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The harmonic and quasiharmonic classifications of Riemannian mani-
folds have been largely brought to completion (see Bibliography). In the
present paper we shall discuss interrelations between harmonic null classes
and quasiharmonic null classes.

Let H and @ be the classes of harmonic and quasiharmonic functions
h and q, defined by A% = 0 and Aq = 1, where A = dé + dd is the Laplace-
Beltrami operator. Denote by P, B, D, C, L the classes of functions
which are positive, bounded, Dirichlet finite, bounded Dirichlet finite, or
of finite L? norm, respectively. Here 1 < p < o, the value p = « being
excluded since for both harmonic and quasiharmonic functions, L* = B.
For X=P, B D,C,L? set HX =HN X, QX = QN X, and let OY stand
for the class of Riemannian N-manifolds, N = 2, which do not carry
nonconstant functions in a given class F. The complement of OF with
respect to the totality of Riemannian N-manifolds is designated by O¥.

We shall first show that 0}, N 0%, +# @ for X, Y =P, B, D, C, L*,
1< p< o, N=2. In view of the Euclidean ball it is trivial that 0%, n
~{{Y + @, and we shall prove that 0%, N 0% #+ @ for all X, Y, p, N.

The classes O%; N 637 are intriguing. From the harmonic classifica-
tion theory it is known that the class OY of parabolic N-manifolds, char-
acterized by the nonexistence of Green’s functions, is related to other
harmonic null classes by the strict inclusion relations O¥ < 0%, < O%s <
0%, = 0%,. The proof of the strictness, due mainly to Ahlfors, Royden,
and Toki, was one of the most challenging problems in the theory of
harmonic functions. On the other hand, O is strictly contained also in
all 0y, X= P, B, D, C [12,20]. The problem of proving the nonempti-
ness of the classes O%; N O, thus amounts to finding manifolds which
belong to the “narrow” spaces OY N 0%, yet carry QY-functions. For
X, Y other than L* we only have fragmentary results on this problem
(see No. 11). On the other hand, the classes 0%, N 0% turn out to be
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nonvoid for X = L?,all Y, p, N; Y= L*, all X, p, N;and X = L*, Y = L’,
all p, q, N.

1. Our first problem is to exclude both HX and QY functions:

THEOREM 1. O¥:NO0% #+# @ for X, Y=P,B,D,C,L*; 1< p < o;
Nz=2.

The proof will be given in Nos. 2-4.

2. By means of the Poisson integral and Harnack’s inequality we
see immediately that every he HP in the Euclidean N-space E” reduces
to a constant. Therefore E” e 0%, for X = P, B, D, C.

To show that E¥ e O%,, we first consider the case p = 1. Suppose
there exists a nonconstant A€ HL'. It has a unique representation % =
Sie=o S, with S, = S,(f) spherical harmonics, characterized by A(»"S,) =
0, and (r,0) = (r,0,, --+, 05_,) the polar coordinates. For some n, > 0,
S,, #0. Take a function o(r)e C[0, =) with p(r) = 1/r for r =1 and
set @ = pS,,. Since pe B, we have ||h@]|; < . On the other hand,

|k, = | (ko, S,) | = ¢ S“‘ rorY-idy
=a+c Sw rng-i—N—zd,r = oo }

here and later ¢ is a constant, not always the same. The contradiction
shows that E” € O%,..

Now let »p > 1 and take p’ with 1/p + 1/p’ = 1. Suppose there exists
a nonconstant A€ HL?. In the expansion k = > r"S,, S, # 0 for some
n, > 0. Let po(r) e C[0, ) with

o(r) = r~@*r for rz=1,
and set ¢ = pS,. Since
lollg = a+c| rerrrdr < o,
|@lly < oo, and |(k, )| < . We again have a contradiction:

[(h, )| = la +c Sw /r"or-(N+1)/p’,rN—1d,r[

oo

= ’a, +ec S r""”""‘“"'ldr‘ = oo ,
1

A fortiori E¥ € O%;» for »p > 1 as well.
3. To prove E¥e 0}y for X = P, B, D, C we recall that 05, < O3z N
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03» < 03 UOY, = 0F, [12,20]. Thus it suffices to establish E¥c O},.
Since
¢ = —(@N)'r’'eQ@,
every g€ Q can be written ¢ = ¢, + & with some he H. We are to show
that g¢ P. Set
¢g=q +h(0)+k, keH, k(0)=0,

where h(0), (0) are the values at the origin. By the mean value theorem
there exists, for every r,, an 6" = (6%, ---, 0%_,) such that k(r,, 6") = 0.
If {r,}; is an increasing sequence with r, — c, then

1
ny ") = —
o0 0 = —5%

r: + h(0) > —c ,

and therefore g ¢ P.

4. It remains to show that E¥e€ Of,,. Again we start with p = 1.
For qe Q, ¢ = ¢, + h(0) + &k, we have

k(0) = S RV =0,
EN
and therefore

ez || | @+ ronav].

