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It is well known [3] that the functions f.(2) = X7, n*2"(k >0) and
9.(2) = oL —c™* 2"k >0, 0<c<1) admit (unique) analytic extensions
onto C* = {z=x+1iy|y+0 if =1}. Both functions have a finite number
of zeros only. Moreover, all zeros are < 0 and simple, and their number
is k, where k — 1<k =k, k=1,2 -.--. In this paper we will give some
general theorems on the zeros of power series, and these results contain
the information on f, and g, as special cases. Further examples are
mentioned in Section 4.

We remark that our functions need not be meromorphic (like f.) or
may have infinitely many zeros and poles on (1, =) (like g,) so that
known results on zeros of analytic functions like those in [1] cannot be
applied. Theorem 1 gives an upper estimate for the number of zeros of
certain power series 3, a,2", and Theorem 2 gives a lower estimate. In
Theorem 1 we require that certain differences of the coefficients a, form
a completely monotone sequence (we use the definitions given in [6]). In
discussing special cases it will be more convenient to require that a, = a(n),
where a(x) satisfies a linear differential equation with completely monotone
right hand side (Theorems 3 and 4).

0. In what follows we will denote by [z, «--, 2,];, the divided dif-
ferences of f (see [2]). If C is a simple closed curve containing z,,:--,,
in its interior, and if f is holomorphic inside and on C, then

[y ey 2]rm = %m Sc % dz , () = 1:[ (z—w;) .
The differential equation
k ad
(1) {lL(0-2)}y@ = 2@, o constant, D=, k=01, ---

where
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ge Ve, 1] for every ¢ > 0,

2 = ' a:d ) L

has the particular solution

1
(3) y(@) = | wdg()[s,, -+, 2., log w],upe, &> 0.

In order to prove this we first show that (3) exists. Let C be a
simple closed curve containing x, ---, x,, and let log w be outside of C
for 0 < w < w, < 1. Writing p() = [1¥(z—=;) we have for 0 < w < w,

wac—l 1 S e(z—-l)z dz
c

p(log w) + 2mt p(z) z—logw

w 1
= —0
p(log w) +0 <10g w> (w )

where the O-term is uniform in & when « is restricted to a compact
interval. This shows that (3) exists. It follows from

(5) (D'—CZ) [-’171, coy Xy, a]ezvf(,,) = [xl’ cce
that

{ﬁ (D——x,-)} y(@) = S:Owdg(w) {ﬁ (D;xi)}[xl, e, B, log W] e,

[:1)1, ceey Ty IOg w]e(a:—-l)v =

(4)

’ x"”]ez'”f(v)

1
= | wllog wl, - ds(w) = 2(0)
and this shows that (3) is a solution of (1).
1. Given a sequence {t,};, let
t, —ct,, for n =1,
d(e)t, =
t, for n =0.
THEOREM 1. Let {a,}) be a real sequence and such that for certain
integers 0 < k < p and constants c; € (0, 1]

{11 40} arir = b (1=0,1, +-)

defines a completely monotone sequence {b,});. Then f(2) = X a,2" defines
on C*(uniquely) a holomorphic function which has at most p zeros unless

f=0.
Proor. This follows from the identity

(]’f[ a —ciz)> i Q2" = Z.:‘, 2" (]f[ A(ci)> a, = pz:: 2" (I’:[ A(c,-)> a, + 2° i:] b,z"
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by Theorem 1 of [3].

Our next theorem gives a lower estimate for the number of zeros of
functions of the type

S (n0)me(n+7)e", e (0,1)
F.(2) = F,z;7) = ":"
Z:‘, n"e(n)z", =20,

(m=0,1, ---), where the function ¢(z), # > 0, satisfies a differential equa-
tion

{lf[ (D—Ei)}c(ac) = ‘1 w*dh(w), & constant, he Ve, 1]

for every ¢ >0, r=10,1, «-- .
THEOREM 2. Let & <0, and assume that

Y= ldh(w) | e
(6) xSHwW—o(l) (@ — o) .

Then F,, is (uniquely) defined on C*. Let F, have (at least) the follow-
ing zeros:

2, <2< <25<0< << e <2 <1 (v p1=0,1,--).
Then F,(m=1,2, --+) has (at least) zeros of the following kind

Cnin <00 LS00 <L <,
and £, <0 of T€(0,1).

