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Introduction. Observing the close analogy between theories of clas-
sical simple algebras and of continuous finite factors, M. Nakamura and
Z. Takeda ([12], [13], [16] and [17]) established the Galois theory for finite
factors. The main theorem of their theory is the following

THEOREM A. Let Stf be a continuous finite factor acting standardly
on a separable Hilbert space 3ίf, let G be a countable group of outer
automorphisms of Szf and let & be the subfactor of S/ consisting of all
elements invariant under G. Suppose that the commutant &' of & is
finite. Then> the lattices of all subgroups of G and of all intermediate
subfactors between Szf and & are dually isomorphic under the Galois
correspondence which carries a subgroup F to an intermediate subfactor
^ invariant under F in element-wise.

On the other hand, H. A. Dye introduced the notion of full group
for a group of automorphisms of an abelian von Neumann algebra, and
showed, among others, the next theorem, ([8; Proposition 6.1], also cf.
[11; Theorem 3]).

THEOREM B. Let ^£ be a von Neumann algebra with a faithfull
normal trace τ. Let S*/ be a regular maximal abelian self-adjoint sub-
algebra of ^/ί having no minimal non-zero projections, and let <yV"{J*f)
be the collection of all unitary operators U in ^£ such that UjϊfU* =
S/. Denote by G the group of all automorphisms φu(Ue Λ^\S/)) of Jzf
where φu(A) = UAU*. Then there is a one-to-one correspondence between
full subgroups K of G and intermediate von Neumann subalgebras Λ^
such that Szf c ^Va ^£, obtained by associating with each full subgroup
K the intermediate subalgebra & [U\ΦueK] and with each intermediate
subalgebra ^4^ the subgroup [φσ\ U€ ^V*{Ssf) Γ\ Λ^].

In Theorem A, Jzf indicates a factor, while in Theorem B it indicates
an abelian self-adjoint algebra. These are the two extreme cases of von
Neumann algebras. Nevertheless, making use of the notion of the cross
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product of von Neumann algebra, we may find that the Galois cor-
respondence and the Dye correspondence are essentially of the same
character. In this paper we investigate these correspondences for general
finite von Neumann algebras sf and groups of automorphisms of sf.
For this purpose, Kallman's notion of generalized free action (Definition 1)
of automorphisms of Ssf is effective. It unifies the notion of outer auto-
morphisms of factor S/ and that of free action of automorphisms of
abelian s$f. Besides, generalizing Dye's notion of absolute fixedness of
automorphisms of abelian s^f, we introduce the notion of locally inner
automorphisms of general Sϊf (Definition 2), and by it we extend the
notion of full group [G] determined by a group G of automorphisms of
Szf (Definition 3). Then the idea of H. Choda [3] makes it possible to
characterize the elements of a full group [G] as inner automorphisms of the
cross product G® Stf (Theorem 1). Using this characterization, we extend
the Dye correspondence (Theorem 2) and as its dual relation, the Galois
correspondence to general von Neumann algebras having finite commutants
(Theorem 3). Recently M. Henle [9] has extended the theory of Nakamura-
Takeda to general von Neumann algebras. We shall consider his theory
from our point of view in the last section.

Kindly enough, Prof. M. Nakamura, Prof. H. Choda and their col-
leagues have taken the pains of reading our manuscript carefully and
giving us valuable comments. We wish here to express our thanks to
them. Also we must acknowledge to Dr. M. Henle for the opportunity to
see pre-publication copy of his paper, to which we are indebted deeply.

Notations. In the following, S/ is a von Neumann algebra acting
on a separable Hubert space, and %f is the center of Szf. Sfv (resp.
is the set of all projections (resp. unitaries) of s/. The elements of
are denoted by capital letters, in particular, the indentity by /. For
Aejzf, C(A) denotes the central support of A ([6; p. 7]). Automorphism
means *-automorphism throughout this paper. G is a group of auto-
morphisms of j y and the elements of G are denoted by small letters, in
particular, the unity by 1. Automorphisms which are not necessarily in
G are denoted by Greek letters.

1. Free action and full group. In [15] J. von Neumann defined the
notion of free action and applied it to the construction of certain factors.
Given an abelian von Neumann algebra J ^ and an automorphism a of
Ssf, he defined a to be freely acting on Szf if, for every non-zero projec-
tion P i n jy; there exists a non-zero projection Q in J^f satisfying Q^P
and a(Q)Q = 0. Following H. A. Dye [7] a projection P in J^f is abso-
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lutely fixed under a if a (Q) = Q for each Q ^ P. Every automorphism
a of j y determines a maximal projection i^α absolutely fixed under it
and a is freely acting on Szf if and only if Fa = 0. R. R. Kallman [10]
extended this notion to general von Neumann algebras as follows.

DEFINITION 1. Let Stf be a von Neumann algebra and a an auto-
morphism of St/. a is said to be freely acting on Ssf when

(1) AB = a(B)A for all B e

implies A = 0.

When j y is abelian, this definition agrees with the preceding one.
When sf is a factor, a freely acting automorphism is nothing but an
outer automorphism. As Kallman noticed if a is freely acting on the
center %, it is freely acting on sf itself. Freely acting automorphisms
and inner automorphisms are complementary types of automorphisms in
the following sense.

THEOREM (Kallman). Let Szf he a von Neumann algebra and a an
automorphism of Ĵ C Then Sf = J ^ 0 j^J, a = ax 0 a2, a^At) = Aiy

(i = l, 2), aί is inner on s/γ and a2 is freely acting on J^J. This decom-
position is unique.

All these facts are shown in [10]. A group G of automorphisms of
Szf is said to be freely acting if each g Φ 1 in G is freely acting.

Next, we generalize the notion of absolute fixedness as follows.

DEFINITION 2. Let a be an automorphism of Sz? and P be a central
projection. Then a is locally inner on P if a is inner on Szf |P, that is
if there exists a partial unitary Va>P in Szf such that

va,PvtP= v*Pva,P = p
and

(2) a (PB) = Va>PBVZp for all Bejzf.

Clearly when Jϊf is abelian, a is locally inner on P if and only if P
is absolutely fixed under a. Thus local innerness is a natural non-abelian
extension of absolute fixedness.

