho} a\right) b(\rho \geqq 0)
\end{align*}
$$

which follows from a short induction-type proof. Let

$$
y_{p}(x)=\sum_{\nu=p+2}^{k} C_{\nu}\left[x_{1}, \cdots, x_{\nu}\right]_{e^{x v}}+Y_{k, p}, \quad Y_{k, p}=\sum_{\nu=p+2}^{k} A_{\nu}+A
$$

where A, A_{ν} denote the functions occurring in $Y_{k, p}$. It follows from (5) and (27) that

$$
\left\{\prod_{i=p+2}^{\nu-1}\left(D-x_{i}\right)\right\} \frac{\left[x_{1}, \cdots, x_{\nu}\right]_{e^{x v}}}{x^{p+1}}
$$

is a linear combination of terms of the type

$$
\frac{\left[x_{1}, \cdots, x_{p+1}, x_{i_{1}}, \cdots, x_{i_{\mu+1}}\right]_{e^{x v}}}{x^{p+1+\mu}}, \quad \mu=0,1, \cdots, \nu-p-2
$$

Hence we obtain from (26) a representation

$$
\left\{\prod_{i=p+2}^{\nu-1}\left(D-x_{i}\right)\right\} \frac{\left[x_{1}, \cdots, x_{\nu}\right]_{e^{x v}}}{x^{p+1}}=\int_{0}^{1} t^{x-1} H_{\nu}(t) d t
$$

$H_{\nu}(t) \rightarrow 0$ as $t \rightarrow 0$, and it follows that

$$
\begin{aligned}
\left\{\prod_{i=p+2}^{k}\left(D-x_{i}\right)\right\}_{\nu=p+2}^{k} C_{\nu} \frac{\left[x_{1}, \cdots, x_{\nu}\right]_{e^{x \nu}}}{x^{p+1}} & =\sum_{\nu=p+2}^{k} C_{\nu}\left\{\prod_{i=\nu}^{k}\left(D-x_{i}\right)\right\} \int_{0}^{1} t^{x-1} H_{\nu}(t) d t \\
& =\sum_{\nu=p+2}^{k} C_{\nu} \int_{0}^{1} t^{x-1}\left(\prod_{i=\nu}^{k}\left(\log t-x_{i}\right)\right) H_{\nu}(t) d t \\
& =\int_{0}^{1} t^{x-1} \hat{H}(t) d t
\end{aligned}
$$

where $\hat{H}(t)=o\left((\log 1 / t)^{k-p-1}\right)$ as $t \rightarrow 0$.
Similarly it follows from (5) and (24) that $\left\{\prod_{i=p+2}^{\nu}\left(D-x_{i}\right)\right\} A_{\nu} / x^{p+1}$ is a linear combination of terms of the type

$$
\begin{aligned}
& \frac{a\left(x ; x_{1}, \cdots, x_{p+1}, x_{i_{1}}, \cdots, x_{i_{\mu}} ; d g_{\nu}(w)\right)}{x^{p+\mu+1}}, \quad \mu=0, \cdots, \nu-p-1 \\
& d g_{\nu}(w)=\frac{w}{c_{v}} \prod_{j=\nu+1}^{k} \frac{1-w / c_{j}}{\log w / c_{j}} d g(w)
\end{aligned}
$$

Hence, it follows like in (24) $(k=p+\mu+1)$ that

$$
\begin{aligned}
& \left\{\prod_{i=p+2}^{\nu}\left(D-x_{i}\right)\right\} \frac{A_{\nu}}{x^{p+1}}=\int_{0}^{1} t^{x-1} \widetilde{H}_{\nu}(t) d t, \quad \widetilde{H}_{\nu}(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow 0, \\
& \left\{\prod_{i=p+2}^{k}\left(D-x_{i}\right)\right\} \frac{A_{\nu}}{x^{p+1}}=\int_{0}^{1} t^{x-1}\left(\prod_{i=\nu+1}^{k}\left(\log t-x_{i}\right)\right) \widetilde{H}_{\nu}(t) d t
\end{aligned}
$$

where $\left(\prod_{i=\nu+1}^{k}\left(\log t-x_{i}\right)\right) \widetilde{H}_{\nu}(t)=o\left((\log 1 / t)^{k-\nu}\right)=o\left((\log 1 / t)^{k-p-1}\right)$ (note that $\left.\int_{+0}^{1}\left|d g_{\nu}(w)\right| /(1+\log 1 / w)<\infty\right)$.

