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Excision theorems on fibration and cofibration have been proved by
P. J. Hilton [4]. The same notion is studied by T. Ganea [3] and Y.
Nomura [8].

Let € be a class of finite abelian groups. The object of this paper
is to show mod € excision theorems on fibration and cofibration in the
generalized homotopy theory (Theorem 1 and Theorem 2). And we obtain

as a special case the general mod € suspension theorem shown by B. S.
Brown [1].

1. Preliminaries. Throughout this paper, all spaces considered are
assumed to have the homotopy type of CW-complexes with base-points
denoted by =*; all maps and homotopies are assumed to preserve base-
points.

PX is the space of paths in X emanating from =, and QX is the
loop space. If f: X— Y is any map, C, is the space obtained by attach-
ing to Y the reduced cone over X by means of f. X is embedded in
CX by ©— (x,1), and X is the reduced suspension.

By applying the mapping track functor, any map f: X— Y is con-
verted into a homotopy equivalent fibre map p: E— Y, yielding the
homotopy commutative diagram

B-Lx-l.y

|k
% P

E,—FE-—5Y,

where E = {(z, M) e X x Y'|f(@) = ML)}, p,\) = M0), E, = {(, \) e X x
PY|f(x) = M1)}, 7 = the inclusion map, C(z, \) ==, h(x) = (x,),) and
No(t) = f(x) for tel. Then the sequence E}Efa X ER Y is called the
extended fibration.

Dually, by applying the mapping cylinder functor, any map f is
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converted into a homotopy equivalent cofibre map ¢q: X — M, yielding the
homotopy commutative diagram

x-L.u .,

Lo

where M, = the mapping cylinder of f, q(x) = (x, 0), 7:(y) =y, k(x,t) =
Sfx) for (x,t)e X x I and k(y) =y for ye Y. Then the sequence X —

2, ¢, is called the extended cofibration.

Throughout this paper, we assume that all groups considered are
finitely generated, € denotes a Serre’s class of finite abelian groups and
that € is defined as in [1; p. 684]. Let G be a (finitely generated)
abelian group. Then G; means the largest subgroup of G which is in €.

A sequence A—f»B—geD of abelian groups and homomorphisms is said to
be (mod €) exact if and only if gf(A)e € and ¢g7(Dy)/f(4)e€. A homo-
morphism f: A— B is said to be (mod € monomorphic if and only if
0—A— B is (mod €) exact and to be (mod €) epimorphic if and only if
A — B—0 is (mod €) exact.

LEemMA 1.1. Let ALB—&D be a sequence of abelian groups and

homomorphisms such that gf(A) € €. Then the condition g~ (D,)/f(A) €€ is
equivalent to the condition g~ (gf(4))/f(4) ¢ €.

Proor. It is obvious that the condition ¢g~*(D;)/f(A) e € means the
condition ¢g7*(gf(A))/f(A) e €. Since

DA - 97(D) ~ DiNgB)

9 (gf(A)If(A) — g7af(4) —  af(A)

it follows immediately that the condition g'(gf(A4))/f(A) € € means the
condition g7'(D;)/f(A) € €.

COROLLARY 1.2. A homomorphism f: A — B is (mod €) monomorphic
if and only if Kernel f is in € and is (mod €) epimorphic if and only
if Cokernel f is in G,

For the rest, we shall use notations due to Hilton [5].

2. The mod G excision theorem on fibration. Let F— X £ Y be
a fibration. We may consider, by [3; Proposition 1.6], the homotopy
commutative diagram
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%

F x-2, 0 -253F
|l
x-L.y ¢,
in which r(z) = f(x), r(y, t) = = for xe X, (y, t) e CF, s(y, t) = (i(y),1 —t)
for (y,t)e JF and o is the identification map.

ProrosITION 2.1 [cf. 3; Proposition 2.1]. Let FLXx EX Y be a fibra-
tion in which X and Y are 1-connected and F is strongly simple (see [10; p.
510]). If 7 (Y)e @ for g < m and w(F)e€ for q < m, then the induced
homomorphisms

1y H(C)) — H(Y) and s;: H,(ZF)— Hy(Cy)

are (mod €) monomorphic for ¢ < m + n and are (mod €) epimorphic for
g=m-+ n.