LEMMA 1. Let a be locally inner on P. Then
( i ) a (P) = P.
(ii) if β is locally inner on Q e ^p9 aβ is locally inner on PQ.
(iii) a~ι is locally inner on P.
(iv) a is locally inner on Qe ^ v such that Q ^ P.
(v) if a is locally inner on another Q e %*p, a is locally inner on
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P V Q. This fact holds for a join of infinitely many central pro-
jections.

PROOF. We prove only (v). P V Q = P + (Q-PQ) and a is locally
inner on Q — PQ by (iv). Hence we may assume PQ = O Then we may
take Va)P+Q = Va,p + Va>Q. For infinitely many central projections it is
sufficient to consider the limit of finite sums in the strong operator
topology (cf. [10; Lemma 1.9]).

LEMMA 2. // an automorphism a of Ssf satisfies (1) for a given
then a is locally inner on C(A).

PROOF. Let A = W\ A\ be the polar decomposition of A, and put
P = C(A). Following the proof of [10; Theorem 1.1], we see that WW* =
W*W= P and, for all Be jy; WB = a(B) W or WB = WPB = a(PB) W.
That is, WBW* = a{PB). Therefore a is locally inner on P.

By Lemma 1 (v), there exists the unique maximal central projection
Fa on which a is locally inner. We simply write Va instead of Va>Fa.
Then, in parallel with Dye's definition of the free action, we get the
following corollary which is a different version of Kallman's theorem
quoted above.

COROLLARY, a is freely acting on A if and only if Fa = 0.

Now, put F {a, β) = Fa-iβ. Then,

F(a, β) = F(β, a) .

By (2)

β(A) = a(Va-lβAV*-iβ) if

In particular,

a(F(a, β)) = β{F{a,

DEFINITION 3. Let G be a group of automorphisms of Sf and denote
by [G] the collection of all automorphisms a of J^f such that

sup F(a, g) = I.
GgeG

[G] is called the full group determined by G. A group G is called full
if G = [G] (cf. [7]).

LEMMA 3. Let G be a group of automorphisms of j^ί Then,
( i ) [G] is again a group of automorphisms of
(ϋ)
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(iii) Elements a of [G] are precisely those endomorphisms of
having a representation

(3) a(A) = ΣnPn9n(VAV*) for all

where gneG, Vej&i, and {Pn} (resp.f^^PJ}) is a family of mutually
orthogonal central projections having sum I.

(iv) If Jzf is finite with a faithful normal trace τ and every element
of G preserves τ, then each element a of [G] preserves τ also.

PROOF, (i), (ii) and (iii) are proved by easy modifications of [7; Lemma
3.1] so we omit the proofs, (iv). For αe[G] and non-negative

τ(a(A)) = τ(α[Asup F(a, g)]) = suvτ(a[AF(a, g)])
geG g

= sup τ(g[AF(a, g)]) = sup τ(AF(a, g))
9 9

= τ(A sup F(a, g)) = τ{A) .
9

In a representation such as (3) of an automorphism a of [G], we omit
henceforth to write the supplementary conditions on V and {Pg} to avoid
the trouble of the statement.

We notice here that if G is freely acting on Szf and ae[G], then

F{a, g)F(a, h) ^ F(g, h) = 0 for g Φ h ,

and so

Each Pn in (3) coincides with a(F{a, gn)).

2. Cross product. Let J^ be a von Neumann algebra acting on a
separable Hubert space £ίf and G a countable group of automorphisms
of s^f. Let G®£ίf be the set of all formal sums ΣαeG«® L(L^ Sίf) for
which Σα llίαll2 < °° Define addition and scalar multiplication on
by

and

λ(Σ a (x) ζa) = Σ a (x) Xξa

where λ is a complex number (cf. [20]). Then G(x) Sίf becomes a separable
Hubert space with an inner product

<Σ α ® fβ I Σft ® Va>
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Define an operator g (x) A(g eG, Ae Sf) on G (x) £ίf by

(9 <g> A)(Σ α (x) £.) - Σ αflr-1 <g) α(A)fα .
aeG

Then, direct computations show that

(g®A){h®B) = gh® h"ι(A)B

and

(flr(g) A)* = flf"1 (g) flr(A*) .

The cross product G (g) J ^ is defined as the von Neumann algebra on
G (x) 3ίf generated by {g (x) A | g e G, A e Jzf], where

is a von Neumann subalgebra of G (x) J ^ and it is algebraically isomorphic
to s>/. Hereafter we shall identify A e J ^ with 1 (g) A e 1 (g) <$/ when we
have no fear to lead to confusion, g® I (ge G) is a unitary operator in
G (g) J ^ , and it induces the automorphism g on J ^ :

= (g (x) A)^-1 <g> J) =

It is known that the cross product G (x) Stf is independent of the particular
representation of J ^ used to construct it ([21; 8.6]).

Next we review the concept of expectation briefly which we shall
use heavily in the next section (see [1] and [19]).

Let & be a von Neumann subalgebra of j^Γ An expectation from
on & is a positive *-linear mapping Φ& of Sf into & such that

I) = / and

A) for A e jf, Be

By taking adjoints, it follows immediately that

ΦAAB) = ΦAA)B .

It satisfies

(5) Φ*(A*A)^Φ<,(A)*ΦAA).

& is precisely the set of fixed points of Φ^.

