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1. Introduction. Professor G. Sunouchi has introduced the sum-
mability (ft, a) and (ft*, a) in his paper [4]. Later we [3] have introduced,
as generalizations of these summability, the summability (ft, p, a) defined
as follows. Throughout this paper, p denotes a positive integer and a
denotes a real number, not necessarily an integer, such that 0 < a < p.
Let us put

f sin* x d

(1.1) φ(n, t) - Vint) . (CP,aΓ Γ ^ dx = (C,J-> Γ ™£% du .
Jttf χa+1 jt nu

Then a series Σ^=o a* is said to be summable (ft, p, a) to s if the series
in

/(p, a, t) - α0 + Σ anφ(nt)
n — l

converges for t positive and small and f(p, a, t) —»s as ί—>+0. Under
this definition, the summability (ft, a) and the summability (ft*, a) are
reduced to the summability (ft, 1, a) and the summability (ft, 2, a), res-
pectively. On the other hand, for a series Σ α*> ^ t us write <τ£ = sβJAβ

n,
where sβ

n and A£ are defined by the relations

(1.2) (1 - x)-?-1 = Σ A&* and (1 - α;)"^1 Σ «•»• = Σ sβ

nx
n .

n=0 n=0 * n=0

Then, if σβ

n —> s as π —> oo, we say that the series Σ"=o an is summable

(C,β), β> - 1 , to s.
Concerning (ft, p, a) summability, we [3] have proved the following

theorems.

THEOREM A. Let 0 < β < a < p. Then, if a series Σ?=o &n is sum-
mable (C, β) to s, the series Σ7=o &n is summable (ft, p, a) to s.

THEOREM B. Let 0<a<p,Xn>0(n = l,2,3, •) and the series

ΣϋUλ nM converge. Then, if
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s«n - sAa

n = o(naXn) ,

the series Σ~=o ctn is summable (&, p, a) to s.

In Theorem £, we may take Xn = l/(log(n + 2))1+δ, δ > 0. Then we
know that if

si = o(n/(log(n + 2))1+δ) ,

the series Σ ϊ U α * is summable (jϊ, p, 1), p > 1, to 0. However we have
the following.

THEOREM 1. There exists a series Σ ϊ U α n which is not summable
($, p, 1), p > 1, δ%£ satisfies the condition

(1.3) βi = o(w/log(n + 2)) .

This is proved in § 3. Since the condition (1.3) implies the (C, 1)
summability of the series Σ"=o an, we see that the (C, 1) summability does
not necessarily imply the (&, p, 1) summability when p > 1. One of the
object of this paper is to study Tauberian condition for the (£, p, 1)
summability of the series which satisfies the condition (1.3). Concerning
this problem we have the following.

THEOREM 2. Let 0 < a < p and let 0 < δ < a. Suppose that

(1.4) si - sAl = o(na/log(n + 2))

and

(1.5) Σ (I av I - au) = O(n«~δ) .

Then the series Σ̂ Γ=o an is summable ($, p, a) to s.

On the other hand we have the following theorems.

THEOREM 3. Let D <a < p and let 0 < 7 < β ^ p - 1. Suppose that

(1.6) si - sAί = O(

(1.7)

= a(β — τ)/(/9 + l —«:). Ϊ%en the series Σ"=o^n iβ
summable ($, p, a) ίo s.

THEOREM 4. Lei p δe an odd integer. Then, in Theorem 3, we may
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replace β ^ p — 1 and δ = a(β — i)/(β + l—a) by β ^ p and δ =
— y)/(β—a), respectively.

Since, for fixed a, β, 7,

we see that Theorem 4 is better than Theorem 3. If 7 < a, the condition
(1.6) implies sr

n — sAr

n = o(nr), that is, the series Σ~=oαΛ is summable
(C, 7) to s. Then, by Theorem A, the series Σ~=o an is summable (ίϊ, p, α)
to s. Thus we see that Theorems 3 and 4 are significant for a ^ 7 In
§ 6, Theorems 2, 3 and 4 are proved by means of the following theorems.

THEOREM 5. Let ω be a positive integer and let 0 < τ < ω. Let
χ(t) be a function defined for t ^ 0 such that

(1.8) χ(0) = χ(+0) = 1 , χ(t) = 0{t~τ) ,

(1.9) Δmχ{nt) = 0{tm-τ-ιn~v-1) , 0 < m ^ ω + 1 ,

αraί, m addition, when τ is an integer

(1.10) Aτ+ιχ{nt) = O(ίw-Γ) ,

ii Λβre Amχ(nt) denotes the ra-th difference of χ{nt) with respect to n and
m denotes an integer. Let 0 < δ < r. Suppose that

(1.12)

fce series Σn^anXint) converges for t, positive and small, and its
sum tends to s as t—> + 0 .

