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1. Introduction. In the present paper, we shall classify conformally
flat Riemannian manifolds admitting a transitive group of isometries.
This class of manifolds contains the homogeneous Riemannian manifolds
of constant curvature classified by J. A. Wolf ([4], [5]).

Theorem A in Section 2 imposes a restriction on the local Riemannian
structure of the manifold in consideration. Using Theorem A, we get
Theorem B in Section 3 and Theorem C in Section 4. They give the
classification together with Theorem D in Section 4.

The author wishes to express his sincere thanks to Prof. S. Tanno
and Prof. T. Sakai who gave him many valuable suggestions and guid-
ances.

2. Local structure. Let M be a C* Riemannian manifold of dimension
n. On a neighborhood of a point of M, we take a field of orthonormal
co-frame {w, ---, w,}. Then we have the Cartan structural equations:

2.1) dw; = _Z Wi \NWj W+ ;=0
J

and

(2.2) dwy = =3 Ou N O + i

where w,; and £,; are the connection form and the curvature form
respectively.

Now, we assume that M is conformally flat, that is, each point of
M has a neighborhood where there exists a conformal diffeomorphism
onto an open subset in a Euclidean space. Then each point of M has a
coordinate neighborhood {U;zx, --:, #,} where we can choose as a
{w, -, ®,} one satisfying w, = (1/p)dx, for each ¢, with certain positive
C~ function o of ,, ---, 2,. Then, by (2.1), we have

(2.3) Wij = 0W; — 0;0; , 0; = 00/0x; .
Then, by (2.2), we have
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(2.4) Qi=¢pN0; + O, \%;,

where

@25 ¢ = JZ Aijwjy, Ay = 00: — (1/2)31':‘(; 05), 0:; = 0°0/0xw.0x; .
And moreover, by (2.1), (2.3) and (2.5), we have

(2.6) dg; = "% @i N\ $j

Here we express A = (4,;) in terms of the Ricei tensor R = (R;;) and
the scalar curvature S. That is, we have

@7 Ai; = [1/(n — 2))(R:; — [1/2(n — 1)]Sd,;) .

This is easily seen by the following definitions of the curvature tensors
(Rijw), (R;) and S:

2= (1/2) kZ:. Ruw, N\ @, , R = —Riu
Ria’ = zk‘ARikik ’ S = 21R11 .

Conversely, it is well known that every Riemannian manifold with 1-form
¢, = >, A,;0; satisfying (2.4), (2.6) and (2.7) is conformally flat.

THEOREM A. Let M be a connected conformally flat Riemannian
manifold. If M is homogeneous, that is, M admits a transitive group
of isometries, then M is isometric to certain one of the following mani-
folds:

(1) A space of constant curvature.

(2) A Riemannian manifold which is locally a product of a space
of constant curvature K(+ 0) and a space of constant curvature —K.

(3) A Riemannian manifold which is locally a product of a space
of constant curvature K(+ 0) and a l-dimensitonal space.

PrROOF. Assume that M is homogeneous. Then, by (2.7), the charac-
teristic roots A, ---, A, of the tensor field 4 are constant on M. Then,
on some neighborhood of each point of M we can take a field of ortho-
normal co-frame {w,, ---, ®,} satisfying ¢, = M®; for each 7. Then, by
(2.4), we have

2.9) Qi = (N + Mo, A\ @; .
Here we put
(2.9 N = N = ; Sijx @y «

Then S,;, is symmetric for all indices and hence, if 1=35, j =k or k =1,
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then S;;, =0, where ¢ = j means )\, = \;. In fact, by (2.1) and (2.6),
we have 3, (A, — M)w,; Aw; =0, from which we have S,;, = Sy;. By
(2.2), (2.8) and (2.9), we have
N + Mo, A ;= [1/(0 — A))] ;. (@S:) N\ @,
+ [1/(v — M) Xkl Siidw,

+ 20 [/0w — M) — M)1SuSkin® A @,

k(li,;.’j)
+k(§ 1[1/()‘% — N)IS1®a A @,
+k(;j‘; 1[1/(7\'1 — M)ISiuw, A @,; for 1= j.

Comparing the coefficients of w; A @; and taking account of the properties
of S;;,, we have

O + N — Ny) = 21:(; .)(Siik)z/()"i — NNy — >"j)(>"k — ) for e 7,
2%
from which we have
ST v+ N/ — ;) =0 for each 4.
J(FE1)
From the last identity, we see that possible cases are only the following
(a) and (b):
(a) A= +e0 =N\,
(b) M=o =N, = Npyy =+ =—X,#0, 1 <r=<n—1, where
we assume that A\, = --- = \,.

