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Excision theorems on fibration and cofibration have been proved by
P. J. Hilton [4]. The same notion is studied by T. Ganea [3] and Y.
Nomura [8].

Let K be a class of finite abelian groups. The object of this paper
is to show mod (£ excision theorems on fibration and cofibration in the
generalized homotopy theory (Theorem 1 and Theorem 2). And we obtain
as a special case the general mod (£ suspension theorem shown by B. S.
Brown [1].

1. Preliminaries. Throughout this paper, all spaces considered are
assumed to have the homotopy type of CPP-complexes with base-points
denoted by *; all maps and homotopies are assumed to preserve base-
points.

PX is the space of paths in X emanating from *, and ΩX is the
loop space. If /: X-+ Y is any map, Cf is the space obtained by attach-
ing to Y the reduced cone over X by means of /. X is embedded in
CX by x —• (x, 1), and ΣX is the reduced suspension.

By applying the mapping track functor, any map /: X—> Y is con-
verted into a homotopy equivalent fibre map p:E—>Y, yielding the
homotopy commutative diagram

where E = {(x, λ) e X x Y1 \f(x) = λ(l)}, p(x, λ) = λ(0), Ef = {(x9 λ) e X x
PY\f(x) = λ(l)}, i = the inclusion map, ζf(x, λ) = x, h(x) = (xf Xx) and

\x(t)=f(x) for tel. Then the sequence Ef^X^Y is called the
extended fibration.

Dually, by applying the mapping cylinder functor, any map / is
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converted into a homotopy equivalent cofibre map q: X—* Mf, yielding the
homotopy commutative diagram

II , I*
A > i > O/ ,

where Mf = the mapping cylinder of /, q(x) = (x, 0), ηf(y) = y, k(x9t) =

f(x) for (x, t)eX x I and k(y) = y for yeY. Then the sequence X-*

Y^Cf is called the extended cofibration.
Throughout this paper, we assume that all groups considered are

finitely generated, (£ denotes a Serre's class of finite abelian groups and
that E is defined as in [1; p 684]. Let G be a (finitely generated)
abelian group. Then G^ means the largest subgroup of G which is in (L

A sequence A—+B—+D of abelian groups and homomorphisms is said to
be (mod <E) exact if and only if gf(A) e <£ and g"\D%)lf(A) e <£. A homo-
morphism f: A-+B is said to be (mod (£) monomorphic if and only if
0 —* A —> B is (mod E) exact and to be (mod (£) epimorphic if and only if
A -+ B —> 0 is (mod (£) exact.

LEMMA 1.1. Let A-+B-^D be a sequence of abelian groups and
homomorphisms such that gf(A) e (L Then the condition g~\D^)lf{A) GK is
equivalent to the condition g~\gf{A))lf{A) e (£.

PROOF. It is obvious that the condition g~ι(D^)lf{A) e & means the
condition g~ι{gf{A))lf{A) e E. Since

g-(gf(A))/f(A) " g~\gf{A)) "

it follows immediately that the condition g^ifffiAty/fiA) e © means the
condition g-\D^)lf{A) e ®.

COROLLARY 1.2. A homomorphism f: A—>B is (mod (£) monomorphic
if and only if Kernel f is in (£ and is (mod (£) epimorphic if and only
if Cokernel f is in (£.

For the rest, we shall use notations due to Hilton [5].

i f
2. The mod & excision theorem on fibration. Let F —»X —• Y be

a fibration. We may consider, by [3; Proposition 1.6], the homotopy
commutative diagram
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/ ? ^

in which φ ) = /(&), r(y, t) = * for a? e X, (y, t) e CF, s(y, t) = (i{y), 1 - t)
for (?/, t) e ΣF and σ is the identification map.

PROPOSITION 2.1 [cf. 3; Proposition 2.1]. Let F-^X-^ Y be a fibra-
tion in which X and Y are 1-connected and F is strongly simple (see [10; p.
510]). If πq(Y) e (£ for q < m and πq(F) e E for q < n, then the induced
homomorphisms

τ%:Hq(d) >Hq(Y) and s,:Hq(ΣF) >Hq(Cf)

are (mod (£) monomorphic for q < m + n and are (mod (£) epimorphic for
q <L m + n.