THEOREM 6. Let ω be a positive integer and let 0 < τ < ω. Let
χ(t) be a function defined for t}>0 such that

(1.13) χ(0) = χ(+0) - 1 , χ(t) = 0{t~τ)

and

(1.14) Amχ(nt) = O(tm-Tn~T) , 0 < m ^ ω ,

where m denotes an integer. Let τ — l < 7 < / 3 ^ ω — 1. Suppose that
a series ΣίΓ=o aw satisfies the conditions (1.6) ami (1.7) m which

0 < 5 < 1 and δ = τ(β-y)/(β + l-τ) .

Then the series ^^anx(nt) converges for t, positive and small, and its
sum tends to s as t—> + 0.
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Theorems 5 and 6 are proved in § 4 and § 5, respectively.

2. Some Lemmas.

LEMMA 1. Let 0 < δ < τ and let sβ

n = o(nβ), β > 0. Then the con-
dition (1.12) implies

(2.1) Σ ^~ = O(n~δ) and sn = s°n = 0{nτ~δ) .

Proof is similar to the proof of Lemma 3 in [2], so we omit it.

LEMMA 2. Let 0 < δ < r. Then the condition (1.7) implies

(2.2) Σ ^ - = 0(nδ~τ) and sn = s°n = 0(wδ) .

PROOF. Let rn = ΣΓ=* I a» \/v Then

2TO Zn 2n

Hence we have

co I „ I co 2^+ln-l \ n \

= O(nδ~τ) ,

which proves the required result. sn = 0{nδ) is similarly proved.

LEMMA 3. Let 0 < a < p and let m be an integer. Then, for φ(t)
in (1.1),

(2.3) Δmφ(nt) = O(tm~an~a) when 0 ̂  m ^ p ,

(2.4) Δmφ{nt) = O(tm-"-ιn-"-1) when 0 < m ̂  p + 1

cmd, /or α^ odd integer p,

(2.5) ^ (̂ o = o ( r - 1 ^ - 1 ) .

PROOF. This lemma for m ̂  1 is Lemma 1 in [3] and (2.3) for m - 0
is trivial. (2.5) is proved by means of the identity

= sinpt - ^Jsin(p-2)ί + . . . + (-^^^(^^/g)8 1 1 1 *

and, for a constant k Φ 0,
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dx =™sku - α ± l \coskx dχ = 0 (

ka+1 k J + 2dx

xa+ι kua+1 k

3. Proof of Theorem 1. Omitting the constant factor in (1.1), let

φt(n, ί) = Ψlnt) =
\
J»ί X1

By the Abel transformation two times, we have, by (1.3) and (2.3),

Σ anφ0(nt) = Σ sι

nJ
2φ0(nt) = Σ enen(t) ,

w = l w = l w = l

where εΛ = sι

n\og (n + 2)/n and cw(ί) = nJ2φ0(nt)/\og(n+2) when n ^ l . For
the proof of Theorem, it is sufficient to prove that the sequence-to-func-
tion transformation Σ εncn(t) is not convergence-preserving. In order t h a t
the transformation is convergence-preserving, Σw=i I cn(t) \ must be bound-
ed in 0 < t < ί0. But this series is divergent at some point in an arbi-
trary neighbourhood of origin. The proof of this is as follows.

(nt+x)2 ((n + l)t+x)2

We now take t = 2π/k, k = 8, 9, 10, , and n = km, m = 1, 2, 3,
Then

Jo (2m7r + ίc)2(2mπ+α; + ί) 2 Jo

= &i(m) — &2(m), s a y .

Hence

I A2φQ{kmy 2π/k) \ ̂  62(m) - ft^m) .

On the other hand, when t = 2π/kf

b ( m ) = f 'g jn '(«+t)-8in' 8 < f a . > sin-1 * \\siφ+t)-smx)dx
Jo (2mπ+x+ty ~ 4(mπ+tf JY '(2mπ+x+ty

_ sin""1^ cos t (1—cos t) > sin""11- cos ί (1—cos t) ^ _^_
2 ( ί ) 2 = 8 2 * 2

8π2 m2

and
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Jo (2mπ+x)2(2mπ+x + tf m6

Thus we have, for t = 2π/k, k = 8, 9, 10, ,

ΣK(t)|= 
»̂=i log

S Σ Ί ^ m , o , I f<Po(km, 2π/k) \
log(Λm + 2)

> y / sin "̂"1 ^ cos t (1 — cos t) fe km # 1
= m=i \ 8ττ2 m log(&m + 2) log(A m) m 3

and the proof is completed.