In fact, let us assume that the case (a) does not occur. Then )\; = 0 for
each 7. Let A\*(>0) be the minimum of A}, ---, A2. Then we have

A=) = (= M)/ =Ny =0,

which shows that A; = £\ for each j.

The above fact shows that S,;, =0 for each 4, j, k, which implies
that, if ¢ % j, then w;; = 0 by (2.9) and that, if ¢ = j, then 2,; = + 2\w; A\ w;
by (2.8). This completes the proof (cf. [2], [3]).

3. Some lemmas and Theorem B. Let M be a conformally flat
homogeneous Riemannian manifold and 7 be the universal covering
manifold of M with the metric induced from the projection p: M — M.
Since M is complete, so is M. Then, by Theorem A and the decomposition
theorem of de Rham, 7 is isometric to one of the following manifolds:

(1) M“(K),

(2) M(K)x M~"(—K), K+0,2=<r=mn-—2,

(3) M'(K)x E', K+#0,
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where M™(K) denotes an ordinary sphere S™ of radius K '2, a Euclidean
space E™ or a hyperbolic space H™ with sectional curvature K according
as K is positive, zero or negative. And M is isometric to a quotient
M|I", where I" is a certain group of isometries of I acting freely and
properly discontinuously (cf. Wolf [6]). Thus the classification is reduced
to analyze the structure of I. So, we prepare some lemmas.

LEMMA 1. Let M; (t =1, 2) be a connected Einstein Riemannian
manifold with the metric tensor g,, that is, the Ricci tensor R, 18 written
as R, =cyg, over M, with constant c,. If ¢, # ¢c,, then I(M, x M,) =
I(M,) x I(M,), where I(M, x M,), I(M,) and I(M,) denote the groups of all
isometries of M, x M,y M, and M, respectively.

Proor. If we put M = M, x M, then the tangent space T.(M) at
a point z = (x, y) € I is identified with direct sum T,(M,) + T,(M,). Let
R' be a field of symmetric endomorphism which corresponds to the Ricei
tensor R of I, that is, R(X, Y) = g(R'X, Y) for any tangent vectors X
and Y, where g is the metric tensor of the direct product I7. Then,
Xe T, () is contained in T,(M,) (resp. T,(M,)) if and only if R'X = ¢, X
(resp. R'X = ¢, X).

Now, let fe I(if). Then we have

df,oR. = R}, odf, for each ze I,

which shows that df, maps T,(M,) (resp. T, (M) into T%, ., (M,) (resp.
Tsyen(M)), where we put f(2) = f(x, ¥) = (fi(z, ¥), fi(®, ¥)). Making use
of this fact, we shall show that fi(x, ¥) (resp. fu(, ¥)) does not depend
on y (resp. ) which completes the proof. Let {x,, ---, 2, ¥, --+, ¥} be a
coordinate system on a neighborhood U, x V, of M at z = (x, ¥) such that
{x, ++, x,} and {y, ---, ¥} are coordinate systems on U, and V, respec-
tively. Let {u, ---, u,, v, ++-, v} be a coordinate system on a neighbor-
h00d Uy, X Vi of M at f(z) =I(fil&, v), fulz, ¥)) such that {u,, ---, u,}
and {v, ---, v,} are coordinate systems on Uy, and Vy,,,, respectively.
Let f be represented locally by the functions,

{ui = fui@y oy Ty Yy ey W) G =1, e, 1)
Vi = faul@y <oy Tpy Yuy + o+, Y) G=1,---8).
Since df(9/ox;) € T(M,) and df(0/oy,) € T(M,), we have
ofuldy; =0 for i=1 -+, 75=1, 1,5
and
ofulox; =0 for ¢=1 ---,875=1,---, 7,



CONFORMALLY FLAT RIEMANNIAN MANIFOLDS 107

that is,

uizﬁi(xl, ey, x,.) for ’I::]_, cee,

v, = foul¥y -+, ¥,) for ’I:=1, cee, 8.
This means tha,t ﬂ(x, ’y) = .fl(x; y') (resp. fz(x, y) — fz(x,, y))’ if Y is Suf-
ficiently near to y’ (resp. « is sufficiently near to 2'). Since M, (resp.

M) is connected, fi(z, ¥) = fi(z, ¥’) (resp. fi(x, ¥) = fo(®, ¥)) for any pair
y and ¥y’ of M, (resp. for any pair « and «’ of IM,). q.e.d.

