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1. Introduction. Professor G. Sunouchi has introduced the sum-
mability (®, @) and (8*, «) in his paper [4]. Later we [3] have introduced,
as generalizations of these summability, the summability (R, p, @) defined
as follows. Throughout this paper, p denotes a positive integer and «
denotes a real number, not necessarily an integer, such that 0 < a < p.
Let us put

o

sin® x
= " dx,
0 xa+1

o= |

(1.1) ®(n, t) = p(nt) = (Cp)~" Sw sin® © dz = (C,0)~" Sm sin® nu du
¢

nt xa-ﬁ-l ,naua+1

Then a series Do, a, is said to be summable (&, », @) to s if the series
in

Fo,0,0 = a,+ 3 o)

converges for ¢ positive and small and f(p, @, t) —s as t— +0. Under
this definition, the summability (8, @) and the summability (8* a) are
reduced to the summability (& 1, @) and the summability (&, 2, a), res-
pectively. On the other hand, for a series >, a,, let us write of = s8/A4%,
where s¢ and A? are defined by the relations

(1.2) QL—z)~*t = i‘, Alz® and (1—wz)~#! i a,x" = Ei] sha™ .

Then, if o —s as n— o, we say that the series >\’ ,a, is summable
C, B, B> —1, to s.

Concerning (&, p, ®) summability, we [3] have proved the following
theorems.

THEOREM A. Let 0 < B < a < p. Then, if a series >,m,Q, 1S sum-
mable (C, B) to s, the series >y, a, is summable (8], p, a) to s.

THEOREM B. Let 0 <a<p,N,>0(n=1,23,---) and the series
S Nu/n converge. Then, if
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st — sA? = o(n™\,) ,
the series >, ,a, is summable (8], p, a) to s.

In Theorem B, we may take )\, = 1/(log(n+2))'*%, 6 > 0. Then we
know that if

su = o(n/(log(n + 2))'*') ,

the series >.7,a, is summable (R », 1), p > 1, to 0. However we have
the following.

THEOREM 1. There exists a series >, @, Which is nmot summable
&, »,1), »p> 1, but satisfies the condition

(1.3) s, = o(n/log(n + 2)) .

This is proved in §3. Since the condition (1.3) implies the (C, 1)
summability of the series >.7.,a,, we see that the (C, 1) summability does
not necessarily imply the (&, p, 1) summability when p > 1. One of the
object of this paper is to study Tauberian condition for the (8, p, 1)
summability of the series which satisfies the condition (1.8). Concerning
this problem we have the following.

THEOREM 2. Let 0 < a < p and let 0 <6 < a. Suppose that

1.4 8% — sAZ? = o(n*/log(n+2))
and
(L.5) Sal-a)=0@).

Then the series >, a, 18 summable (8, p, &) to s.
On the other hand we have the following theorems.

THEOREM 3. Let 0 <a < pand let 0 <7< B=p— 1. Suppose that

(1.6) st — sA: = o(n')

and

(1.7) 5: la, | = O(n=""?),
v=mn Yy

where 0 <0 <1 and 6 = a(B—7)/(B+1—a). Then the series >.7_,a, s
summable (8, p, @) to s.

THEOREM 4. Let p be an odd integer. Then, in Theorem 3, we may
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replace f=p—1 and §d=a@B-7/B+1—-a) by B<p and 0=
(a+1)(B—7)/(B—a), respectively.

Since, for fixed «, B, 7,

a(B—1/(B+1-a) < (@+1)(B—"/(B—a) ,
we see that Theorem 4 is better than Theorem 3. If v < «, the condition
(1.6) implies s, — s A, = o (n"), that is, the series >,r.,a, is summable
(C, ) to s. Then, by Theorem A, the series >, a, is summable (&, p, a)
to s. Thus we see that Theorems 3 and 4 are significant for « < v. In
§ 6, Theorems 2, 3 and 4 are proved by means of the following theorems.

THEOREM 5. Let @ be a positive integer and let 0 <7< ®. Let
x(t) be a function defined for t = 0 such that

(1.8) x0) =x(+0 =1, x@® =007,
1.9) A™y(nt) = O(t™"'n"7"), o<m=w+1,
and, in addition, when T is an integer

(1.10) Ay (nt) = O(tn™) ,

where A™Y(nt) denotes the m-th difference of x(nt) with respect to n and
m denotes an integer. Let 0 < 6 < 7. Suppose that

(1.11) s, — sA: = o(n/log(n+2))
and
(1.12) S (la,|-a) = 0n™) .

Then the series >m_,a,)(nt) converges for t, positive and small, and its
sum tends to s as t — +0.

THEOREM 6. Let @ be a positive integer and let 0 <7 < w. Let
x(@) be a function defined for t = 0 such that

(1.13) x0) =x(+0) =1, x@ =0(@™)
and
(1.14) A™y(nt) = O™ n™) , l<m=z2tw,

where m denotes an integer. Let t — 1< v < B=Zw—1. Suppose that

oo

a series >im-, a, satisfies the conditions (1.6) and (1.7) in which
0<d<1l and 6 =7(B—7)/(B+1-7).