In particular, when j y is a finite algebra with a faithful normal
trace τ and & is an arbitrary von Neumann subalgebra of j ^ ; it is well
known that there exists a uniquely determined faithful normal expectation
from Szf on & such that

τ(Φ*(A)B) = τ{AB) for

We call this the natural expectation from Jzf on &. The trace norm
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of i e Szf is defined by || A| |2 = (τ(A*A))112, then by (5) this norm satisfies

In the case of cross product G®s*f, for TeGd&Jzf, we may put

Φ(T) = ΣP9TP9
geG

where Pg are the projections of G (x) Sίf onto g (g) έ%f, and the sum is
taken in the strong topology. Then, Φ is a faithful normal expectation
of G®J^sf onto Szf (see [1; Appendix]). Notice that this expectation does
not presuppose the finiteness of j ^ A normal state p of S*f is extended
to G (x) Stf by p o φ. In particular, when j ^ is finite and there is a
faithful normal G-invariant trace τ, τ is extended to the faithful normal
trace on G (x) J^C Hence, in this case, G (x) J ^ is also finite. Using the
state p on Szf and the extended state p on G (x) J ^ we may define
Hubert norms o n j / and G ® J / by || T\\v = (p(T*Γ))1/2 for Te Ssf and
T&G® Jzf respectively. Let J%Γ be the completion of pre-Hilbert space
j^C J%^ is the Gelfand-Segal representation space of J ^ by the state p,
and the completion of the pre-Hilbert space G (R) Sf is that of G ® Ssf
by the extended p, which may be identified with G(x) 3£] [18] Since
every element of G(x) J ^ can be considered as an element of G ® ^ 7
every T e G (x) J ^ has the Fourier expansion

T=Σ*g®Tg (TgeK)
geG

converging in p-norm, and a direct computation shows that

Tg = Φdg-1 <g) I ) ( Σ Λ <8>ϊ7*)) e J ^ for all ^ e G .
h

In [3] H. Choda characterized the elements of full group [G] as the
inner automorphisms of G(x) J ^ when J ^ is an abelian von Neumann
algebra. We generalize this result to non-abelian von Neumann algebras.
Put

Then, every element of ^ (G(x) J ^ Sf) induces an automorphism of

THEOREM 1. Let S^ be a von Neumann algebra, G a countable dis-
crete group of automorphism acting freely on Ssf, and a an automorphism
in [G]. Then a can be extended to an inner automorphism of G(x)
Conversely, an automorphism of Sf induced by U"e Ψ/'(G (g) Sif,
belongs to [G].

PROOF. Let Pg = F(a, g) e ^p for geG. Then, if g Φ h,

PgPh - F(a, g)F(a, h) ^ F(g9 h) = 0
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by the free action of G. That is, {Pg} is a family of mutually orthogonal
central projections. Since ae[G],

ΔΛ •*- g ~
9 9

Put

2^g^s) vά-h
9

Then the following direct computations show that U is a unitary operator
in G (5£) j y and that U induces an inner automorphism of G (x) <$/ which
is an extension of a.

UU* = ( Σ 9 ® F*

= Σ flrλ-1 ® λ( V*-ig Fα-π) = 1 Θ Σ g( VaUg Va-Σ

= ΐ ® Σ 9(F(a, g)) =

= (Σ flΓ1 ® flr( V.-i

= Σ sΓ'h ® h-ιg(VaJg) V*-ίhΣ
= Σ g~ιh (x) A-ια( Va-h Va-ίg V*-.,)A->α( F

= Σ flΓ1* ® hr1a(VΛ-i,F(a, g)F(a, h)7ί-

= 1 ® Σ Q'^iFia, 9)) =

and

17(1 ® A) U* = (Σ ff ® VaU

Σ
= Σ ff^"1

= ί ® Σ <x(F(a, g)A) = 1® a(A) .
9

Conversely, let a be the automorphism of Szf induced by

U = Σ 9 ® A
9

Since ?7(1 ® 5) = (1 ® α(5)) U for all

Σ flr ® Λ,B = Σ 9 ® 9~ia{B)Ag ,
9

hence, ^4,5= flΓtaCBJA, for all BeSsf and ^Gff. Then by Lemma 2,
(/"to is locally inner on the central support Pg of Ag. Hence

Pg ^ F(a, g) .

If g Φ h, then PgPh ^ F(α, g)F(a, h) g F(flr, Λ) = 0. Therefore {Pg} is a
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family of mutually orthogonal central projections. As U is unitary,

1 <g) / = C/*[7=Σ 9~ιh (g) hrιg(A*)Ah .
9,h

Hence

Σ A*A, = I .

Since Pg coincides with the central support of A%Ag1 we have Σ 3 Pg = I.
Therefore

hence, αe[G].

By Lemma 3, the automorphism α e [G] induced by Us
has a representation

From this and U(l (x) A) £7* = 1 (x) a(A) we get the following corollary,
where Qg = J Γ W .

COROLLARY 1. Lei J ^ απd G be as in Theorem 1. Then any Ue
/̂ αs α unique decomposition

K> {QJ (resp. {̂ (Q̂ )}) is α family of mutually orthogonal central
projections having sum I. Conversely, cm?/ sw/& Z7 e G ® J ^ is m

This corollary has been proved by H. Behncke nuder the more re-
stricted assumption that G acts freely on the center %*, ([2; Lemma 2.1]).

COROLLARY 2. If <$/ is a factor, then every element of [G] coincides
with an element of G up to an inner automorphism.

This is a generalization of [14, Corollary].

The following lemma will be used sometimes later.

LEMMA 4. If G is freely acting on Sf, we have

(G (x) J*O n (i (x) j#γ = l <g) 3r.
PROOF. If Σ f f £ ® A e G ® J ^ commutes with all 1 (g) 2? in 1 (x)

then by

(Σ ί7 (x) A) α ® 5) - Σ g (x) Λ B
9 9

and
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(1 <g> B)(Σ 9 ® A,) = Σ 9 <S> g~l(B)Ag ,
9 9

we have

AβB = g~1(B)Ag for all

Since G is freely acting, we have

A g = 0 f o r gφl a n d Aλe ^ .

Hence

On the other hand, 1 (x) ̂  c (G (x) J ^ ) Π (1 (x) J ^ ) ' is obvious.

COROLLARY. 7/ G is freely acting on Sxf, then the center of G
is the subalgebra ̂ G of fixed elements under G in %*.

In fact, Ze %r commutes with every g (x) I if and only if Ze %G.

3. Full subgroups and subalgebras. In terms of the cross product,
Theorem B in the introduction states that, for the cross product G (x) S/
of an abelian von Neumann algebra j ^ there exists a one-to-one cor-
respondence between full subgroups of the full groups [G] and intermediate
subalgebras of G (x) J ^ that is, von Neumann subalgebras which contain
j ^ In this section, we generalize this result for finite von Neumann
algebras. The way of the proof is quite similar to that of Dye [8].