PRrROOF. According to [10; 9.6. 18], loop space 2Y is strongly simple.
Since 7 (F)e€ for ¢ < n and 7, (Y)=7,(2Y)e€ for g<m—1, by
using [10; 9.6. Theorem 20], we have H(F')e€ for g < n and H, (2Y)e
€ for g< m — 1. Let FxQY denote the join of F' and QY. Since

H(F:0Y)= 3 H(F)QHQY)® 3, Tor(HF), H(QY))

and all groups considered are finitely generated, it follows that
H, . (F+x2Y)e@ for t <m + n — 1. Hence we have 7, (F+x2Y)e€ for

t<m+n—1. Now we consider the “fibration” F+QV L C, %Y (see
[3; p. 298]). Then, by using the exact sequence
— Tei(C) = T ¥) — T (F+2Y) =5 7,(C) —

it follows that C; is 1l-connected and r,:7,(C;) — 7, (Y) is (mod €) mono-
morphic for ¢ < m + n and is (mod €) epimorphic for ¢ < m + n. Hence,
by the (mod €) Whitehead theorem [1; Theorem 4], 7,: H,(C;) — H(Y) is
(mod €) monomorphic for ¢ < m + » and is (mod €) epimorphic for
gs=m+ n.

Next, we shall prove that s, has the same property. According to
[3; Proposition 1.6], there exists a homotopy equivalence (:C,— C, in
the homotopy commutative diagram

C. -4 Y—C,

L, bk

8

ZF‘—‘—"Cf—'—>C,.
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Then we have H, (r) = H,(C,) = H,(C,) = H,s). Since H,(r)e€ for
g<m+m, sois Hys). That is, s;: H(XF)— H,(C;) is (mod €) mono-
morphic for ¢ < m + n and is (mod €) epimorphic for ¢ < m + n.

For a given abelian group G, let K'(G,n) be a polyhedron with
abelian fundamental group such that H(K'(G,n)) =0 for ¢+ n and
H,(K'(G,n) =G. Then 3K'(G,n—1) is a K'(G,n). We define the
nth homotopy group of B with coefficient in G by

7.(G; By = n(XK'(G, n — 1), B) (n=2).

LEMMA 2.2. Let G be a (finitely generated) abelian group. If
7(B)e€ for gq=mn, n+1 (n=2), then 7,G; B ec€C (r=3) and
7(G; B) e €.

PrOOF. Let G = F/R be a representation of G as quotient of a
finitely generated and free abelian group F' by the subgroup R. Then
we have an exact sequence

0 — Hom (G, n(B)) — Hom (F, =,(B)) — Hom (R, 7,(B)) .

Since 7, (B) e € for ¢ = n, n + 1 (n = 2), Hom (F, 7(B)) and Hom (R, 7,(B))
are in €. Hence Hom (G, 7,(B)) and Ext (G, 7,,.,(B)) are also in €. By
the universal coefficient theorem for homotopy groups [5], the sequence

0 — Ext (G, 7,4.(B)) — 7.(G; B) — Hom (G, 7,(B)) — 0

is exact. Therefore, it follows immediately that 7,(G; B)e € (r = 3) and
7,(G; B) € €.

LemMmA 2.3 [1; Lemma 8]. If GeG, then 7,(G; B)e€ for n =3 and
7(G; B) € €.

LEMMA 2.4. Let f: X— Y be a map with l-connected spaces X and
Y, and let B be a space such that mw,(B) = 0 for all sufficiently large q.
Suppose that f,: H(X)— H(Y) is (mod €) monomorphic for ¢ < N and
is (mod €) epimorphic for ¢ < N. Then f*:7(Y, 2"B) — n(X, 2"B) (r = 2)
18 (mod €) monomorphic if w(B)ec€ for q > N + r and ts (mod €) epi-
morphic if n(B)cC for q = N + r (when r = 1, Kernel f*c€ if n(B) €
for ¢ > N+ 1).

Proor. We can consider f to be a cofibration with the cofibre C; =
F. Then F is 1-connected and H,(F)ec€ for ¢ < N. Hence we consider
the Eckmann-Hilton decomposition of F (see [5]):
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s — K'(H,(F), s)

F, = K'(H(F), 2) .