The integrand (with respect to drd@,---dfy_,) is ~ er*r"*, hence ||q||, = o,
and E" e 0},

In the case p > 1, the choice @(r) € C[0, ), @(r) = r~¥*0i?’ for r =1
gives ||®@||,, < . If there exists a ¢e QL?, ¢ = ¢, + h(0) + &k, then by
(k, ) = 0, the integrand in (q, ®) = (¢, + %(0), ) is asymptotically

c,’.2,’.—(I\r'+1)lp’,r10:'—1 — c,rN[p—l/p'+l .
The exponent dominates N/p, hence |(¢q, )| = oo, in violation of ||P||,r < co.
The proof of Theorem 1 is herewith complete.

5. In view of the Euclidean N-ball it is trivial that 0%, N O = @
for X, Y=P,B,D,C,L? 1<p< ; N=2. Our next problem is to
find an N-manifold which carries HX functions but no QY functions.

THEOREM 2. O}, NO0Y # @ for X, Y=P,B,C,D,L? 1< p < o;
N=2.

The proof will be given in Nos. 6-10.

6. For X, Y= P, B, D, C it suffices to show that 0%, N 0¥ = @.
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Consider the “beam”

T={(x9y1’ ""yN-l)llxl<w;lyilélyizlf "',N—l}’

with each face y;, =1 identified with the opposite face y, = —1 by a
parallel translation perpendicular to the x-axis. Endow 7T with a metric
with volume element V¢ dxdy, --- dyy_,, where g is the determinant of

the metric tensor (g,;) with inverse (¢°). Let each g,; depend on z only
and set

p) =V g@), o) =g"@).
Then ky(x) is harmonic if and only if
Ahy = —p™(poh)’ =0,
that is,

ho(x) = ¢ Sz o 'o7dt .

The Dirichlet integral over the subspace from —x to z is

z

D.(h) = ¢ S_ hiropdt = cg oio='dt .

We recall (loc. cit.) that a manifold belongs to 53’,, if and only if the
potential G1 of the constant function 1,

G1e) = o6 nave

exists at some, and hence every, £€ T. In the present case this potential
depends on the z-coordinate x(¢) of ¢ only, and we can use the notation
Gl(x). Suppose Gl(x) exists. Since AGl(x) =1,

Gl(x) = qo(x) + ho(2) ,
where

q(x) = —S: o't 8: odsdt

is quasiharmonic by Agq, = —p7'(00q;)’ = 1. Our problem thus reduces to
finding functions o(x), o(x) such that

Sz o 'c"'dte B,
S: o gt Y o(s)dsdt — ~ as x— oo .
0

The choice p =1, 0 =1 + 2* gives



HARMONIC AND QUASIHARMONIC DEGENERACY 491

§0 o-loidt = S (L + ¢)-'dt = arctanz ¢ HD ,

hence Te0¥%,. An arbitrary ho(x) € H i8
hy(x) = a arctanx + b,

and

0(@) = —S (A + ) 'tdt = —-—é—log A+ ),

which tends to —c as |z|— . Therefore G1 =¢q,+ hy— —, Gl¢ P,
and consequently T e OF:.

The relation 0%, N O} we have thus established can be generalized
to polyharmonic functions [3].

7, The relation
035N 0% = O

was proved in [1] for Y= P, B, D, C; 1 = p < «; N= 2. We proceed to
show that

O0%x N O # @
for X=P, B, D,C; 1< p < ; N=2. Consider the manifold
T:{(w, Yy "'ny—1)|x>11 Iyil éﬂ"i=ly "'9N_ 1} .

It shall be henceforth tacitly understood that the opposite faces y, ==
and y, = —xn of such “beams” are identified by pairs as in No. 6. For
the metric we choose

N—1
ds* = da? + g Z‘; ay; ,
1=

with a a constant > 1;
To show that Te O%, it suffices to take X = C. The function xz~°**
is in HB, by virtue of

Ax-a+1 p— _x—a(xa(x—a+l)l)l — 0 .
Moreover,

D(e—+) = ¢ Sm (@) tde < oo .
Therefore Te O%.

8. To prove Te O}, we first take p = 1. Since

0(@) = ——;-(a + 1) e qQ,
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every g€ @ can be written
g=¢q+ar*" + b+ Zf(x)G.(v) ,
where f,G,€ H and G, ranges over all products of the form

¥ cos
Gn(?/) = H sin Y

With 7 = (ny, +-+, ny_) % (0, -+-, 0). Since ST £.G.dV =0,

lall 2| @+ e+ nav|.

The integrand is ~ cx**%, hence || q||, = « and Te O},
Now let p > 1, and p' as before. The function @(x) = x~*+?"/*" be-
longs to L* by virtue of

ST leIPdV =c¢c r x- @ pady & oo
If there exists a g€ L?, then |(q, )| < . On the other hand,
(g, P)| = ‘ ST (¢o + @z~ + bz~ q V| ,

where the integrand with respect to dxdy, --- dyy_, is asymptotically
gelrt, A fortiori |(g, )| = -, and the contradiction gives T € Of.».
9. It remains to show that
0% NO0%e = @
for 1 <8< 0,1 £t < . First fix ¢t and consider the manifold
T={@v, YD) |e>L o] S7,i=1..-, N=1}

with the metric
N—1
ds® = e~*ltdx® + o2l [(N—1) Z dyf .
1=1

The function h,(x) = ¢ *~*/* belongs to HL’, and Te€ 0¥ ..