Let v be an isometry of a metric space N with distance function d.
We say that v is a Clifford translation if d(x, v(x)) = d(y, 7(y)) for each
pair of points x and y of N.

LEMMA 2. Let M, and M, be complete Riemannian manifolds. Let
a and B be isometries of M, and M, respectively. Then v = (&, B) is a
Clifford translation on M, X M, if and only if a and B are Clifford
translations on M, and M, respectively.

ProoF. Let (x, y) and (u, v) be points of M, x M,. Then, as easily
seen, the following identity of Pythagoras is valid:

[d((, v), (v, VI = [d(=, W] + [d(y, v)]*,
where d denotes the distance functions of M,, M, and M, x M,. Now the
lemma is evident.

LEMMA 3. (cf. Wolf [6]) Let M and M be Riemannian manifolds
and let M = M|I", where I" is a group of isometries of M acting freely
and properly discontinuously. Let G be the centralizer of I' in the
group I(JT) of all isometries of M. Then M is homogeneous if and only
if G is transitive on M. And if M is homogeneous, then every element
of T is a Clifford translation of M.

THEOREM B. Let M be a connected conformally flat homogeneous
Riemannian manifold. Then M 1is isometric to one of the following
manifolds:

(1) A homogeneous space of constant curvature.

(II) A direct product of a homogeneous space of constant curvature

K(>0) and a homogeneous space of constant curvature — K.
(III) A direct product of a homogeneous space of constant curvature
—K(<0) and a 1-dimensional homogeneous space.

(IV) A homogeneous Riemannian manifold which is locally a prod-
uct of a space of constant curvature K(> 0) and a 1-dimensional
space.

Proor. Since the only Clifford translation of H™ is the identity
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transformation 1 (cf. Wolf [6]), every Clifford translation of H*™" x S” or
H"' x E* must be of the form (1, 8), by Lemma 1 and Lemma 2. Now
this proves the theorem by Lemma 3. q.e.d.

Thus the only problem left to us is to check up the space of the
form (S** x EY/I.

4. (S~ ' x EY/I'. S* ' is considered as the set of vectors of norm
K% in a Euclidean vector space R". Then I(S*') is the orthogonal
group O(n). The group of all Clifford translations of E"* is identified with
the additive group R. The natural projections I(S™™') x I(E") — I(S™™)
and I(S*™) x I(E')— I(E") are denoted by » and ¢ respectively.

LEMMA 4. Let (S** X E")/I" be homogeneous. Then p(I") is contained
wn one of the following closed subgroups (1), (2) and (3) of O(n), according
as n=2m + 1, n = 2m (m:odd) or n = 4m:

(1) {+E},

(2) {@aE+bL;a*+b*=1, a,be R},

(3) {aE+bI+c¢J+dK;a*+ b0+ +d° =1, a,b,c,deR],
where E is the identity transformation of R* and I, J, K are elements
of O(n) satisfying the conditions, I*=J*= K*= —FK, IJ=—JI = K,
JK=—KJ=1I KI = —1IK = J.

ProoF. Let (S"* x E')/I" be homogeneous. Then by Lemma 3, the
centralizer G of I in I(S**' x E') = I(S*") x I(E") is transitive on
S** x E'. Then the group »(G) is the centralizer of p(I") in O(n) and
it is transitive on S*'. In particular, R* has no p(G)-invariant linear
subspace. Then, every element A of the centralizer F of p(G) in the
algebra of all linear transformations of R® is written as A = aF or
A = aF + bl, where b # 0 and I is a linear transformations of R" satisfying
I! = —FE (cf. p. 277 [1]). It should be noted that, if an element of the
form aFE + bI (b +# 0) is contained in O(n), then a* + b* = 1 and Ie O(n).
In fact, let aE + bIc O(n). Then we have aE — bl = (a® + b*)(aE + b'I)
and aF — bl = (a® + b*)(aE + bI), which implies that a®+ b* =1 and
= —1

By definition of F, p(I")C F. Thus, if » is odd, then F = {aE; a € R}
and hence p(I") C {+E}.