Finally, it follows like in (24) $(k=p+1)$ that

$$
\begin{gathered}
\frac{A(x)}{x^{p+1}}=\int_{0}^{1} t^{x-1} \tilde{H}(t) d t, \quad \widetilde{H}(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow 0 \\
\left\{\prod_{i=p+2}^{k}\left(D-x_{i}\right)\right\} \frac{A(x)}{x^{p+1}}=\int_{0}^{1} t^{x-1}\left(\prod_{i=p+2}^{k}\left(\log t-x_{i}\right)\right) \widetilde{H}(t) d t
\end{gathered}
$$

where

$$
\begin{aligned}
& \left(\prod_{i=p+2}^{k}\left(\log t-x_{i}\right)\right) \widetilde{H}(t)=o\left((\log 1 / t)^{k-p-1}\right) \text { as } t \rightarrow 0 . \\
& \left(\text { note that } \int_{+0}^{1}\left|\prod_{j=p+2}^{k} \frac{1-w / c_{j}}{\log w / c_{j}} \frac{d g(w)}{1+\log 1 / w}\right|<\infty\right)
\end{aligned}
$$

This proves the case $p \leqq k-2$ of Lemma 3.
3. Theorem 3. Let $a \in C[0, \infty)$ be a real solution of the differential equation

$$
\begin{align*}
\left\{\prod_{1}^{k}\left(D-x_{i}\right)\right\} a & =\varphi(x), \quad x>0, \quad x_{i} \leqq 0 \tag{28}\\
& \varphi \text { completely monotone for } x>0(k \geqq 0)
\end{align*}
$$

Then $f(z)=\sum_{0}^{\infty} a(n) z^{n}$ defines on C^{*} (uniquely) a holomorphic function which has at most k zeros unless $f \equiv 0$.

Proof. It follows from (3) that

$$
a(x)=a_{0}(x)+\int_{+0}^{1} w d g(w)\left[x_{1}, \cdots, x_{k}, \log w\right]_{e^{(x-1)}},\left\{\prod_{1}^{k}\left(D-x_{i}\right)\right\} a_{0}=0
$$

and Lemma 1 shows that

$$
\begin{equation*}
\int_{+0}^{1} \frac{d g(w)}{(1+\log 1 / w)^{k}}<\infty . \tag{29}
\end{equation*}
$$

A short calculation shows that $\left(\prod_{1}^{k} \Delta\left(e^{x_{i}}\right)\right) a_{0}(n+k)=0$, and writing $a_{n}=$ $a(n)$ we find

$$
\begin{aligned}
b_{n}=\left(\prod_{1}^{k} \Delta\left(e^{x_{i}}\right)\right) a_{n+k} & =\int_{+0}^{1} w d g(w) \frac{1}{2 \pi i} \int_{c_{w}} \frac{e^{(n-1) z} \prod_{1}^{k}\left(e^{z}-e^{x_{i}}\right) d z}{\left(z-x_{1}\right) \cdots\left(z-x_{k}\right)(z-\log w)} \\
& =\int_{+0}^{1} w^{n}\left(\prod_{1}^{k} \frac{w-e^{x_{i}}}{\log w-x_{i}}\right) d g(w)
\end{aligned}
$$

(C_{w} denotes a simple closed curve containing x_{1}, \cdots, x_{k} and $\log w$ in its interior). This shows that b_{n} is completely monotone (observe (29)), and Theorem 3 follows from Theorem 1.

Remarks. (i) Let $\tau \geqq 0$, and let $a(x)$ satisfy the assumptions of Theorem 3. Then $\sum_{0}^{\infty} a(n+\tau) z^{n}$ is defined on C^{*} and has at most k zeros (unless it is $\equiv 0$). This follows immediately from Theorem 3 when $a(x)$ is replaced by $a^{*}(x)=a(x+\tau)$.
(ii) Replace in the assumptions of Theorem $3 C[0, \infty)$ and $x>0$ by $C[\nu, \infty)$ and $x>\nu(\nu=1,2, \cdots)$. Then it follows that $b_{n}=\left(\prod_{1}^{k}\left(e^{x}\right)\right) a_{n+k+\nu}$ is completely monotone, and Theorem 1 shows that $P_{\nu-1}(z)+\sum_{n=\nu}^{\infty} a(n) z^{n}$,
$P_{\nu-1}(z)$ any real polynomial of degree $\leqq \nu-1$ is (uniquely) defined on C^{*} and has at most $k+\nu$ zeros (unless it is $\equiv 0$).