Then the series D im—, a,X(nt) converges for t, positive and small, and its
sum tends to s as t —+0.
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Theorems 5 and 6 are proved in § 4 and § 5, respectively.
2. Some Lemmas.

LEMMA 1. Let 0<d <t and let s = o(nf), 8> 0. Then the con-
dition (1.12) implies

l‘;”r L = On™) and s,=8, =0mn").

Ms

(2.1)

Il

v

Proof is similar to the proof of Lemma 3 in [2], so we omit it.

LEMMA 2. Let 0 <6 <7. Then the condition (1.7) tmplies

(2.2) i‘, IZ:I = 0n™) and s, =8, = 0.
Proor. Let r, = >2.|a,|/v. Then

2 2n 2N
2ila| =2y, —r.) = 3 1+ nwr, — 207y, = O(0) .

y=mn+1

Hence we have

o Ia | oo oMtlp—1 I a l ) ol +1lp—1
2= =2 3 = s=nT32r 3 a
v=n Y 1=0 y=gttn Y #=0 v=2Hn
— O(n—-r had 2_(7—6)pn6> — O(nb—-t) ,
#=0

which proves the required result. s, = O(n°) is similarly proved.

LEMMA 3. Let 0 <a < p and let m be an integer. Then, for P(t)
wn (1.1),

2.3) A™p(nt) = O™ *n™) when 0 = m < p,
2.9 A™p(nt) = O™ *'n="") when 0 <m=p+1
and, for an odd integer p,

2.5 ®(nt) =0t '™ .

Proor. This lemma for m =1 is Lemma 1 in [3] and (2.3) for m =0
is trivial. (2.5) is proved by means of the identity

(—1)w=v12r=1(sin 1)7

= sin pt — (f)sin(p—2)t 4 oeee + (—1)“’““’2( (p—l)/Z)Sint

and, for a constant k = 0,
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S“’ sin kx dp — Cosku _ a+1 S

= cos kx .
e oy T de = O(u™™™) .

u  pat?

3. Proof of Theorem 1. Omitting the constant factor in (1.1), let

© In?
Py, 1) = Pynt) = S 2.

By the Abel transformation two times, we have, by (1.3) and (2.3),
gaﬂ’o(m) = ”2:1 sLA*py(nt) = 215"0”@) ,

where ¢, = s, log (n+2)/n and c¢,(t) = nd*e,(nt)/log(n+2) when n=1. For
the proof of Theorem, it is sufficient to prove that the sequence-to-func-
tion transformation 3 e¢,c.(f) is not convergence-preserving. In order that
the transformation is convergence-preserving, >.v_.|c,(t)| must be bound-
ed in 0 <t < t. But this series is divergent at some point in an arbi-
trary neighbourhood of origin. The proof of this is as follows.

(n+1)t o
Lp(nt) = A(S s1n: molrv)
nt X

_ S‘{sin”(nt+x) . sin”((n—i—1)t+:1;)}dac
(nt+2)* (m+1)t+2)*

0

We now take ¢=2n/k, k=28,9,10, -+, and n=km, m =1,2,8, ---.
Then

A2<po<lcm, _21) _ S'{ sinfx  sinf(x+1) }dw
k l@2mr+x)? (@Cmr4a4t)
_ S‘ (t*+ 22t +dmmi)sin? o de — S‘sin”(x+t) — sin? 2
o Cmr+x):(2mr +x+1)? o (C2mrm+a4t)

= b(m) — by(m), say.
Hence
| *py(km, 27/k) | = by(m) — by(m) .
On the other hand, when t = 27/k,

tain? . QIn? 1 p—-l.t t . .
bm) = S sin®(x+¢) — sin T 4o > _ S0 S £ — d
+(m) o (2mrm+a+t) ¢ 4(mm+t)? o(sm(a:-l— ) —sin o)dz
_ sin*"'t.cost-(l—cost) - sin”'i.-cost-(l—cost) 1
2(mm +t)? = 8r? m?

and
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t 2 in? 1
b, :S (£ + 2t + dmmt)sin® d 1
(m) o Cmr+x)@Cmr+x+1t)° < m?
Thus we have, for t = 2n/k, k = 8, 9, 10, ---,
S eat) ]| = 3 —" | Lpym, 2k
Sle0)] = £ 1t | 4o, 2000
= km
=S ——— | Lp,(km, 2r/k
2 5, ot | 4 kom, 20|
>§; sin”'{.cost- (1 — cost) k __km __1_)
! 8n? mlog(km + 2)  log(km) m®/

2

and the proof is completed.