Now, let » be even. If p(I") contains an element of the form
alE + bl (b # 0), then I€ O(n) and F>C, where C = {aE + bl;a, bc R}.
C is written as follows; C = {Ae F; Al = IA}. In fact, let A be an
element of F satisfying AI = IA. Since Ac F, A is of the form aF + bL,
where L* = —FE. Hence, if b # 0, then IL = LI. It is sufficient to show
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that L =1 or L = —I. So we show that R" = W, + W, (direct sum),
where W, = {ve R*; Iv = Lv} and W, = {ve R*; Iv = — Lv}. Clearly, W. N
W, = {0}. Every ve R" is of the form w, + w, with w,e W, and w,e W,
by setting w, = (1/2)(v — ILv) and w, = (1/2)(v + ILv). Since I, Lec F, W,
and W, are invariant by »(/"), which implies that L = I or —1.

Next we assume that p(I") ¢ C. And we take an element A of
p(I") such that A¢C. If we put B= A + IAI, then B¢ C and B*eC,
because BI = —IB, BI = IB® and AI ++ IA. On the other hand, B may
be written as B = cKE + dJ, where J* = —F, because Be F. Since B¢C
and B*eC, then ¢ =0 and d +# 0. We show that Je O(n). Since A¢
FNnoO), A is of the form aF + bL, where L*= —F and ‘L = —L.
Then B = b(L + ILI), which implies that ‘B = —B and hence *J = —/J.
Here, we put D = {(¢E + bI)J;a,be R}. Then D = {AecF; Al = —IA}.
For, if Ac F satisfies Al = —IA, then AJeC, that is, AJ is written as
AJ =—aFE — bl and hence A = (¢E + bI)J. Now we show that F=C + D
(direct sum). Clearly, CND = {0}. Every AecF is of the form C + D
with Ce C and De D by setting C= (1/2)(A — IAI) and D = (1/2)(A + IAI).

If we put K = 1J, then KeO(n) and the I, J and K satisfy the
conditions stated in this lemma. And p(I") c(C + D) N O(rn). Of course,
if p(I")z C, then n = 4m. q.e.d.

The groups (1), (2) and (3) in Lemma 4 are isomorphic to {1}, S*
and Spin (3) respectively. Hereafter, we mean these groups as closed
subgroups of O(n) acting S** by the above fashion.

THEOREM C. (S ' x EY)/I' is homogeneous if and only if I' is a
discrete subgroup of {1} x R, S'xX R or Spin(3) x R according as
n=2m+1 n=2m (m:odd) or n =4m.

PrOOF. Let (S"* x E")/I" be homogeneous. Then p(I") is contained
in {+1}, S* or Spin(3) by Lemma 4 and ¢()C R by Lemma 2 and
Lemma 3. And moreover I" is discrete in O(n) x I(E"), since the action
of I' is free and discontinuous (cf. [1]). Conversely, let I" be a discrete
subgroup of {+1} x R, S' X R or Spin (3) Xx R. Then the centralizer G
of I' in O(n) x I(E") actually contains O(n) X R, U(m) x R or Sp(m) x R.
In particular G is transitive on S** X E'. By the way of action, I” acts
freely. Since S*' x E' is a homogeneous space and the isotropy group
is compact, the discrete subgroup I of I(S*' x E') acts on S"*'x E*
properly discontinuously (cf. [1]). q.e.d.

THEOREM D. Let H be one of the groups {1}, S*' and Spin (3).
Then a discrete subgroup I" of H X R s one of the following forms:
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(1) Iy x {0},

(2) A group which is semi-direct product of the infinite cyclic group
e, B)) generated by (a, B) and I'y x {0},
where I', is a finite subgroup of H, a an element of the normalizer of
I, in H and B(+ 0) € R.

Proor. First, the projection ¢(I") is a discrete subgroup of R and
hence it is the infinite cyclic group (B) generated by an element B(#0)e R
or {0}. If g(I") = {0}, then I" is a discrete subgroup of compact group
H x {0} and hence I" is of the form (1). If q(I") = (8>, then ¢ '(kB) N
I’ (keZ) is a finite set and the number of elements of the set does not
depend on k. In fact, we have a one to one correspondence between the
finite group ¢7'(0) N I” and the set ¢~'(kB) N I", that is, (v, kG) maps («,, 0) €
g0 NI to (va, kR)eq'(kB) N I", where (7, kB) is an arbitrary fixed
element of q7'(kB) N I". Thus, taking an element (@, B eqg™' BN, I’
may be written as I = U,z (@, kR)(I", X {0}). For I" to be closed with
respect to the compositions of H X R, @ must be contained in the nor-
malizer of I, in H. q.e.d.

REMARK 1. The finite subgroups of H are completely classified by
Wolf ([4], [5]).

REMARK 2. The classification for the case that the dimension of M
is equal to 1 or 2 is well known.
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