Throughout this section, Ssf is a finite von Neumann algebra with a
faithful normal trace τ, and G is a countable discrete group of auto-
morphisms of Szf acting freely and preserving τ invariant. Therefore
G (x) S^f is finite too, and the trace τ can be extended to G (x) Jz?. Hence
there exists a unique natural expectation of G ® Szf on every von
Neumann subalgebra & of G®S*f (see §2).

Let <%s{G ®^^f)^{Ue(G® J*0. I ϋsfϋ* = J^} and denote by
Φu the automorphism of S*/ induced by Ue ̂ /{G® S*f, S/). Because

^, S^f) includes G(x)7 and 1 (x) JK> the von Neumann algebra
ff J&)\ generated by ^{G®S$f,^f) coincides with G(g)J*\

This corresponds to the fact that Szf is a regular maximal abelian
self-adjoint subalgebra of G(x) J ^ when S$f is abelian (cf. [5]).

The mapping U-+φu is a homomorphism from ^ '(G (x) J ^ Jtf) into
the group of all trace-preserving automorphisms of J ^ Its kernel is the
group %*u of all unitaries in %£ by Lemma 4. The group

coincides with the full group [G] by Theorem 1, hence this group is full.
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Moreover, let & be an intermediate subalgebra of G (x) J ^ then

K(&?) = [Φu I Ue %f(G (8) J ^ J ^ ) Π ^ 1

is a full subgroup of [(?]. In fact, every element a of the full group
determined by K{0) has a form

a(A) = Σ PΛ(FAF*) (7. e # ( . ^ ) ) .

Then, if τw is induced by Une^{G® *$/, *$/) Π .^, α is induced by the
unitary U = Σ» ϋ»(l ® T ί W F) 6 ^ ( G (x) J ^ J*O Π &.

LEMMA 5. Let & he an intermediate subalgebra of G® <-£/, then the
expectation Φ&(U) of Ue ^/{G (x) J ^ Ssf) onto & is a partial isometry
and its initial and final projections are both in %.

PROOF. (Cf. [8; Lemma 6.1] and [4]). Let ΦAU) = VS be the polar
decomposition of Φ&(U). In view of Lemma 4, if we follow the proof of
[8; Lemma 6.1], we get φσ(A)VS = VSA. Hence

A V VS = U*Φv(A) VS = £7* VSA for all A e

Then, by Lemma 4, we have U*VSe 5£ c & and hence,

U*VS - ΦAU*VS) = ΦA(U*ΦAU)) = ΦAU*)ΦAU) = S2 .

Hence,

s* = sv*uu*vs= sv*vs= Φ
Therefore S2 is a projection, and becauce S is non-negative, S is a pro-
jection also. Moreover, as V*V is the support of S, we have S= V*V.
Thus ΦAU) = VS = VV*V = y proving ΦAU) is a partial isometry.
The remained part is easily seen.

LEMMA 6. Let & be an intermediate subalgebra of G
^ be a partial isometry such that F F * , F * F e %Ί F J ^ F * C J ^ and

F cα?ι be extended to a unitary operator W in

PROOF. The proof of this lemma is contained in the proof of [8;
Lemma 6.1].

LEMMA 7. (Cf. [7; Lemma 3.4]). Let a be an arbitrary automorphism
of J^f, and G a given group of automorphisms of Szf. Then there exists
a unique maximal central projection E ([G], a) and β in [G] with the
property that, for all A in J^f,

E([G], a)a(A) = E([G], a)β(A) .

It holds
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E([G], a) = suvreίG]a(F(a, 7)) = a(F(a, β)) .

PROOF. Following the proof of [7; Lemma 3.4], we get a maximal
family (Pn, βn) such that Pn are mutually orthogonal central projections,
βne[G] and a~\Pn) = β~ι{Pn). Therefore the projections β«ι{Pn) are
mutually orthogonal. By Theorem 1, each βn e [G] can be extended to
an inner automorphism of G (g) J^ induced by some unitary Un in
^{G®S*f, Sf). Set Vn = Unβ~ι{Pn), then Vn is a partial isometry such
that VnV* = Pn and V*Vn = β~\Pn). Therefore the operator V = Σϊ=i Vn

is a partial isometry such that V*V, VV* e & and evidently F J / F * c j /
and V^j^Vczj^f. Then, by Lemma 6, V can be extended to a unitary
operator W in ̂  (G(x) J < j y ) . The automorphism /3 of J / induced by
W is in [G] by Theorem 1. Put P = ΣnPn, then we have

Pβ(A) - Σ P.W^LTF* = Σ P (Σ
n n m

= Σ P.V

= Σ ί
This projection P — E{[G], a) has the required properties. It is shown
again by analogous discussions to [7; Lemma 3.4].

LEMMA 8. (Cf. [8; Lemma 6.1]. Let & be a n intermediate subalgebra
of G®JZf, and let K(&) be the full group of automorphisms of J&f induced
by %S(G(g)Jϊf, J^)C)&. Then for each U in ^(G(x)JK *̂ O> there exists
a W in ^(G(g)J^J^) Π & such that

PROOF. We have already remarked that the subgroup K = K{&) is
is full. Applying Lemma 5, it follows that the operator V — Φ^(U)
is a partial isometry such that E = F* V and F — F F * are both in %.
VAV* = Φ*(U)AV* = ΦAΦu(A)U)V* = Φu{A)VV* - φu{A)Fej^ for all
Aejϊf. Hence F J ^ F * C J ^ Similarly V^S/Vc^f. Therefore, by
Lemma 6, F can be extended to a unitary W in ^{G®J^f, Szf)ΐ\&. It
follows from V= Φ*(U) - FW that

Fφu{A) = VAV* = FWAW*F - Fφw{A)

for all A G J ^ SO that F ^ E(K, φσ).
On the other hand, writing Eι = E(K, φσ), we have by Lemma 7

that there exists a φw in K such that Eγφw{A) = E1φu(A)} for all Aejzf.
Substituting W*AWeJ^ for A, we have E.AUW* = E,UW*A. Since
JSΊ is in %Ί it follows that EJJW* commutes with any AeSϊf and we
deduce E^UW* e %? by Lemma 4. Evidently, EΊZ7T7* is a partial isometry
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and satisfies all the properties of Lemma 6, so it can be extended to a
unitary W in <^(G(x) J ^ Sf) Π ̂ . Then EJJW* = EγW and W'We

f, Stf) Π &. Hence Eγ U = Eγ W W e .̂ T. Therefore

(I-F)E1U=(I-F)ΦAE1U)

= (I-F)E1Φ^(U) = (I-F)E1FW = 0 .