4. Proof of Theorem 5. We shall first prove Theorem when 7 is
not an integer. For the proof, we may assume, without loss of generality,
that s=0 and a,=0. We now take r such that »6 — >0 and
2t +1—[z])r > 274+1* and we put £ =[t7"], 0 < t < 1. Let us write

Saamt) = (S +3 )= U0+ V0,
where, by (1.8) and (2.1),
Vi) = 3 et = 0(r S la,l/n) = 0¢¢7) = 0 = o(1) ,

which proves the convergence of the series .7, a,x(nt) for ¢ positive.

We shall next consider U(f). Using Abel’s transformation
£+1 4
U®) = 3 an(nt) = 3 s.dx(nt) + serit(E+1)9)

where, by (1.8) and (2.1),
SerX((G+1)2) = O(E°-67t77) = O(t™™) = o(1) .

Now, by the well-known formula

M=

8y = AZS‘&? ’

y=1

%Eillsndx(nt) . 2 26‘. AT Ay (nt) = z:‘f sEG(Y, &, 1)

n=y

(S5 +3) =00+ U0, sy,

y=7+1

*) Throughout this paper, [«¢] denotes the greatest integer less than .
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where G(v, &, t) = >}, 475 dx(nt) and » = [1/t]. Then we have, by the
method similar to that of the proof of Lemma 2 in [3], for v, & and ¢,

G, & 1) = 0™

and
(4.1) G(v, & t) = QI leI=r+) 4 O(gI=¥1gr) |
Hence
Vi r 7 r
L t — [r]—zrt[r]—z'-H [{r]—2r—14—17
U = o3 logv+2) )+ St ToTy )
— o(t[r]—-r+1 Z ”[z-]—-r) + O(s[r]—Zr—-lt— Z ))

=o(),
because (2t —[7]+1)r > 27 + 1, by the our assumption, and

_ 3 .1
Ut) = O<»=2n'+1 logy vt
= o(log ) = o(1) .

Summing up the above estimates, we obtain

) = o(log log ¢ — log log 7)

ianx(nt)—vo as t— 40,

which is the required result.

Next we shall prove Theorem when 7 is an integr. The method of
the proof runs similarly to that of the proof when 7 is not an integer.
So we shall remark some of different points and omit the proof in detail.
In this case we take r such that »0 — 7> 0 and » > 7 and use (1.10) in
place of (4.1) in the estimation of U,(f) above. Then the remaining part
is similarly proved.

5. Proof of Theorem 6. We shall prove Theorem when g is not an
integer, the case in which B is an integer being easily proved by the
method analogous to the following argument. For the proof we may
assume, without loss of generality, that s = 0. We first remark that

T—0=7t(v+1-7)/(8+1—-7) > 0.
Hence, by Lemma 2, we have (2.2). Let k=[g8]+1. Then, by p<w -1,
we get £+ 1 < w. Let us now write
+k+1

Saamt) = (3 + 3 )= U0+ v,

. n=0 n=
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where & = [(et)™*], ¢ being an arbitrary fixed positive number, and

o= T :,8+1—z'_
T—0 y+1—7

Then, by (1.13) and (2.2),

o

v = 3 agmt) = ot 5 1%0) = ot = 06) .

n
n=g+k+2 n°

We shall next prove U(f) = o(1) + O(¢). By the Abel transformation
(k + 1) times, we have

Ut) = '3} an)

k
S5 S5 (1) + 3 st d LG+ + 1)
= U@ + 5 W0, sy -
Using the Dixon and Ferrar convexity theorem [1], we have, by (1.6) and
(2.2),
S; — O(n(ﬁ(ﬂ—b)-(-ru)/ﬂ) , 0 < 3} < ,8 .

Hence, by (1.13), (1.14) and (2.2),

Wit) = 0 -&7t) = 0E~t™) = O(")

W(t) = 0= +r11e. =t

= ot~ +rmpeilpie=0))
= ot DIy — (1) forv=12 +-,k—1,
and, since s = o (n*=#+7),
Wilt) = o6#7-=t+) = ofgHr+"t+)
= o(tk—r— k1=l =0} = o(1) ,

It remains to prove that U,({) = o(1). But this is proved by the method
analogous to that of the proof of U,(t) = o (1) in the proof of Theorem 1
in [2]. Thus, summing up the above estimates, we obtain

goa,,x(nt) ’ = 0(¢9) .

Since ¢ is an arbitrary positive number, we have

lim sup
t—+0

lim 3 a, y(nt) = 0,

t—=+0 n=0

and Theorem is completely proved.

6. Proofs of Theorems 2, 3 and 4. Under the assumptions of
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Theorem 2, by Lemma 3, we can take x(t) = #(¢), 7 =@ and w = p, in
Theorem 5. Then Theorem 2 is proved by means of Theorem 5. On the
other hand, if we take y(t) = ®#(t), 7 = @ and w = p, in Theorem 6, then,
combining the remark to Theorem 3 given in §1, we have Theorem 3.
Similarly, by (2.4) and (2.5), if we take %(t) = (), r=a +1 and 0 =
» + 1, in Theorem 6, then we have Theorem 4.
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