ProOF. We mention first two consequences of (6):

e | dhw) |
(7) >} o Ty

(8) xr—-l Sl wz‘—-l l dh(w) I
Yz 1+logl/w)"

=0(l) (x—> ,7€(0,1)),

=0(l) (®—> o, 7€][0,1)).

Writing dr*(w) for (|dh(w)]|)/(L+1log 1/w)") the relation (7) follows from
(6) and

1z 1z w
xS w’dh*(w):xfg deS tdn* (t)
+0 +0 +0

By \+' t dh*(2) + (1—r)xf§’+': W (% g’: ¢ dh*(t)) dw

and the relation (8) follows from (6) and
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1

o || wanrw) = o || wra |7 anne
1z z +0

1/
_ x*S tdh* () — o S””tdh*(t)
+0 +0
1

+ (2_T)xr—1 Si wz‘—2 <__
1/z

- S’: tdh*(t)) dw .

We note that (7) implies
(9) S w* | dh(w) | < oo for every > 01 .
+0

Next we wish to show that F,, exists on C* and that

(10) ;Fm(-—x;O)—>O for r— o, m=1,2,---,

*F,(—x;7)—0 for x—> ~, 7€(0,1), m=0,1, ---

In order to prove this we note first that (3) and (9) imply

@) = eo) + | wah(w)[g, -+, &, log W], esy >0,
(11) ) +0
{0-&)e@ =0.

Denoting by P; polynomials of degree < j, we have for 0 =10,1, --- and
@€ (— o, ) a representation

Py )+t
12) $ (o) = P.(2)/(1—2)

=0 |Po_i(z)/l—2)*"* for a=1, 0=1,2, ...
(This follows from a short induction-type proof; see also [4].)

According to (11) we write F, as a sum FS + F, (where F is
generated by ¢,). It follows from (11) that ¢,(x) is a linear combination
of functions of the type x%**: for some » = 0,1, ---, and it follows from
(12) that F' is a linear combination of terms of the type

€7 Py y(2€°) (1 — zgfs)mH44 for 7€(0,1), m =0,1, -+,
26%iP, . ;_(ze*) /(1 —zefi)m+i+ forc=0,m=1,2,---,

and this shows that F) is defined on C* (note that & =< 0) and that (10)
is true when F,, is replaced by F.

Using a representation similar to (4) for the divided difference in (11)
we have for 7€ (0,1), m =0,1, ---

1 Actually more is true, namely Sl-H) (I dh(w) )/((1+1og 1/w)™+7) < e« for every 5 > 1.
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~ _ % . P, (wz) dh(w)
Fm(z) - S+0w (l_wz)"’”"' p(log w)

o 1 [ e"TViP,(2¢) d¢
+ S+o wdh(w) o L (I—2ze)™ p(C) (C—log w)

1 1 V¢ P, (265) dc
+ Swo wih(®) 5 S I—2¢)™" () (C—log w)

=1+ 11+ III

(C, denotes a simple closed curve containing &, ---, & and log w for w,=<
w<1). The same representation holds for =0 and m=1,2, ---,
where P,(z) contains a factor z.

It follows from this representation that F', is defined on C* (choose

C, C, suitably). Moreover, we see that for 2= —2 <0 and z —
—ofL1 —o(L1
I = o(x> , I = o(x) ,
and that

1 o L 0 L

= o(l)

by (7) and (8) (z # 0) or by (6) and (8) (r=0). This proves (10).
We observe that for €0, 1)

(13) L (0 Fu®) = — (=2 Faulo) for v <0,
and
(14) 4 (@ F, (@) = oF,,(x) for z>0.

dx

Let F; (for some ¢ = 1,2, ..+) have the zeros
2y < 2 < 00 K2 <02 <00 <K 2,1,

and let ¢,(x) = (—2)'Fi(x) (x =<0), ¢:(2) = a°Fi(x) (x = 0). Then g;(x) =0
when F(x) = 0, and ¢;(0) = 0 (note that F;(0) = 0 when = = 0). Further-
more, ¢;(x) —0 (x— — ) by (10). It follows from (13) and (14) by Rolle’s
theorem that F,, has zeros (,, «-+, (o4, &1, + -, £, with

o1 <2, << < <0< <o <L <2 <11

If 7€(0,1) and ¢ = 0, then this is also true, which proves Theorem 2 for
7% 0. If =0 and ¢ = 0, the foregoing argument only shows that zeros
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Chyove, 8o Clyy oo, O exist (g(x) —0 for x — —c may not be true, and
Lo+1 may be lost). But F;(0) = 0 is true in this case, and this proves
Theorem 2 for 7 = 0.