Since H(F)e € for ¢ < N, it follows from Lemma 2.3 that =(K'(H,(F), s),
Q7B) =7, (H(F); B e€ for 2<s< N and r= 2. By Lemma 2.2,
we have n(K'(H(F'),s), 27'B)c@€ for s N+ 1 if 7 (B)ec€ for =N+ r.
In the diagram above, we shall prove by induction on s that #(F, 2'B) e
€. It holds certainly that =(F,, 'B) = n(K'(H,(F), 2), 2 'B)e€cC.
Assume that n(F,_, 27'B)e€. In the exact sequence

o(K'(H/F), s), 2"*B) — n(F,, 2"'B) — n(F,_,, 2'B) ,

the two extreme groups are in €. Thus zn(F,, "'B)e€. Since 7,(B) =0
for all sufficiently large ¢, only a finite number of non-trivial extentions
are required for building up to #(F,2"'B). Hence n(F,2'B)e€ if
7,(B)e€ for = N + r.

We shall consider the commutative diagram

3
2(3'Y, 0B) —=1, r(>2x, 0By

F .k

(Y, °B) —I—— z(X, 2'B)
and the exact sequence
2(Z*F, 0"B) — n(5*Y, 0B) — =", 1(3*X, 0"B) — n(SF, O"B) .
Then Cokernel (2?f)* is in € and is an abelian group, hence it is in €.
By the diagram above, Cokernel f* is in €, that is, f* is (mod €) epi-
morphic. If 7, (B)e € for ¢ > N + r, by the same way, we have that f* is
(mod €) monomorphic (r = 2) and Kernel f* is in € (» = 1).

THEOREM 1. Let F-5 XL Y be a fibration in which X and Y are
l-connected and F is strongly simple, and let B be a space such that
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T (B) = 0 for all sufficiently large q. Suppose that 7 (Y)e€ for g < m
and w(F)e€ for ¢ < n. Then the excision homomorphisms

&: m(f, 2"B) — w,(F, 2"B) and &,: n(Y, 2'B) —> 7,(1, 2"B) (r = 2)
are (mod €) monomorphic if w(B)e€ for ¢ > r + m + n and are (mod €)
epimorphic if n(B)e€ for q=r + m+ n (when r =1, Kernel ¢;eC,
1=1,2, if 7(B)eC€ for ¢ > m+ n + 1).

Proor. We may consider two commutative squares

n.(f, ’B) —% x,(F, 2'B) 2(Y, 2"B) -2 (i, 2°B)
%Te; o &'Im and H » _z_Ie,.
2(C,, °B) = n(3F, @'B) (Y, 2"'B) —— n(C,, 2'B)

in which ¢; and ¢; are excision isomorphisms induced by extended cofibra-
tions and & is the natural equivalence in [4]. By Proposition 2.1,
s H(SF)— H,/(C;) and 7, H(C;) — H/(Y) are (mod €) monomorphic for
g < m+ n and are (mod €) epimorphic for ¢ < m + n. Hence, by using
Lemma 2.4, we obtain the desired results.

COROLLARY 2.5 (The general (mod €) loop theorem). Let Y be 1-
connected and 7w (Y)e€ for q< m, and let B be a space such that
n(B) = 0 for all sufficiently large q. Then the loop homomorphism
Q2: (Y, Q’B) —»n(QY, 27"'B) ts (mod €) monomorphic if w(B)eC& for
q>7r+ 2m — 1 and is (mod €) epimorphic if n(B)eC€ forgq=r+ 2m —1
(when r = 1, Kernel 2¢€ if n(B)e€ for q > 2m).

PROOF. Consider the standard fibration QY — PY—J: Y. Since
T,(RY) =7, (Y)e€ for q< m— 1, &:7(Y, 2"B) — 7,(t, 2'B) is (mod €)
monomorphic if 7,(B)e® for ¢ > r + 2m — 1 and is (mod €) epimorphic
if 7,(B)e® for ¢ = r + 2m — 1. By using the commutative diagram

(Y, B) =2 2(QY, 2""B)

e

(Y, 2'B) — m,(i, 2'B) ,
we have that ¢, and 2 are equivalent, which proves the Corollary 2.5.

3. The mod € excision theorem on cofibration. We shall consider
the dual cases stated in Section 2. Let K(G, n) be Eilenberg-MacLane
space whose ith homotopy group vanishes for ¢ # n and whose nth homo-

topy group is G.
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LEMMA 3.1 [1; Lemma 11]). If Ge€ and A 1is any space, then
(4, K(G,n)e€ (n = 1).