Theorem 4. Let $a \in C_{p}[0, \infty)$ for some $p=0,1, \cdots, k-1(k \geqq 1)$ be a real solution of the differential equation (28). Moreover, let

$$
a(0)=a^{\prime}(0)=\cdots=a^{(p)}(0)=0 .^{2}
$$

Then $f(z)=\sum_{0}^{\infty} a(n+\tau) z^{n}, \tau \in[0,1)$, defines on C^{*} (uniquely) a holomorphic function which has at most k zeros (unless $f \equiv 0$) and at least $p+1$ different zeros which are $\leqq 0$.

Proof. On account of Theorem 3 it remains to prove the lower estimate for the number of zeros.

It follows from Lemma 1 that (19) holds, and Lemma 3 shows that

$$
\left\{\prod_{i=p+2}^{k}\left(D-x_{i}\right)\right\} \frac{a(x)}{x^{p+1}}=\int_{0}^{1} t^{x-1} H(t) d t
$$

where H satisfies (23). Theorem 2 and Remark (i) after Theorem 2

$$
\left(c(x)=a(x) / x^{p+1}, h^{\prime}(t)=H(t) / t, m=p+1, r=k-p-1, \nu=\mu=0\right)
$$

now show that f has at least $p+1$ different zeros which are $\leqq 0$.
Remark. The example $\sum_{0}^{\infty}(n+1)^{2} z^{n}=(1+z) /(1-z)^{3}$ shows that Theorem 4 cannot be extended to $\tau=1(k=2, p=1)$.

4. Applications of Theorem 4.

(i) Let $a(x)=x^{\kappa}, x \geqq 0, k-1<\kappa \leqq k, k=1,2, \cdots$. Here $a \in C_{k-1}$ $[0, \infty)$, and $D^{k} a=C x^{\kappa-k}$ is completely monotone for $x>0$; moreover,

$$
a(0)=a^{\prime}(0)=\cdots=a^{(k-1)}(0)=0 .
$$

It follows from Theorem 4 that $f_{\kappa}(z)=\sum_{0}^{\infty}(n+\tau)^{\kappa} z^{n}, \tau \in[0,1)$, has exactly k zeros in C^{*}, and these are simple and $\leqq 0$.
(ii) Let $a(x)=\left(1-c^{x}\right)^{\kappa}, x \geqq 0,0<c<1, k-1<\kappa \leqq k$. The relation $(D-\kappa \log c) a(x)=\kappa \log 1 / c\left(1-c^{x}\right)^{\kappa-1}$ shows that $a(x)$ satisfies a differential equation (28) $\left(\varphi(x)=C\left(1-c^{x}\right)^{x-k}\right)$, and we have $a \in C_{k-1}[0, \infty)$ and $a(0)=a^{\prime}(0)=\cdots=a^{(k-1)}(0)=0$. It follows from Theorem 4 that $g_{\kappa}(z)=\sum_{0}^{\infty}\left(1-c^{n+\tau}\right)^{\kappa} z^{n}, \tau \in[0,1)$, has exactly k zeros in C^{*}, and these zeros are different and $\leqq 0$.
(iii) Let $a(x)$ be the incomplete Γ-function

$$
\int_{0}^{x} t^{\kappa-1} e^{-t} d t, x \geqq 0, k-1<\kappa \leqq k
$$

[^2]Then $D a=x^{\kappa-1} e^{-x}$, $(D+1) D a=(\kappa-1) x^{\kappa-2} e^{-x}$. It follows from Theorem 4 that $\sum_{0}^{\infty} a(n+\tau) z^{n}, \tau \in[0,1)$, has exactly k zeros in C^{*}, and these are simple and $\leqq 0$.
(iv) Let $a(x)=x^{k} \log x, x \geqq 0, k-1<\kappa \leqq k$. We have

$$
D^{q} a=q!\binom{\kappa}{q} x^{\kappa-q}\left(\log x+A_{q}\right), \quad A_{q} \text { constant }
$$

for $\kappa \neq 1,2, \cdots$ or $q \leqq k$. This shows that $a \in C_{k-1}[0, \infty)$ and

$$
a(0)=a^{\prime}(0)=\cdots=a^{(k-1)}(0)=0
$$

Let $\kappa=k$. Then $D^{k+1} a=k!/ x$ is completely monotone.
Let $\kappa \neq k$. Then it follows from