REMARKS. (i) Condition (6) is satisfied if & is absolutely continuous
on (0, €] (for some ¢ > 0) and
(15) wh'(w) = o((log 1/w)") as w—0.

(ii) Let the assumptions of Theorem 2 be satisfied, and let F,, (or
F) have a zero of order \ at z=0. If 7€(0,1), then F, has (at least)
m + v + A zeros which are <0 (m + v zeros are <0), and if 7 = 0 and
m =1 then F,, has (at least) m + v+ x—1 zeros which are <0 (m+v—1
zeros are <0).

2. In this section we shall discuss special solutions of (1), (2) under
various conditions on g and for special initial conditions. These results
will be needed to prove Theorems 3 and 4.

LEMMA 1. Assume that (1), (2) with g1 has a solution §< C, [0, o)
for some p=0,1, ---. Then

' dg(w) -
(16) 5+o (1+log1/w)*—» <

Proor. It follows from (3) and for some a, with {[[¥(D—=;)} a, =0
that

7@) = a,@) + | wdgw) [v, -+, 5, log w) sy © >0,
and by differentiation
) 3@ = ar@ + | wdgw) [, -+, @, og wl,pyemns -
Similarly to (4) the divided difference in this integral is (0 < w < w,).

(18) M+o< 1 ) (w —> 0)
I (log w—2;) log w

where the O-term is uniform in ¢ when x is restricted to a compact in-
terval. The statement (16) now follows from (17) and (18) (note that
a? € C(— o, ), and that ¢ 1). In what follows we use the notation

a(@; &, -+, v U)dgw)) = | Udgw) [z, -+, v, log wl,..

o

Our next Lemma is a kind of converse of Lemma 1.
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LEMMA 2. Let g satisfy (2), and assume that

' [dg(w)| _
a9) S+0 (1+log 1/w)*—* <

for some p=0,1, «--, k —1(k=1). Then, for x>0, c, = e, the func-
tion Y, . (x) defined by

1%@=iﬂ@ﬂww 22 (11 ) gt

it i+ log we;

o L 1—w/e; )
+a (x, x,, , Tpis <J L oz wje, g(w)) p=k-2

Yieos = a (@, &y, «+, 2 dg(w)) ,
is a solution of (1), (2). Moreover, Y, ,€C,[0, «) and
(20) Y,,(0) = Yi,0)=--- = Y50 =0.
For x> 0 the general solution of (1), (2) with ye C,[0, =) and
y(0) = y'(0) = +-- =y?(0) =0
8
Yiio(®) , p=k—-1,
1) Y@ = ﬁ‘, C, %y e, 2),00 + Yip C, constant, p <k — 2.

yv=p+2

Proor. It follows from

T@g_u’)_”ﬂ’_JrO(l 1 ) for 0< w= <1,
[, + =+, @, log W] 500 = Ij(logw—xi) og w

0 for we(,1], z=0
(see (18), and with the same remark on the O — term) that
a'®(x; x,, +++, ,; dh(w)) € C[0, =),
a'®(0; %, <+, x,; di(w)) = 0
fv=p+1, £=0,1,---,p, he Ve, 1] for every ¢ > 0, and

S‘ | dh(w) |
+o (14log 1/w)*~?

This shows that (19) implies Y, ,€ C,[0, ) and the conditions (20).

Now we show that the functions Y, , are solutions of (1), (2). Using
(5) this is obvious for p = k — 1, and it follows for p <k — 2 from

[ee]
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=3 {11 0-s}a(s 22 ( 11 1220 ) ag(w))

¢, \i=+1 log w/e;

+{ 11 @-spfa(s (11 —11—’”—71—) dg(w))

i ! ] k _wy __ _w k . i
- S+0w dg(W) {V2p+2<] I;[-H (1 CJ) _;II;-[U (1 CJ )) +j£[+2<1 Cj >}
[ widgw) = o) .

The statement on the general solution of (1), (2) follows from

{ll-olo, -+ al=0  @=1- 1

(use (5)) and
0 forg<v-—1

Dy, -, xv]exv =0 = [ <y x"]vq = 1 forg=v-1

(The functions [x,, ++-, 2] .., ¥ =1, «++, k, represent a basis for the solu-
tions of {[[¥*(D—ux,)}y = 0.)