PRrOPOSITION 3.2, Let f: X— Y be a map with 1l-connected spaces X
and Y, and let A be a space such that H,(A) =0 for all sufficiently
large q. Suppose that f.: 7 (X)— 7,(Y) is (mod €) monomorphic for
¢ < N and is (mod €) epimorphic for ¢ < N. Then f,:7w(Z"A, X)—
n(Z7A, Y) (r=2) is (mod €) monomorphic if H'(A)e€ for q=N—1r
and is (mod €) epimorphic if H(A)e€ for q > N—1r (when r =1,
Kernel f,eC€ if H(A)e€ for ¢q= N — 1).

Proor. We take f to be a fibration with fibre FF = E;. Then F is

0-connected and 7, (F)e@® for ¢ < N — 1. Hence we may consider the
Postonikov system for F:

F
l

l
Fs — K(ﬂ',(F), S)

l
Fa—-l

!
|

F, = K(z,(F), 1) .

Since 7, (F)e€ for ¢ < N — 1, it follows from Lemma 3.1 that z(3"'4,
K(m (F),s) €@ for 1<s<N—1and r =2. The other hand, we have
n(ZA, K(n(F), s) = H*(3"'A; n,(F)) = H " (A; 7,(F)) = H (A ®
7 (F) @ Tor (H* "+*(A), 7,(F)) because all groups considered are finitely
generated. Hence it follows that n(2'A, K(z,(F'),s)) €€ for s= N if
HY(A)e@G for ¢ > N — r. Assume that n(Z4, F,_)c€ (s —1=1). In
the exact sequence (2" ‘A, K(n,(F),s) —» (XA, F,)—>n(ZA, F,_),
two extreme groups are in € Thus n(Z"4, F,) €. Since H,(4) =0
for all sufficiently large ¢, it follows from the universal coefficient
theorem for cohomology groups that w(X"'4, F,) = (3" A, F,,,) for all
sufficiently large s. Hence we have m(3'A, F)c€. By the exact
sequence

T(ZA, OF) — n(34, X) — D (34, 2Y)
(34, OF)
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we have Cokernel (2%f),€@, and hence Cokernel f,e@. This implies
that f, is (mod €) epimorphic. If H‘(4)e€ for ¢ = N — r, by the same
way, we obtain that f, is (mod €) monomorphic (r = 2) and Kernel f, is
in € (r=1).

Let X be a space with two distinguished subspaces A and B such
that C = AN B> . Consider the diagram

clLa
(3-3) oo
B . x
where each map is inclusion.
ProPOSITION 3.4 [cf. 7; Theorem 1.1]. In (3.3), suppose that
(1) X, A, B, and C are l-connected,
(2) m(1) €€ for g < m,
(3) m(j) €€ for ¢ < m, and
(4) (G, Jo)s: Hy(3)— H,(1,) s (mod €) monomorphic for g<m+n—2
and is (mod €) epimorphic for ¢ < m + n — 2.
Then (3., J2)«: T, (4) — 7, (1) is (mod €) monomorphic for g < m—+n—2 and
is (mod €) epimorphic for g < m + n — 2.

COROLLARY 3.5. In the following commutative diagram

x Ly

oo

cx-Lsc¢,;
where each map is the inclusion, suppose that X and Y are l-connected
and that w(X)e€ for g<m and 7 (f)e€ for g <n. Then (f,J):
T (¢) — 7, (7) s (mod €) monomorphic for g < m+ n —1 and is (mod €)
epimorphic for ¢ < m + n — 1.

ProoF. Consider the following commutative diagram

X—5C0X—3X

bbb
Y — C, — 3X.
Since ¢ and ¢ are cofibrations, it follows that H,(7) = H,(f) and H,(i) =

H,() for all g. Hence, by the assumption and the generalized relative
Hurewicz isomorphism theorem [10], we have that =,(j)ec€ for ¢ < n
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and 7, (i) €€ for ¢ < m + 1. Furthermore, one can easily verify that C; is
l-connected. Thus, according to Proposition 3.4, the required results hold.