PROOF. According to [10; 9.6. 18], loop space ΩY is strongly simple.
Since πq(F) e& for q < n and πq+1(Y) s ττg(βF) G E for # < m - 1, by
using [10; 9.6. Theorem 20], we have Hq(F)e& for q< n and Hq(ΩY)e
(£ for q < m — 1. Let F*ΩY denote the join of F and 42F. Since

and all groups considered are finitely generated, it follows that
Ht+1(F*ΩY) e e for t < m + n — 1. Hence we have πt+1(F*ΩY) e K for

ί < m + w — 1. Now we consider the "fibration" F*ΩγΊ+Ci-^> Y (see
[3; p. 298]). Then, by using the exact sequence

^ 7Γg+1(Γ) , 7Γ9(F*βF) Λ ^ g ( Q , ,

it follows that Ci is 1-connected and r*: 7rg(Ci) —> πg( F) is (mod (£) mono-
morphic for q < m + n and is (mod (£) epimorphic for q <; m + n. Hence,
by the (mod©) Whitehead theorem [1; Theorem 4], r#: Hq(d) -+Hq(Y) is
(mod K) monomorphic for q < m + n and is (mod (£) epimorphic for
q <L m + n.

Next, we shall prove that s# has the same property. According to
[3; Proposition 1.6], there exists a homotopy equivalence ζ:Cr-+C8 in
the homotopy commutative diagram

r r . v k r
\j. • x • ̂ r

?-* cf — > cs.
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Then we have Hq(r) s Hq(Cr) = Hq{Cs) = Hq(s). Since Hq(r) e & for
q <, m + n, so is Hq(s). That is, s#: Hg(ΣF) —• Hq(Cf) is (mod ©) mono-
morphic for # < m + w and is (mod (£) epimorphic for q ^ m + n.

For a given abelian group G, let ίΓ'(G, w) be a polyhedron with
abelian fundamental group such that Hi(K'(G, n)) = 0 for i Φ n and
Hn(K'(G, n)) = G. Then ΣK'(G, n - 1) is a J5Γ'(G, ?ι). We define the
wth homotopy group of B with coefficient in G by

πw(G; £) - π(ΣK'(G, n - 1), B) (n ^ 2) .

LEMMA 2.2. Lei G be a (finitely generated) abelian group. If
πQ(B) G K for q = n, n + 1 (w ̂  2), £fe<m πn(G; B)e& (n ^ 3) αraZ

π2(G; β) e K.

PROOF. Let G = î /J? be a representation of G as quotient of a
finitely generated and free abelian group F by the subgroup R. Then
we have an exact sequence

0 > Horn (G, πq(B)) > Horn (F, πq(B)) > Horn (R, πq(B)) .

Since τr,(jB) e E for g = n, n + 1 (w ̂  2), Horn (F, π,(J5)) and Horn (R, πq(B))
are in S. Hence Horn (G, πn(B)) and Ext (G, π%+1(5)) are also in (£. By
the universal coefficient theorem for homotopy groups [5], the sequence

0 > Ext (G, πn+ι(B)) > πjfii B) > Horn (G, π.(5)) > 0

is exact. Therefore, it follows immediately that πn(G; B)eQZ (n ^ 3) and

τr2(G; β) 6 K.

L E M M A 2.3 [1; Lemma 8]. / / G e (S, ί^en π n (G; B)e& for n^Z and

π2(G; £ ) G g .

L E M M A 2.4. Lei / : X—> F 6e α mα^) with 1-connected spaces X and

Yy and let B be a space such that τcq(B) = 0 for all sufficiently large q.
Suppose that f$: Hq{X)—> Hq{Y) is (mod(£) monomorphic for q < N and
is (mod (£) epimorphic for q ^ N. Then /*: π(Y, ΩrB) -> π(X, ΩrB) (r ^ 2)
is (mod (£) monomorphic if πq{B) e E /or q > N + r and is (mod (£) epi-
morphic if πq(B) e & for q ^> N + r (when r — 1, Kernel / * G E ΐ/ πff(5) G S
for q> N+ 1).

PROOF. We can consider / to be a cofibration with the cofibre Cf =
F. Then F is 1-connected and Hq(F) G £ for q ^ N. Hence we consider
the Eckmann-Hilton decomposition of F (see [5]):
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F

ΐ

ί
Fε >K'{Hs(F),s)

ί

ί

ΐ
F2 = K'(H2(F), 2) .