LEMMA 3. Let g satisfy (2), and assume that (19) holds for some p =
0,1, .-, k—1(k=1). If y, s a solution of (1), (2) with x; <0, and if
¥, €C,[0, ) and ¥,(0) = y,(0) = -+ =yP(0) =0 (i.e. y, ts one of the
solutions (21)) then

(22) {11 @-2)} L@ _[ranZ, =>0,

1=p+2 p+1

where

1

— H(t)e L[, 1] for every € > 0, and

2 { - Hit)e L5, 1] for every
H(t) = o((log1/t)**") as t— 0.

Proor. We may without loss of generality assume that g1. We
discuss first the case p = k — 1, i.e. we show that (2) and

L g | _ .
S+o A +log 1) imply

(24) Yerd® _ [ome &, >0,
x 0 t
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where 1/t H(t) € L[e, 1] for every ¢ > 0 and H(t) —0 as t—0. Let (with-
out loss of generality) , <«, < ... <2, <0, and define d;c(0,1] by
T1¥d, = ¢*. Then

[t <+, & Tog wl .y = (@ -+ do)* |+ {wsT] dreat,,
0St) S-S5
since both sides satisfy the differential equation (1) with @(x) = w® (this
follows for the right side from a short calculation, and from (5) for the
left side) and initial conditions y(0) = %'(0) = --- = y*™ = 0. Hence, Y, .
can be written in the form

Y () = ka dg(w) S S “’ﬂf[df““"’dt,..
t ty =t

""n/\
CT'

kS
Denote the region 0 £¢,_, < -+« £¢, y 4, and let
0@y oo, timy) = did™"2 o o0 diZlk1d,
The following computations simplify for £ =1 (¢,_, = 1). We have

Yk,k-—kl(x) - S v S dt, « - dt,_, 0* S:o dg(w) S:kﬁi (%)Mkdtk .

x 4
But
- e w ) dg(w)  p"(wjdy)y i — o
d S k—1 ﬂ’_ kdt S g
o S+o g(w) 0 (d,) +o log w/d, x
_dg(w) S I e gy
S log w/d,
§ to1 i Sdkwp)l/tk "_dg(w)
log d,/w
prap b dg(w)
1 dt _og\w)
* Sp 3dk(tlp)1/"""1 log w/d,

= (e (0 (£) )

where (for 0 < d £1)

() N ISR d
S+ologd/w or 0<wy<

ha(y) = Sl—dM for d<y=1
v log w/d

0 for y>1
(note that p < dj*).
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It follows that

Yk,k:(x) _ iltw—ldt g s 5 ha, (dk(%y/nk—l) db, -~ db,_,
4

X J0
(25)

- S:t"H(t)d—tt, H(t) = S - Shd" (ol,,(%)mk_’)olt1 e dby, .

Obviously H(t)/te L[e, 1] for every ¢ > 0. Let t<d,---d,, then t <p

and
£\t t t
di | — <d, =< —
(5) T sdg s
hence
’ et | dg(w) | (4 | dg(w) |
H(t gg dtl---dt_lg 1G9 < BCAC/ I
| H®) | , .\ =)o log d,/w S+o log d,/w

It follows that H(t) — 0 as ¢ — 0, and this proves the case k= p — 1 of
Lemma 3.

We mention a special case of (24) which will be needed later on. Let
gw) =0 for w<e’, gw) =1 for e <w =<1 (6 =0). Then
Yk,k—l(x) = [xly R xky Blezv ’
and it follows from (24) that

(26) [wly ) ;”In 8]8”“ — gl e H(t) gé
@ 0 t

where H(t)/t<€ Lle, 1] for every ¢ > 0 and H(tf) — 0 as t— 0 (even more is
true, namely H(t) = 0 in a neighborhood of ¢ = 0). We now turn to the
case p < k — 2, and we will use the relation

o
e {1l 0-me@be
o—1
= >, (D"a) 3, (D—n;) -+ (D—7;,_)b + (D*a)b (0 = 0)
©=0 151)<++<ip_psp
which follows from a short induction-type proof. Let
k k
yp(x) = 2+ Cu[xl, °t xv]ezv + Yk,p ’ Yk,p = Z+ Av + A ’
yv=p+2 yv=p+2

where A, A, denote the functions occurring in Y, ,. It follows from (5)
and (27) that