As Ϊ7 is unitary, this shows that (I—F)E1 = 0, or £Ί ̂  F. Accordingly,
F = E(K, φπ).

COROLLARY 1. Every intermediate subalgebra & of G(x) Szf is gener-
ated by ^(G 0 J^f Stf) Π &.

PROOF. Let ^ denote the von Neumann subalgebra of & gener-
ated by f/(G® Jzf, J*f) ΓΊ &. Then the above lemma shows that, for
each U in ^ ( G (g) Ĵ < J ^ ) , Φ^(?7) = FWe^. As G® J ^ is generated
by <%f(G®.sf, JV), it follows that Φ&(A) e ̂  for all A e G ® J ^ Hence

COROLLARY 2. ^^ is freely acting on Jzf, if and only if Φ^(U) = 0.

PROOF. Apply the lemma to the case & = JZf and note that K(Ssf)
is the set of all inner automorphisms.

THEOREM 2. (Cf. [8; Proposition 6.1]). Let Jtf be a finite von Neu-
mann algebra with a faithful normal trace τ, and G a countable discrete
group of automorphisms of S*f acting freely and preserving τ invariant.
Then the lattice of all full subgroups K of [G] and the lattice of all
intermediate von Neumann subalgebras & of G (x) J ^ are isomorphic by
associating with each full subgroup K the intermediate subalgebra

and with each intermediate subalgebra & the full group

Ue ^(G (x) Sf, j * 0 n

PROOF. The subalgebra &{K{0)) associated with the full group
is the original &. In fact, by Corollary 1 of Lemma 8,

On the other hand, by the same discussion as the proof of [8; Pro-
position 6.1], it follows that the full group K(&{K)) associated with
the intermediate subalgebra &{K) is the original K.
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The one-to-one correspondence thus established between two lattices
evidently preserves the order and consequently it is the lattice isomorphism.

4. Galois correspondence. In this section, we transfer the Dye cor-
respondence stated in the preceding section to the commutant, then it
gives the Galois correspondence under appropriate conditions.

Let Stf be a von Neumann algebra and G a countable group of
automorphisms acting freely on j&l We assume that S/ is represented
on a Hubert space £ίf and each g e G is represented by a unitary oper-
ator Ug on £$f\ g(A) = UgAU* for AeSif. The existence of such a re-
presentation of an arbitrary Ssf is known by M. Henle [9; Lemma 1.4].

LEMMA 9. (Cf. [12; Lemma 1]). If a unitary operator U on Sίf in-
duces a freely acting automorphism of Jϊf, then U induces also a freely
acting automorphism of

PROOF (by Henle). If A' e j&", then for 4

(UA'U*)A = UA'{U*AU)U* = Z7(C7*AC/)A'£7* = A{UA' 17*) ,

showing that TJA! £7* e $ff. Thus U induces an automorphism of s/\ To
show the free action, suppose that A! e <$/' satisfies

A'B' = {UB'U*)A' for all ΰ'Gj/' .

Then (U*A')B' = B'(U*A') or U*A'essf. So, for Ce Sf

(C7*A')C = Z7*CA' = (U*CU)U*A' .

Since ?7* as well as U induces a freely acting automorphism of Ssf,
C7*A' - 0, hence A! = 0.

According to this lemma, we may consider G as a group of auto-
morphisms acting freely on the commutant £/'. Thus, if a in [G] has
the form

a(A) = ΣP9g(VAV*) = ΣP9U9VAV*Ug* for Ae
9

where Ve JK> oc induces an automorphism on £&' such that

(6) a(A') = ̂ P9UgVA!F*U* = Σ Pag(A') for A' e

Let us denote by [G]& the set of all automorphisms of j ^ ' having the
form (6). In this representation, inner automorphisms contained in the
representation of elements in [G] disappear, hence [G]^ coincides exactly
with the collection of all automorphisms of j&' given as a full group in
the sense of Dye. Hence [G]^ is a group. We say [G]^ the centrally full
group or, in short, the %T-full group determined by G. It is somewhat
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interesting that the intact concept of full group introduced for abelian
algebras has a utility for non-abelian jy", while we need the generaliza-
tion for Ssf. This is the reason why M. Henle could get through his
Galois theory without the generalized concept of full group.

In the following, we shall exchange Ssf and Ssff with each other in
the above discussion. Let Sf be a von Neumann algebra on a Hubert
space £{f. We assume that the commutant j y ' is finite and has a faithful
normal G-invariant trace. We construct the cross product G (x) jy" on
G (x) ̂ f. Then

LEMMA 10. Let &' be an intermediate subalgebra of G® Sz?' and &
be its commutant on G® <^ Then & is the fixed subalgebra of (1 (x) jy")'
under the %-full subgroup K^(^)) that is,

& = [A e (1 (x) j#")' I a(A) = A for all a e K(&?')\ .

PROOF. Every B in & trivially satisfies UBU* = B for each Ue
<^(G (x) Jtf", J*") Π B'. Hence a(B) = B for each a e K(&'). Conversely,
let C in (l(g)j*")' satisfy α(C) = C for each α e ί Γ ^ O * then UCU* = C
for each [7e ^(G(g)eX J^') Π ^ ' . Since ^(G(x)^/ ' , J^") Π &' generates
^'(Corollary to Lemma 8), it follows C e ^ .