Since Hq(F) e (£ for q ^ N, it follows from Lemma 2.3 that π(K\Hs{F), s),
Ωr~γB) ~ πa+r^(Ha(F); ΰ ) e S for 2 ^ s ^ J V and r ^ 2 . By Lemma 2.2,
we have π{K\H8(F), s), Ω^B) e © for s ^ N+ 1 if πq{B) e <£ for q^ iV+ r.
In the diagram above, we shall prove by induction on s that π(F, Ωr~ιB) e
<E. It holds certainly that π(F2, Ω^B) = π(K'(Ht(F), 2), Ωr~'B) e K c l .
Assume that π(F8_u Ω

r~1B) e (L In the exact sequence

π(K'(Hs(F), s), Ω^B) > π(F., Ω^B) > π(Fs_u Ω^B) ,

the two extreme groups are in (L Thus π(Fa, Ω
r~ιB) e ®. Since πq{B) — 0

for all sufficiently large q, only a finite number of non-trivial extentions
are required for building up to π(F, Ω^B). Hence π(F, Ω^^B) e E if
πg{B) 6 (£ f or q ^ N + r.

We shall consider the commutative diagram

(Σf)

π(ΣΎ, Ωr~2B) -£/-!—+ ττ(Σ2Xf Ω
r~2B)

π(Y, ΩrB) —-*—> π(X, ΩrB)

and the exact sequence

π(Σ2F, Ωr~2B) • π(Σ2Y, Ωr~2B) JΞΪJl^ π(Σ2X, Ωr~2B) > π(ΣF, Ωr~2B).

Then Cokernel (Σ2f)* is in (£ and is an abelian group, hence it is in (£.
By the diagram above, Cokernel /* is in (£, that is, /* is (mod (£) epi-
morphic. If πq(B) e & for q > N + r, by the same way, we have that /* is
(mod (£) monomorphic (r ^ 2) and Kernel /* is in (£ (r = 1).

i /
THEOREM 1. Let F—*X—>Y be α fibrαtion in which X and Y are

1-connected and F is strongly simple, and let B be a space such that
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πq(B) = 0 /or αii sufficiently large q. Suppose that πq{Y) e E /or q < m
αm£ πq(F) e (£ /or q < n. Then the excision homomorphisms

ex: TΓxί/, ί?\B) > ^ ( F , β r £) αntί ε2: π(Γ, J2r5) • πtf, ΩrB) (r ̂  2)

are (mod &) monomorphic if πq(B) e E /or q > r + m + n and are (mod (£)

epimorphic if πq(B) e (£ /or # ;> r + m + w (wλβw r = 1, Kernel ε4 e S,

i = 1, 2, i/ 7Γ?(β) G (£ /or g > m + n + 1).

PROOF. We may consider two commutative squares

πtf, ΩrB) —^ π,{F, ΩrB) π(Y, ΩrB) - ^ π^i, ΩrB)

π(Cf, ΩrB) —£ π(ΣF, ΩrB) π(Y, ΩrB) ^—> π(Ci9 ΩrB)

in which β/ and ε̂  are excision isomorphisms induced by extended cofibra-
tions and K is the natural equivalence in [4]. By Proposition 2.1,
sf Hq(ΣF) —*Hq(Cf) and r^ Hq(Ci)-+Hq(Y) are (mod©) monomorphic for
q < m + n and are (mod (£) epimorphic for q <L m + n. Hence, by using
Lemma 2.4, we obtain the desired results.

COROLLARY 2.5 (The general (modK) loop theorem). Let Y be 1-
connected and πq( Y) e (£ for q < m, and Zeί B be a space such that
nq(B) = 0 /or αϊZ sufficiently large q. Then the loop homomorphism
Ω:π(Y,ΩrB)->π(ΩY,Ωr+1B) is (mod <£) monomorphic if πq(B)e& for
q > r + 2m — 1 and is (mod (£) epimorphic if πq(B) e © for q^r + 2m — 1
(when r = 1, Kernel Ωe& if πq(B) e & /or # > 2m).

PROOF. Consider the standard fibration £ ? F - ^ P y - + Y . Since
πq(ΩY) = 7Γ9+1(Γ) eK for q < m - 1, ε2: ττ(Γ, β r 5)->π x (i, ΩrB) is (mod©)
monomorphic if πq(B) e ® for q > r + 2m — 1 and is (mod S) epimorphic
if 7Γg(l?) e K for g ̂  r + 2m — 1. By using the commutative diagram

π(Y, ΩrB) —^ π(ΩY, Ωr+1B)

, -1'
n(Y^rB)-^->^(i^rB) ,

we have that ε2 and Ω are equivalent, which proves the Corollary 2.5.

3. The mod (£ excision theorem on cofibration. We shall consider
the dual cases stated in Section 2. Let K(G, n) be Eilenberg-MacLane
space whose i th homotopy group vanishes for i Φ n and whose nth homo-
topy group is G.
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LEMMA 3.1 [1; Lemma 11]. If G e E and A is any space, then
π{A, K(G, n)) e& (n^ 1).