$$
\begin{gathered}
\frac{1}{x^{\alpha}}=\frac{1}{\Gamma(\alpha)} \int_{0}^{1} t^{x-1}\left(\log \frac{1}{t}\right)^{\alpha-1} d t \\
\frac{\log x}{x^{\alpha}}=\frac{1}{\Gamma(\alpha)} \int_{0}^{1} t^{x-1}\left(\log \frac{1}{t}\right)^{\alpha-1}\left\{\frac{\Gamma^{\prime}(\alpha)}{\Gamma(\alpha)}-\log \log \frac{1}{t}\right\} d t \quad(\alpha>0, x>0)
\end{gathered}
$$

(differentiate with respect to α to obtain the second formula from the first) that

$$
\begin{aligned}
& (D-\xi) D^{k} a \\
= & k!\binom{\kappa}{k} \frac{1}{\Gamma(k-\kappa)} \int_{0}^{1} t^{x-1}\left(\log \frac{1}{t}\right)^{k-\kappa-1}(\log t-\xi)\left\{\frac{\Gamma^{\prime}(k-\kappa)}{\Gamma(k-\kappa)}-\log \log \frac{1}{t}+A_{k}\right\} d t
\end{aligned}
$$

is completely monotone for a suitable $\xi<0$. It follows from Theorem 4 that $F_{k}(z)=\sum_{0}^{\infty}(n+\tau)^{\kappa} \log (n+\tau) z^{n}$ has at most $k+1$ zeros and at least k zeros which are different and $\leqq 0$.

Let $\tau=0$. Then F_{k} has a zero of order 2 at $z=0$, so that F_{κ} actually has $k+1$ zeros (and all zeros are $\leqq 0$). Let $\tau \in(0,1)$. Then $F_{\kappa}(0)<0$, $F_{\kappa}(x) \rightarrow \infty$ as $x \rightarrow 1$, and it follows that F_{κ} has at least one zero which is >0, hence F_{κ} has again exactly $k+1$ zeros. These are simple, and k zeros are <0, one zero is >0. (A lower estimate for the number of zeros of F_{κ} follows from Wirsing [7].)

Subbotin [5] has shown that $\sum_{0}^{\infty} z^{n} \int_{0}^{1} f(t)(n+t)^{2 k} d t(f \geqq 0, k=0,1, \cdots)$ has exactly $2 k$ zeros (unless $\equiv 0$) in C^{*}, and these are simple and negative. This result is not a consequence of Theorem 4; however, using our results on the zeros of $\sum(n+\tau)^{\kappa} z^{n}$ and the fact that these zeros are monotone functions of τ (which was observed by Subbotin for $\kappa=2 k$) we are in a position to discuss the zeros of the more general functions

$$
\sum z^{n} \int_{0}^{1} f(t)(n+t)^{\kappa} d t
$$

References

[1] A. Edrei, Proof of a conjecture of Schoenberg on the generating function of a totally positive sequence. Canad. J. Math. 5 (1953), 86-94.
[2] G. G. Lorentz, Bernstein Polynomials. Univ. of Toronto Press, Toronto 1953.
[3] A. Peyerimhoff, On the zeros of power series. Mich. Math. J. 13 (1966), 193-214.
[4] G. Polya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis. Springer, Berlin, 1954.
[5] Ju. N. Subbotin, Funktionelle Interpolation im Mittel mit kleinster n-ter Ableitung (Russian). Trudy mat. Inst. Steklov. 88 (1967), 30-60.
[6] D. V. Widder, The Laplace Transform. Princeton 1946.
[7] E. Wirsing, On the monotonicity of the zeros of two power series. Mich. Math. J. 13 (1966), 215-218.
W.B. Jurkat, Syracuse University,

Dept. of Mathematics, Syracuse, N.Y. U.S.A.
A. Peyerimhoff, Universität Ulm Donau Abt. für Mathematik, Germany

[^0]: * The research of both authors was supported in part by the National Science Foundation.

[^1]: ${ }^{1}$ Actually more is true, namely $\int_{+0}^{1}(|d h(w)|) /\left((1+\log 1 / w)^{r+\eta}\right)<\infty$ for every $\eta>1$.

[^2]: ${ }^{2}$ This is equivalent to $a(0)=0,\left.\left\{\prod_{1}^{\nu}\left(D-x_{i}\right)\right\} a\right|_{x=0}=0, \nu=1, \cdots, p$.