By Theorem 2, the Dye correspondence gives the lattice isomorphism
between intermediate subalgebras of G (x) j&' and full subgroups of [G].
Naturally, by taking commutants, we get the dual isomorphism between
the lattice of all intermediate subalgebra &f between G (x) J^f and
1® <S/' and that of all von Neumann subalgebras & between
and (1 (x) Ssf')r. On the other hand, by the correspondence

stated above, the lattice of full subgroups of [G] for l(x) jy" is isomorphic
to that of T-full subgroups of [G]^ for (l(x)J^')'. Hence we know that
the lattice of all von Neumann subalgebras & between (1 (g) jy ' ) ' and
(G ® j&Ύ is dually isomorphic to that of ^Γ-full subgroups of [G]*.
Lemma 10 gives this correspondence concretely as .SΓ-full subgroup K+-+
fixed algebra &. Thus we get the following theorem.

THEOREM 3. Let jzf be a von Neumann algebra on Sίf having the
finite commutant Stf" with a faithful normal trace τ, and G a countable
group of automorphisms acting freely on <sf. Suppose that each g in G
is represented by a unitary operator Ug on £ίf and preserves τ invariant.
Then, the lattice of all %-full subgroups of [G]%> for (1 (x) j&')r and that
of all intermediate von Neumann subalgebras between (1 (x) j&")' and
(G (x) S/')' are dually isomorphic under correspondence which associate with
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each ^-full subgroup K the intermediate subalgebra & invariant under
K in element-wise.

We regard the correspondence asserted in Theorem 3 as a prototype
of Galois correspondence. Bearing this in mind, we give the definition of
Galois extension as follows.

DEFINITION 4. Let G be a countable group of automorphisms acting
freely on sf and & the fixed subalgebra of szf under G. Then J ^ is
a Galois extension of & with Galois group G, if there exists a repre-
sentation of j ^ on some Hubert space J3Γ satisfying the following con-
ditions:

( i ) G has a unitary representation Ug on SΓ such that g(A) — UgA U*
for Aesx?

(ii) j ^ ' is finite and has a faithful normal trace τ invariant under
G.

(iii) &r is algebraically isomorphic with the cross product G (x) s*ff

by an isomorphic mapping such that sf* <-+ 1 (x) £/' and Ug <-> g (x) I.

Then we get the Fundamental Theorem of Galois Theory in the fol-
lowing form.

THEOREM 4. // j& is a Galois extension of & with Galois group
G, then the lattice of all intermediate von Neumann subalgebras between
jzf and έ%? and that of all ^-full subgroups of [G]r are dually isomor-
phic under the Galois correspondence which associate with each ^-full
subgroup K^ the intermediate subalgebra ^ invariant under K% in
element-wise.

PROOF. Let ,5Γ be the Hubert space on which Ssf is represented as
shown in the definition of Galois extension. Then by Theorem 2 every
intermediate subalgebra & of G (x) J ^ ' is generated by

^ (G (x) s/\ jy') Π 3f.

By the definition of Galois extension, &' is algebraically isomorphic to
G (x) J^f. We denote the isomorphism by θ: Θ(G (x) <$/') = &f* Clearly
every intermediate von Neumann subalgebra ^ ' between &' and s/' is
the isomorphic image θ(&r) of an intermediate subalgebra £& of G (g) j y ' .
The set of automorphisms a of £/* such that a(A!) = θ (U)A'Θ(U*),
(Ue^(G® Sf\ J&")) is the full group [G] for j&' on SίΓ and the set
of automorphisms a of s*r such that a(A) = Θ(U)AΘ(U*) is the
group [G]r for Stf on ^T. Put
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K={a\ a{A') = Θ(U)A'Θ(U*), Ue %S(G (x) j#", s/') Π

and

Kx = {a\ a(A) = Θ(U)AΘ(U*)9 Ue %S(G (x) j * " , j#") Π

Then IT is the full subgroup of [G] corresponding to <£" = 0(^) and the
commutant ^ of (gί7' is the algebra of all elements invariant under Kx

since <£" = ^ P [ ^ " ( ^ ' , J^') Π ̂ ' ] Thus we get the correspondence be-
tween ^Γ-full subgroups iΓ^ of [G]^ and fixed subalgebras ^ of J ^ The
dual isomorphism of this correspondence is clear.

Now, we give an example of Galois extension. Let Γ be a finite von
Neumann algebra acting standardly on ^g^([6; I. 5.5]), and G be a counta-
bly infinite group of automorphisms acting freely on Γ and preserving a
faithful normal trace invariant. Construct the cross product G (x) Γf on
the Hubert space JT" = G (x) ̂  then 1 (x) Γ' and hence G®Γ are finite.
Each g in G is represented by the unitary operator # (x) I. We take j^f =
(1 (x) Γ'Y and J ^ ' = 1 (x) Γ". Then G can be considered as a group of
automorphisms of j^(resp. J^') by the automorphisms induced by g (x) I
(geG) on jy(resp. j#") Let ^ = j ^ σ be the fixed subalgebra of szf
under this group G. Clearly s/f is isomorphic to Γ", hence it is finite
and has a trace invariant under G. We may construct G (x) j y ' =
G (x) (1 (g) JΓ') on G (x) _%7 Since the cross product is independent of the
Hubert space used to construct it, this cross product is algebraically iso-
morphic with έ%' = G (x) Γ\ Thus j^f satisfies all of the three conditions
of Galois extension, j^f is the Galois extension of & with Galois group
G. In addition, s^ — (1 (x) Γ')' = iΌo (x) Γ is a properly infinite von
Neumann algebra. Thus we get an example of properly infinite Galois
extension.

Of course, if G is finite in above, jzf gives an example of finite
algebra with a finite Galois group. For finite Galois group, we get the
following in general.

LEMMA 11. If G is a finite group acting freely on a semifinite von
Neumann algebra <s/, then J^ is the Galois extension of & = j%fG with
the finite Galois group G.