PROPOSITION 3.2. Let f: X-+Y be a map with 1-connected spaces X
and Y, and let A be a space such that Hq{A) = 0 for all sufficiently
large q. Suppose that f*:πq(X)~>πq{Y) is (mod E) monomorphic for
q < N and is (mod (£) epimorphic for q <̂  N. Then /*: π(ΣrA, X) —>
π(ΣrA, Y) (r ^ 2) is (mod (£) monomorphic if Hq(A) e £ for q^ N- r
and is (mod (£) epimorphic if Hq(A) e (£ for q > N — r (when r = 1,
Kernel f*e& if Hq{A) e <£ for q^N-1).

PROOF. We take / to be a fibration with fibre F = Ef. Then F is
O-connected and πq(F) e ® for q ^ N — 1. Hence we may consider the
Postonikov system for F:

F

1

ϊ
F.< K(

I
F^

I

Since πq(F) e E for q ^ N — 1, it follows from Lemma 3.1 that π(2'r~1A,
IT^CF7), s)) e & for 1 ^ s ^ iSΓ - 1 and r ^ 2. The other hand, we have
π(Σr~ιA, K(π.(F), s) ~ H'(Σr'ιA; π.(F)) s fp- r + 1(^; τr8(F)) s fί8-r+1(A) ®
π8(F) 0 Tor (ίίs~r+2(A), π$(F)) because all groups considered are finitely
generated. Hence it follows that πiΣ'-Ά, K(π8(F), s)) G E for s ^ N if
Hq(A) e (E for g > TV - r. Assume that π(Jr-1A, F^O e S ( β - U l ) . In
the exact sequence π{Σr-χA, K(π.(F), s)) — π(Σr~ιA, F8) -~> πί l '^ 1 ^, ί7,^),
two extreme groups are in (L Thus τr(2rr~1A, F8) e K. Since ίίg(A) = 0
for all sufficiently large q, it follows from the universal coefficient
theorem for cohomology groups that π{Σr~ιA, F8) = π(Σr~ιA, F8+1) for all
sufficiently large s. Hence we have π(Σr~γA, F) e E. By the exact
sequence

π(Σr~2A, Ω2F) > π(Σr~2A, Ω2X) -J^lϋl^ π(Σ'-2A, Ω2Y)

> π(Σr~2A, ΩF) ,
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we have Cokernel (£?2/)* e (£, and hence Cokernel /* e (£. This implies
that /* is (mod (£) epimorphic. If Hq{A) e (£ for q ^ N — r, by the same
way, we obtain that /* is (mod E) monomorphic (r :> 2) and Kernel /* is
in (£ (r = 1).

Let X be a space with two distinguished subspaces A and B such
that C = A Π J5B *. Consider the diagram

(3.3)

where each map is inclusion.

PROPOSITION 3 4 [cf. 7; Theorem 1.1]. Iw (3.3), suppose that
(1) X, A, B, and C are 1-connected,
(2) ττ,(i2) G E for q < m,
( 3) τrg(i2) e K for q < n, and
(4) OΊ, i2)# Hq(iύ-+Hq{i^ is (mod (£) monomorphic for q<m-\- n — 2

and is (mod (£) epimorphic for q ^ m + n — 2.
Γ/ieti OΊ, i2)* ^(ίi)—-^^) is (mod®) monomorphic for q<m + n — 2
is (mod E) epimorphic for q <^ m + n — 2.

COROLLARY 3.5. Iw £&e following commutative diagram

X ~ Γ

where eajch map is the inclusion, suppose that X and Y are 1-connected
and that πq{X)e& for q<m and τrg(/)e(£ for q < n. Then (/,i)*:
πq(c) —> 7T9(i) is (mod S) monomorphic for q < m Λ- n — 1 and is (mod (£)
epimorphic for q ^ m + n — 1.

PROOF. Consider the following commutative diagram

X — C X >ΣX

Y-±^ cf >ΣX.

Since c and i are cofibrations, it follows that Hq(j) = Hq{f) and fl"ff(i) =
Hq(c) for all g. Hence, by the assumption and the generalized relative
Hurewicz isomorphism theorem [10], we have that τrff0')e<E for q < n
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and πq(i) e & for q < m + 1. Furthermore, one can easily verify that Cf is
1-connected. Thus, according to Proposition 3.4, the required results hold.