COROLLARY 3.6. Let XL Y2 F be an inclusion cofibration with
cofibre F and let X and Y be l-connected. If mw(X)e€ for q < m and
T(f) €€ for q < m, then excision homomorphisms &, = (x, D), T,(f) —
T (F) and &}: w,_(X) — 7w, (p) are (mod €) monomorphic for g<m +n —1
and are (mod €) epimorphic for ¢ < m + n — 1.

ProoF. Consider the commutative diagram

X——»Y

llH

C'X-—-»Cf—-—->F

Let @ be the map (f,7):¢— 4. Then the results of Corollary 3.5 implies
7T, (P) e € for ¢ < m + n — 1, and we have 7,(®) = 7,(0") (see [2; Proposi-
tion 7.4]). Thus 7, (#")e€ for ¢ < m + n — 1, that is, (¢, ?)s: 7w (f) —
7,(j) is (mod €) monomorphic for ¢ < m + n — 1 and is (mod €) epimor-
phic for ¢ < m + n — 1. Moreover, since (x, h): (CX, C;) — (x, F) is a
homotopy equivalence, we have (x, h),: 7, (j) — 7, (F) for all q. Hence, by
the commutative diagram

7(f) &2 7, )

[ l(*, o
T, (f) — 7(F)
¢, has the required property. Furthermore, it follows from the (mod €)
five lemma (see [1]) that ¢}, has also the same property.

Let X EA YL F be a cofibration. We shall consider the homotopy
commutative diagram (see [3; Lemma 3.1])

- x Ly
o | [
oF gy P F
in which d(z, n)(®) = p-n(L — t) for (x,7) c E;, e(®) = (f(&), ) for xe X
and p@v) = (x,v) for ye QF.
LEMMA 3.7. Under the assumptions of Corollary 3.6, the induced homo-

morphisms e,: 7 (X)— (K, and d,: 7 (E;) — 7, (2F) are (mod€) mono-
morphic for g<m+n —2 and are (mod €) epimorphic for g<m+ n — 2.
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Proor. We can see easily that two squares shown under are both
commutative:

7(X) —2% 7(E,) r(E) ——2, r(0F)
(3.8) H gJ’e; and g‘[e} glx
T X) —2 Tp0i(p) Tgrs(f) —— 7o1u(F)

in which ¢}, and ¢} are excision isomorphisms induced by extended fibra-
tion and £ is the natural equivalence in [4]. Then the required results
are equivalent to that ¢, and ¢, have the same properties, which follows
from Corollary 3.6.

THEOREM 2. Let X EA YEZFbea cofibration in which X and Y are

1-connected and 7w, (f) = 0. Let A be a space such that H(A) = 0 for all
sufficiently large q. Suppose that 7w (X)e€ for g< m and 7w (F)e€
for ¢ < n. Then the excision homomorphisms €: w (2"A, f) —> . (3"A, F)
and e;:m(Z"A, X)—r,(37A, p) (r=2) are (mod €) monomorphic if H'(A)e
Cforgq=m+n—1r—2 and are (mod €) epimorphic if H'(A)e€ for
g>m+n—1r—2 (when r =1, Kernel ¢.€€ for i =1,2 i H'(A)ec€
for ¢ =m + n — 3).

PrROOF. The cofibration may replace by an inclusion cofibration,
hence we assume that f is an inclusion map with F = Y/X. Then we
can see as in (3.8) that ¢/ and ¢, are equivalent to d,:w(2"4, E;) —
n(Z7A, QF) and e,: n(3"A, X) — n(27A, E,), respectively. Hence, by using
Proposition 3.2 and Lemma 3.7, we obtain the desired results.

COROLLARY 3.9. (The general (mod €) suspension theorem). Let X
be 1-connected and mw,(X)e € for g < m, and let A be a space such that
H,(A) =0 for all sufficiently large q. Then the suspension homomor-
phism 3:w(2"A, X) > (XA, 2X) (r=2) ts (mod €) monomorphic if
H'(A)eQ for ¢q=2m —r — 1 and is (mod €) epimorphic if H'(A)e€
for ¢q>2m —1r—1 (when r=1, Kernel ZcC€ if H'(A)eC for q=
2m — 2).

PrOOF. Consider the standard cofibration X ER cX2 35X and the
commutative diagram

2(57A, X) = 2(3™'A, IX)

|, =

(374, X) —> m,(37A, p) .
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Since 7,(2X)e€ for ¢ < m + 1, by the Theorem 2, we obtain the desired
results.
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