4. Proof of Theorem 5. We shall first prove Theorem when τ is
not an integer. For the proof, we may assume, without loss of generality,
that s = 0 and α0 = 0. We now take r such that rδ — τ > 0 and
(2r + 1 - [τ])r > 2τ + l*} and we put ξ = [ r r ] , 0 < t < 1. Let us write

Σ α.χ(nί) = ( Σ + Σ ) = U(t) + V(t) ,

where, by (1.8) and (2.1),

V(t) = Σ anχ(nt) = θ[ir Σ I α. |M7) = Oίr 'Γ 1 ) - O(ί"-) = o(l) ,

which proves the convergence of the series ^n=Q anχ(nt) for t positive.

We shall next consider U(t). Using Abel's transformation

ξ+l ξ

U(t) = Σ,aJί(nt) = Σ

where, by (1.8) and (2.1),

<re+1χ((£+l)ί) - 0(r- '

Now, by the well-known formula

Σ Mχ(wί) = Σ si Σ A-I71 jχ(nί) = Σ β; G(y, ς, t)

= ( Σ + Σ ) = ZΛ(ί) + ί̂ ,(ί), say

*) Throughout this paper, [x] denotes the greatest integer less than x.
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where G(v, ξ, t) = ΣU* Ani;1 Jχ(wί) and η = [1/ί]. Then we have, by the
method similar to that of the proof of Lemma 2 in [3], for vy ξ and t,

G{v, ξ, t) = O(ir'-i)

and

(4.1) G(v, ξ, t) = 0(^-2τtίτ

Hence

\ j;[r]-2rί[r]-rJ7i(ί) = —
log(y+2)

because (2τ—[τ] + l ) r > 2τ + 1, by the our assumption, and

U2(t) = oί Σ y^ —) = °^og 1°2 ί ~ ̂ °% ^ o g V)

= o(log r) = o(l) .

Summing up the above estimates, we obtain

Σα»χ(wί)->0 as £ — + 0 ,
71 = 1

which is the required result.

Next we shall prove Theorem when τ is an integr. The method of
the proof runs similarly to that of the proof when τ is not an integer.
So we shall remark some of different points and omit the proof in detail.
In this case we take r such that rδ — τ > 0 and r > τ and use (1.10) in
place of (4.1) in the estimation of t7i(t) above. Then the remaining part
is similarly proved.

5. Proof of Theorem 6. We shall prove Theorem when β is not an
integer, the case in which β is an integer being easily proved by the
method analogous to the following argument. For the proof we may
assume, without loss of generality, that s = 0. We first remark that

τ - δ = τ(7 + l-τ)/GS + l - r ) > 0 .

Hence, by Lemma 2, we have (2.2). Let k = [β] + 1. Then, by β<ω — l,
we get k + 1 ̂  w. Let us now write

oo /ξ + k + ί oo \

Σ anχ(nt) = ( Σ + Σ ) = tyt) + V(t) ,
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where ξ = [(st)~~p], ε being an arbitrary fixed positive number, and

r τ-δ 7 + 1 - τ

Then, by (1.13) and (2.2),

= Σ ajι(nt) = θ(ir Σ,ί2iί) = Oφ-Ίr*) = O(er) .
n=ξ

We shall next prove U(t) = o(l) + O(εΓ) By the Abel transformation
(k + 1) times, we have

ξ+k+l ζ k

U(t) = Σ anχ(nt) = Σ
0 0

+ Σ ^ ( ί ) , say .
κ = 0

Using the Dixon and Ferrar convexity theorem [1], we have, by (1.6) and
(2.2),

+r" )/^) , 0 < V < β

Hence, by (1.13), (1.14) and (2.2),

Wv(t) =

= o(ί ί r^< r- s ) ) "»-^/<'»+1-r)) = o(l) , for v = 1, 2, , k - 1 ,

and, since s* = o(nk~?+r),

Wk(t) = o(ξk^+r rτtk~Γ) = o(ζk+r~β~τtk-τ)

It remains to prove that U0(t) = o (1). But this is proved by the method
analogous to that of the proof of U0(t) = o (1) in the proof of Theorem 1
in [2]. Thus, summing up the above estimates, we obtain

lim sup Σ anχ(nt) = 0(e') .

Since ε is an arbitrary positive number, we have

limΣo.χ(Λί) = 0 ,
ί-»+0 TO=0

and Theorem is completely proved.

6. Proofs of Theorems 2, 3 and 4. Under the assumptions of
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Theorem 2, by Lemma 3, we can take χ(t) = φ(t), τ = a and w = p, in
Theorem 5. Then Theorem 2 is proved by means of Theorem 5. On the
other hand, if we take χ(t) = φ(t), τ = a and w = p, in Theorem 6, then,
combining the remark to Theorem 3 given in § 1, we have Theorem 3.
Similarly, by (2.4) and (2.5), if we take χ(t) = <p(t)9 τ = a + 1 and ω =
p + 1, in Theorem 6, then we have Theorem 4.
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