COROLLARY 3.6. Let X-+ Y—+ F be an inclusion cofibration with
cofibre F and let X and Y be 1-connected. If πq(X) e (£ for q < m and
πg(f) £ ® f°r Q < w, then excision homomorphίsms e[ = (*, 2>)*' πq{f) —*
7ϋq(F) and ε[: πq^(X) —• τrg(p) are (mod E) monomorphίc for q < m + n — 1
and are (mod K) epimorphic for q <^ m + n — 1.

PROOF. Consider the commutative diagram

Let Φ be the map (/, j):c—>i. Then the results of Corollary 3.5 implies
πq(Φ) e (£ for q <: m + n — 1, and we have πg(Φ) = πq(Φτ) (see [2; Proposi-
tion 7.4]). Thus πq{Φτ) e E for q <: m + n - 1, that is, (r, i)*: πq(f) —
7Γg(jf) is (mod (£) monomorphic for g < m + n — 1 and is (mod £) epimor-
phic for q ^ m + n — 1. Moreover, since (*, Λ,): (CX, C/) —• (*, F) is a
homotopy equivalence, we have (*,h)*:πq(j)-+πq(F) for all ?. Hence, by
the commutative diagram

el has the required property. Furthermore, it follows from the (mod (£)
five lemma (see [1]) that e2 has also the same property.

•F m

Let X-+Y-+F be a cofibration. We shall consider the homotopy
commutative diagram (see [3; Lemma 3.1])

Ef -ΪU X -£-> Y

in which d(x, rj)(t) = p >7(l — t) for (x, rj) eEf, e(x) = (/(a?), *) for xeX
and /i(v) = (*, v) for x; e ΩF.

LEMMA 3.7. Under the assumptions of Corollary 3.6, the induced homo-
morphisms e*:πq(X)—>πq(Ep) and d*:πq{Ef)-+πq(ΩF) are (mod©) mono-
morphic for q < m + n — 2 and are (mod (£) epimorphic for q^m + n — 2.
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PROOF. We can see easily that two squares shown under are both
commutative:

πq{X) -±+ πq(EP) πq{Ef) ^ Z ^ U πq{ΩF)

(3.8) || ~L; and

πq{X) - £ * πq+1(p) πq+1(f) εl—> πq+ί(F)

in which e'p and e'f are excision isomorphisms induced by extended fibra-
tion and K is the natural equivalence in [4]. Then the required results
are equivalent to that ε[ and ε[ have the same properties, which follows
from Corollary 3.6.

THEOREM 2. Let X—>Y^*Fbea cofibration in which X and Y are
1-connected and π2(f) = 0. Let A be a space such that Hq(A) = 0 for all
sufficiently large q. Suppose that πq(X) e & for q < m and πq(F) e &
for q < n. Then the excision homomorphisms ε[: π1(ΣrAyf) —> π1(ΣrA, F)
and ej: π(ΣrA, X)-+πί(ΣrA, p) (r :> 2) are (mod (£) monomorphic if Hq{A) e
E for q ^> m + n — r — 2 and are (mod S) epimorphίc if Hq{A) e S for
q> m + n - r - 2 {when r = 1, Kernel ej 6 ® /or i = 1, 2 i/ ίP(A) e S
/or g >̂ m + ^ — 3).

PROOF. The cofibration may replace by an inclusion cofibration,
hence we assume that / is an inclusion map with F = Y/X. Then we
can see as in (3.8) that e[ and ε[ are equivalent to d*: π(ΣrAy Ef)—+
π(ΣrA, ΩF) and e*: π(ΣrA, X) —• π(ΣrA, Ep), respectively. Hence, by using
Proposition 3.2 and Lemma 3.7, we obtain the desired results.

COROLLARY 3.9. (The general (mod (£) suspension theorem). Let X
be 1-connected and πq(X) e K for q < m, and let A be a space such that
Hg(A) = 0 for all sufficiently large q. Then the suspension homomor-
phism Σ: π{ΣrA, X) -» π(Σr+1A, ΣX) (r ^ 2) is (mod (£) monomorphic if
Hq{A) G K for q ^ 2m — r — 1 and is (mod (£) epimorphic if Hq{A) e (£
/or g > 2m - r - 1 (when r = 1, Kernel Σe& if Hq(A) e £ /or # ^
2m - 2).

/ P
PROOF. Consider the standard cofibration X—>CX-+ΣX and the

commutative diagram

π(ΣrA, X) — π(Σr+ίA, ΣX)

π(ΣΆ, X) - i » <r,(ί'Λ, p) .
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Since πq(ΣX) e & for q < m + 1, by the Theorem 2, we obtain the desired
results.
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