PROOF. (Essentially due to [9] and [13]). There exists such a repre-
sentation of j^f that j y ' is finite. Then sff has an invariant trace,
since G is finite. Using the Hubert space Sίf of this representation,
construct the cross product G®s^ on G (x) £ίf. Then (1 (x) j&)' = Im (x) s/'
is finite where m = order(G) and each automorphism g in G is represented
by the unitary operator g (x) I on G (x) §ίf. Therefore, we may assume
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that s^ is represented on a Hubert space 3Γ in such a way that j ^ ' is
finite and the group G is freely acting on both j ^ and j&' (Lemma 9).
Construct the cross product G (x) S$fr on G 0 ^>Γ. We may decompose 3ίί
into a direct sum [j&'ζJ © [J^'f2] Θ of orthogonal subspaces on each
of which j y ' has a generating vector & where ξ{ are invariant under [7",
(geG). In fact, for non-zero vector η^Sίf, fi = Σ/*e<?ϊΛfi is invariant
under Ug. Take an )?2 e [ jy ' f j 1 , then

<A'£lf U9r)ϊ

Hence £2 = ΣΛZΛ^G ISsf'ζ^ is invariant under Σ7ff and [J^'fj and
are mutually orthogonal subspaces of <_̂C Continuing this process, we get
the desired decomposition of J%Γ. The vectors & may be considered as
normalizing vectors. Now, take

C* = ~ Σ α ® ίi e G (x) [ J^'f J ,
1/ m«

and define an operator F> J^'ί* ~> (1 ® ^%* by

Vi(A'f*) = (l(8)A')C<.

Then

|| (1 (x) A')ζί I I ^ = I - 4 - Σ (1 ® A')(α (x)

—

I2 —
m a m

so F{ may be extended to an isometry of [jy'fj onto ^£i = [(1 (x)
in G(g) ̂ Γ Put [7= Σ i ^ i Then [7 is an isometry of J2T to

(g (X) I)(l (x) A')ζ4 = (g (8) / ) ( 4 - Σ o

Σ αff-1 (x) α(A')f, = - 4 - Σ
« 1/ m »

= (1 (8) ur(A'))ζ4 e (1 (g)
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In other words g 0 I maps (1 (x) s*?f) ζ; into itself for all i. Hence it
maps ^£ into itself, so the projection P: G®SΓ —*^£ commutes with
gig) I. Therefore Pe(G® J^ ' ) ' . By the definition of U, the mapping
T-+UTU* of j ^ p r ) onto <2f(^f) takes j ^ ' onto P{l®s*?'). In
addition

UUgU*(l® A'Kt = UUg(A'ξi) =

= (l(g)g(A')Ki

for all i, so that U induces a spatial isomorphism of ^ ' onto

Therefore, if we prove C(P) = /, then &' ~G®s^f by [6; I. 2. Pro-
position 2].

To show C(P) = I, notice that the center of 1 0 s*fr is l(x) JΓ. Hence,
by [6; I. 1. Corollaire 2 de Proposition 7], it suffices to show that

Σ θ
i

Σ
i

Let Pg be the projection from G(x) 3ίΓ to g 0) 3ZI Then, for any

P,(l (x) Z)(Σ a®ξa) = Pa(Σ α ® α(Z)ξo) = g ® ̂ (Z)^
α α

and
= g® g(Z)ξg.

It follows Pg e (1 (g) ^ - ) ' . Hence,

9- (8) f« = i/mP,ζ4 e (1 (8) . r ) ' ζ<

for any g eG and ΐ = 1, 2, , and hence

g (8) A'f, = (1 (8> iΓHAOXff <8> £«)

As [jy'ί<]i=1.2>... generate ^?7 it follows that

Σ θ [(1 ®
i
i

completing the proof.
For finite von Neumann algebras, we get conversely

LEMMA 12. Let jzf be α finite von Neumann algebra and G be freely
acting on Jϊf. Then, if j^f is a Galois extension of & = JϊfG, G is a
finite group.

PROOF. We owe this proof essentially to Henle. By assumption, szf
is represented on some Hubert space 5ίΓ in such a way that j y ' is finite
and &' = G (x) j&'. Let θ be the isomorphic mapping of G (x) j&' onto
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&\ Fix a non-zero vector ΎJ in J2Γ* and define a normal positive linear
functional ω on G ® £/' by

ω(T) = <β{T)η, ηy^ (Te G

Suppose that j y ' is represented on another Hubert space Sff with sepa-
rating and generating vector ξ. Then G 0 j&' on G 0 Jg^ has a sepa-
rating and generating vector 1 0 ξ By [6; III. 1. Theoreme 4], there
exists a vector ζ e G 0 Jg^ such that

ω(T) = <Tζ, ζ>**r for Γ e G

Define an operator Ϊ7: (G (x) J^')C —* «^'^ by

C7(ΓQ = ί(Γ)37 for Γ e G

The computation

= <θ{T*T)η, V>^ = ω(Γ*Γ)

shows that U is an isometry, hence U may be extended to a unitary
operator from ^ = [(G(g) J*")C] in G ® ^ onto ^ T = [^'^] in ^ Γ
Let P be the projection of G ® Sίf onto ^ and Q be the one of Js?~
onto ^K As ^ ^ is invariant under G®Sf\ Pe (G(g> jy ' ) ' Similarly
Qe&. Then the operator C7 induces a spatial isomorphism of ((?(x) J&>')\^t

onto ^ ' U Furthermore, for TeG®JV', Se&',

(UTU*)(Sy) - UT(θ~ι(SK) = i7(TO-1(S)ζ) = θ(T)(Sη)

and ^ maps 1 (§) J ^ ' onto jy ' , therefore Z7 induces a spatial isomorphism
of ( 1 0 j&')\^r onto J ^ Ί ^ . Then Ϊ7 also induces a spatial isomorphism

(l (x) j ^ ' ) ' P - ((i ® J*") U)' ̂ —• ( J ^ ' U) ' = ^ U .

Let Pf

g be the projection of G® <%̂  onto ^ ® ^ ί As g®έ%f is invariant
under 1 0 sf', P'g e (1 0 j * " ) ' Therefore P, - UPPgPU* e J ^ U

= ^ P ^ / = (U(g ®l)U*)UPP;PU*(U(g (g)l)*U*)

= U((g 0 l)PPlP(g 0 1)*) ί7* = ETPfo 0 l)P/(flr 0 1)

and

Σ P, = Σ UPP'gPU* = C7P(Σ P;)P?7* -
seβ g g

Let δ = τ(PJ > 0, where τ is the canonical trace on j ^ | ^ . Then for
geG

τ(Pg) = τ ^
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SO

Σ δ = Σ τ(P.) = τ(Σ P.) = τ(UPU*) < ~ ,
geG g g

proving that G is finite.