10. To see that T e Of,:, note that q(x) = te™**c Q. Every qe @ has
the form

qQ=4q,+ ah, + b+ 2'f,G, .
For t =1,

gl = c’ §1 (g0 + ah, + b)e*dax
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If b+ 0, then the integrand is ~ be*, and [|q||, = co. If b =0, the
dominating term in the integrand is g.e®, so that again |[q|, = <, and
Te Ong.

In the case ¢t > 1, take ¢’ such that 1/t + 1/’ = 1. The function
P(x) = e**27" belongs to L. If there exists a g€ QLf, then | (g, )| < co.
But

(@, P =1(2 + ah + b+ 2'f.G,, P) | = [ (% + aho + b, P) | .

If b« 0, the integrand is ~ be™*/*'x7'e” = be*/*x™, and we have the con-
tradiction |(q, )| = . If b =0, since g, dominates h, the integrand
is asymptotically

ce—z/t—z/t'x—lez — cx—-l ,

and again we have divergence. Therefore T'€ OF,:.
The proof of Theorem 2 is herewith complete.

11. Our final problem is to find N-manifolds which carry QY funec-
tions but no HX functions. For X, Y other than L* we on1~y have two
fragmentary results, both quite immediate. First, 0%, N 0¥ = @ for
N =5 is a consequence of what is known of the Poincaré N-ball B?,
that is, the ball {r < 1} with the metric ds = (1 — 7*)*|dz|[, « a real con-
stant. It was shown in [5] that BY € 0%, if and only if |a@| = (N — 2)7},
N = 3, and in [26] that

BYe 0N 0y = O
if and only if —8/(N+ 2) < a<1/(N—2), N=3. A fortiori,
Bgeogpnagcy Ng57

if and only if —3/(N+2)<a < —1/(N — 2).

Another result, 0%, N 0% = @ and 0%, N 0%, = @&, both for N = 4,
is also offered by BY. We know [26] that BYe O}, if and only if —1 <
a <1/(N—2), and BY 652’? is characterized by the same range of a.
As a consequence,

BYeO},n 05:(0%), Nz=4,
if and only if —1<a < —1/(N — 2).
12. In the case of L? functions we have a complete result:

THEOREM 3. 0%, NO0Y% = @ for X=L*, Y=P,B,D,C,1<p < o,
N=22 X=PBDC, Y=L"1<p<~,N=2and X=1L',Y = L,
1<8< 0,15t 0o, N=2.

The proof will be given in Nos. 13-14.
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13. The first case,
03, N 0% + &

for Y=P, B, D, C, 1< P < o, N = 2, was established in [1], and we
proceed to the case Oy N 0¥ # @ for X=P,B, D, C,1<p< oo, N=2.
It suffices to prove

O%Pﬂagu)i D .
Take the manifold
T={(x;y1’ M} yN—l)llxI < oo, lytiélyz=1! "'7N_1}

with the metric
ds* = e"*'da® + eIV Nz—‘; dy?.
Since € H, T is parabolic, hence in O%,. The function
0(@) = —S S:e--’dsdt
is quasiharmonic and for 1 £ p < =

otz =c|" larerds < o

z b4 )
In fact, | q,|” =< IS adxl < a’|x|’, wherea = S e *dt. Therefore T e O3;,.
0 0

14. The remaining case of Theorem 3 is
OZL‘ n 62’1} #: @
for 1<s< o, 1Zt< o, N=2. Take the N-space M with the metric

ds* = P(r)drt + $ ()T 3 A (0)ds,

where @, e C[0, ) and the )\, are trigonometric functions of ¢ =
@, -+, 0y_,) such that the metric is Euclidean for » £1/2. For r=>1
we choose

pr)y=e", ) =¢".

The volume element of M for » = 1 is simply drdé, --- d6,_,.
To prove Me O%,. take a nonconstant

heH, h=23f(r)S.0).

In each term, if f, # 0, then by the maximum principle, f,(r) # 0 for
every r > 0, and lim,__, f,(r) # 0, so that |f,(r)| > ¢, > 0 for » > 1, say.
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For some n,, f,, # 0. Take a function o(r) e C[0, =) with p(r) = 1/» for
r =1, and set ¢ = pS, . Since ||0]ls < o, ||P|ly < . If heL’, then
[(h, )| < . But

2 =|a+b | fipdr|,

where |f,0| = ¢, /r and f,, is of constant sign, hence |(h, )| = . This
contradiction gives M~ € 0% ,s.
To see that Me Oy, 1 <t < o, we note that the function

a(r) = | @iy S (@) "dsdt

is quasiharmonic and || q,||; < oo.
This completes the proof of Theorem 3.

The authors are indebted to Professor Cecilia Wang for a careful
checking of the manuscript.
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