(1] 0o}l

i=p+2 xp+l
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is a linear combination of terms of the type

[xl, oty Lpgry Byyy =00y wip+1]ezv ,
T

Hence we obtain from (26) a representation

{ﬁ (D—xi)}w = S:tm—*H,(t)dt ,

i=p+2 P+t

H,(t) —0 as t— 0, and it follows that

(I D-s)}s, o urtle

v=p+2 xp+1 v

Il

M- I

ZC,{Ik[ (D~xi)}S:t’—1H,(t)dt

1=y

Il

CSO == f[ (log t—=) ) H(t)dt

+2

- S t H(t)dt

0

-

where H(t) = o ((log 1/t)*>7") as t — 0.
Similarly it follows from (5) and (24) that {[[i,:, (D—x)}A,/xP* is
a linear combination of terms of the type

a(x; Lyy o0y Tpyyy Xy *° 0, xi#; dgv(w))
R ’

[“:07"'9”_1)_1

dg.w) = £ T L=/ gy .
¢, i=v+1 log w/c;

Hence, it follows like in (24) (k=p+p+1) that

{f[ (D—x,.)} A, :S:t’”“ﬁy(t)dt, Ht)—0 as t—0,

i=p+2 Ert!

{ IkI (D—xi)} [i” = S:t““( IkI (logt—x,-)) H,(t)d¢

i=p+e P+t i=v41

where ([Tt,..(logt—=;)) H,(t) = o ((log 1/t)*™) = o ((log 1/t)*~™) (note that
|| 1dg.)/(L+1og Lw) < == ).
Finally, it follows like in (24) (k=p+1) that
A®) _

xp+1

ﬂltx-lﬁ(t)dt, Ht) —0 as t—0,

{11 0-o)} 28 = ['e=( 1T (og t—2) Ayt ,

i=p+2 Pt i=p+2

where
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( ﬁ (log t_xi))ﬁ(t) = o((log 1/t)"""“) as t—0.

i=p+2

1

1—wle; dg(w) l < oo) )

te that S
(no e tha i=p+z log wfe; 1+log 1/w

+0
This proves the case p < k—2 of Lemma 3.

3. THEOREM 3. Let ac C [0, ) be a real solution of the differential
equation

(28) {llo-m)fa =9, s>0, z =0,
@ completely monotone for x >0 (k= 0).

Then f(z) = > a(n)z" defines on C* (unmiquely) a holomorphic function
which has at most k zeros unless f = 0.

Proor. It follows from (3) that
1 k
a(@) = a@) + | _wdgw) (5, -+, &, 10g W],y {I] (D=5} = 0,

and Lemma 1 shows that
S‘ dg(w)
+o (L+log 1/w)*

A short calculation shows that ([[F 4(e*)) a,(n+k) = 0, and writing a, =
a(n) we find

(29)

k . 1 1 ez f[ (e*—e*)dz
b = <H Al 1)) Gty = Lo wdg(w) 27 Scw =)+ (2—2) (2—log w)

- Sl wn(ﬁ Le”)dg(w)

+0 i log w—ux;

(C, denotes a simple closed curve containing z,, ---, 2z, and logw in its
interior). This shows that b, is completely monotone (observe (29)), and

Theorem 3 follows from Theorem 1.

REMARKS. (i) Let =0, and let a(x) satisfy the assumptions of
Theorem 3. Then 3} a(n+7)z" is defined on C* and has at most % zeros
(unless it is = 0). This follows immediately from Theorem 3 when a(x)
is replaced by a*(x) = a(x+7).

(ii) Replace in the assumptions of Theorem 3 C[0, ) and « > 0 by
Cly, =) and « > v(v=1, 2, .--). Then it follows that b, = (TT¥(e*))@psss.
is completely monotone, and Theorem 1 shows that P,_,(2) + X, a(n)z",



ON POWER SERIES WITH NEGATIVE ZEROS 219

P,_,(z) any real polynomial of degree < v — 1 is (uniquely) defined on C*
and has at most £ + v zeros (unless it is = 0).

THEOREM 4. Let acC,[0, ) for some p =0,1, <+, k —1 (k= 1) be
a real solution of the differential equation (28). Moreover, let

a(0) = a’(0) = +++ = a®(0) = 0 .2

Then f(z) = > a(n+7)z", T€[0, 1), defines on C*(uniquely) a holomorphic
function which has at most k zeros (unless f = 0) and at least p + 1
different zeros which are < 0.