By these two lemmas, it becomes possible to give a clear-cut charac-
terization of the Galois group for finite von Neumann algebras.

THEOREM 5. (Cf. [13; Theorem 3]). If szf is a finite von Neumann
algebra, then a group G acting freely on Ssf is Galois if and only if it
is finite.

Hence if szf has a countably infinite Galois group, j ^ is necessarily
properly infinite. We gave already such an example of Galois extension.

5. Relation to Henle's Galois theory. In [9] M. Henle employed a
different definition of Galois extension from ours. Given a von Neumann
algebra j y and a countable group of automorphisms acting freely on Ssf,
he defines j y to be a Galois extension of & — s/G with Galois group
G, if there exist mutually orthogonal projections Pg e Ssf{g e G) such that
'ΣjgPg = I and g(Ph) — Phg-i(g, he G). His purpose is to settle a condition
to ensure &' = G (x) j&'. Indeed, his definition of Galois extension gives
a sufficient condition for this isomorphism just as it is, ([9; Theorem 2.1]).
On the other hand, we take this isomorphism in the definition of Galois
extension as one of the conditions. Besides we assume the finiteness of
j y \ Hence purely infinite algebras are excluded completely in our Galois
theory, but Henle does not place such a restriction on j^f. However,
owing to the finiteness of j y ' we can use freely the natural expectation
on arbitrary subalgebras of G (x) J^ ' , and so we get the Galois cor-
respondence between all intermediate subalgebras of j%? and all ^-full
subgroups of [G]^. On the contrary, Henle's theory insists only the
Galois correspondence between subgroups of G and their corresponding
intermediate subalgebras of s/. Hence in our case, Henle's type of cor-
respondence remains true without the finiteness of j ^ ' To show this
we need.

LEMMA 13. Let G be freely acting on <$/. Then the lattice of all
subgroup K of G is imbedded in the lattice of all full subgroups of [G]
by the mapping K—*[K].

PROOF. If Kt and K2 are different subgroups of G, then [JSΓJ Φ [K2]
In fact, we may assume that there exists an element g1 in Kx and not
in K2. It suffices to show that this gι is not in [K2]. Suppose contrary,
then since
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sup F(gl9 g2) = I,

there exists such a g2 in if2 that JP(#I, #2) Φ 0. This contradicts the free
action of G. Therefore, all subgroups of G are mapped into the lattice
of all full subgroups of [G] in one-to-one way by the above mapping.

We show that this mapping conserves the lattice operations.

[K, V K2] D [ifj V [K2]

is clear. Conversely, by [ifj z> ifx and [K2] z> if2, [ifj V [K2] ^ K,V K2

and hence [J5ΓJ V [if2] => [#i V K2]. Next, let α e [ifj Λ [JSΓJ, then α has
representations

α(A) = Σ PkHUAU*)
heK1

= Σ PMVAV*)
keK2

for all AeSsf. If P Λ 9̂  0, PhPkh(UAU*) = PhPkk(VAV*). Then, Λ =
keKiAKs on PftP*. In fact, if not so, substituting U*AU for .A, it
follows

PkPkk~ιh(A) = PkPkVU*AUV*

contrary to the free action of k^h Φ 1. Therefore a has a representation

a(A)= Σ
KK

for all AejzK Hence α e [iΓx Λ K2]. Therefore [K, A K2] D [K,] A [K2\.
The converse inclusion is clear. Thus the proof is completed.

Now we assume a von Neumann algebra jzf and a group G of freely
acting automorphisms of s$? satisfy the conditions of Galois extension but
the finiteness of j ^ ' . Hence &' ~ G (x) S^f by the condition (iii) of
Galois extension. But, in this case, the one-to-one correspondence between
intermediate subalgebras of G® j y ' and full subgroups of [G] is not
certain since we cannot apply Theorem 3. However, let K be a subgroup
of G and iΓ(x) j y ' be the cross product of if and j ^ ' , which is a sub-
algebra of G® jy ' . Let [if] be the full subgroup of [G] determined by
the subgroup K corresponding to K®s*f'. Then by Lemma 13, the
correspondence [K] >̂ K (x) j ^ ' gives the one-to-one correspondence between
subgroups K of G and subfamily of intermediate subalgebras if (x) j ^ ' of
G (x) Jzfr without the finiteness of j ^ \ In fact, by the notation in § 3,
[if] is the set of automorphism of 1 0 j y ' given by

Ue ^i^(G (x) j * " ) Π (if (x) J O .

On the other hand, since if(x)/ and 1 (x) JK' are contained in [if] and
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generates K®j*ff, & [U\φσe[K]] = JBΓ(g) j y \ Then this correspond-
ence inherites to the correspondence between ^Γ-full subgroups [K]r of
[G]sr and their fixed algebras of Ssf by the same manner investigated in
the preceding section. Furthermore, since the fixed algebra for the %-
full subgroup \K\X coincides with that of the subgroup K of G acting
on jy; we get the one-to-one correspondence between the family of sub-
groups of G and their fixed subalgebras of sf. This is nothing but the
correspondence given by M. Henle.

The remaining question is whether there exist full subgroups in [G]
not determined by a subgroup of G. This is answered by a theorem of
measure preserving automorphisms. H. A. Dye has proved that any
singly-generated infinite group G of measure preserving automorphisms
of a measure algebra is approximately finite, ([7; Theorem 1]). Since every
non-trivial subgroup of G is infinite, it is of type II in the sense of Dye.
But, by the approximate finiteness of G, [G] contains subgroups K of
type I. This implies that the full subgroup [K] determined by K is not
determined by a subgroup of G.

REMARK. After the preparation of the present paper, we knew that
D. Bures discussed the same notion with our local innerness in his recent
work: Abelian subalgebras of von Neumann algebras, Memoirs of the
Amer. Math. Soc, No 110 (1971).
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