PrROOF. On account of Theorem 3 it remains to prove the lower
estimate for the number of zeros.
It follows from Lemma 1 that (19) holds, and Lemma 3 shows that

{.ﬁ (D—xi)} “f,”) = S:t’“‘H(t)dt,

i=p+2 &x +1

where H satisfies (23). Theorem 2 and Remark (i) after Theorem 2
(c(x) = a(x)/zr*, W (t) = HE)/t, m=p+ 1, r=k—p—1, v=pn=0)
now show that f has at least p + 1 different zeros which are < 0.

REMARK. The example > (n+1)%" = (1+2)/(1—2)* shows that
Theorem 4 cannot be extended to =1 (k=2, p=1).

4. Applications of Theorem 4.
(i) Let a@) =25 =0, k-1 <k =k, k=1,2, ---. Here acC,_,
[0, =), and D*a = Cx** is completely monotone for # > 0; moreover,

a(0) = a'(0) = <+« =a*M0)=0.

It follows from Theorem 4 that f.(2) = D7 (n+7)2", t€][0,1), has exactly
k zeros im C*, and these are simple and < 0.

(ii) Let a®) = 1—¢?) 220,0<c¢<1, k—1<&k =k, The rela-
tion (D—«k loge) a(x) = £ log 1/c (1—c®)** shows that a(x) satisfies a dif-
ferential equation (28) (@(x) = C (1—c*) %), and we have aeC,_, [0, =)
and a(0) = a’'(0) = +++ = a*(0) = 0. It follows from Theorem 4 that
9.2 = S (1—c"*)*z", 7€ [0, 1), has exactly k zeros in C*, and these zeros
are different and < 0.

(iili) Let a(x) be the incomplete I'-function

S’v-le—tdt, e=0, k—1<k<k.
]

2 This is equivalent to a(0) =0, {IT} (D — zi)}alz=0=10, v=1, -+, p.
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Then Da = x*'¢%, (D+1) Da = (k—1)a*%~*. It follows from Theorem 4
that > a(n+7)2", 7€[0,1), has evactly k zeros im C*, and these are
stmple and <0.

(iv) Let a(®) =2 logx, =0, k — 1<k <k. We have

K
Dia = q! (q) z*?(logax + A), A, constant,

for k 21,2, «++ or ¢ < k. This shows that aeC,_,[0, ) and
a(0) =a’(0) = --- =a%*70)=0.

Let £ = k. Then D**'a = k!/x is completely monotone.
Let £ #= k. Then it follows from

Lo L (g} e
.  I'(a) Jo t

log 1 Sl - 1 ”“{ I (o) 1}
=—— |\ t*log= — — log log— dt >0, >0

x” ') Jo <og t> I (@) og fog t (e ? )
(differentiate with respect to a to obtain the second formula from the
first) that

(D—¢&)D*a
et (B L (10 LY o t— ey L E=8) _ oo Tog L
k! (k)l‘(k—lc)got (log t> (log t E){————F i—r) log log ; +A,,}dt

is completely monotone for a suitable & < 0. It follows from Theorem 4
that F.(z) = 37 (n+7)"log (n+7) 2" has at most k£ + 1 zeros and at least
k zeros which are different and < 0.

Let 7 =0. Then F. has a zero of order 2 at z = 0, so that F, actual-
ly has k + 1 zeros (and all zeros are £ 0). Let 7€ (0,1). Then F(0) <0,
F.(x) — >~ as x—1, and it follows that F, has at least one zero which
18 > 0, hence F, has again exactly k + 1 zeros. These are simple, and k
zeros are < 0, one zero is > 0. (A lower estimate for the number of zeros
of F, follows from Wirsing [7].)

Smmmm[ﬂh%smwnﬂmtZ?ﬂffﬂmﬂ¢ww(fgmk=Qan
has exactly 2k zeros (unless =0) in C*, a;1d these are simple and negative.
This result is not a consequence of Theorem 4; however, using our results
on the zeros of >, (n+7)*2" and the fact that these zeros are monotone
functions of 7 (which was observed by Subbotin for £ = 2k) we are in a
position to discuss the zeros of the more general functions

Zﬂﬁf@m+Wﬁ.
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