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The harmonic and quasiharmonic classifications of Riemannian mani-
folds have been largely brought to completion (see Bibliography). In the
present paper we shall discuss interrelations between harmonic null classes
and quasiharmonic null classes.

Let H and Q be the classes of harmonic and quasiharmonic functions
h and q, defined by Ah = 0 and Δq = 1, where Δ = dδ + δd is the Laplace-
Beltrami operator. Denote by P, B, D, C, L* the classes of functions
which are positive, bounded, Dirichlet finite, bounded Dirichlet finite, or
of finite Lp norm, respectively. Here 1 ̂  p < oo, the value p = oo being
excluded since for both harmonic and quasiharmonic functions, L°° = B.
For X = P, 5, Z>, C, ZΛ set HX = H n X, QX = Q Π X, and let ON

F stand
for the class of Riemannian iV-manifolds, N ^ 2, which do not carry
nonconstant functions in a given class F. The complement of O£ with
respect to the totality of Riemannian N-manifolds is designated by O£.

We shall first show that ON

HX f)O%rΦ0 for X, Y = P, B, D, C, Lp,
l < ^ p < o o , j y ; > 2 . In view of the Euclidean ball it is trivial that O^x n
O»τ Φ 0 , and we shall prove that ON

HX ΠθζτΦ 0 for all X, F, p, iNΓ.
The classes OHX Π OQF are intriguing. From the harmonic classifica-

tion theory it is known that the class 0% of parabolic iSΓ-manifolds, char-
acterized by the nonexistence of Green's functions, is related to other
harmonic null classes by the strict inclusion relations O£ < OHP < 0%B <
0%D = OHC The proof of the strictness, due mainly to Ahlfors, Roy den,
and Tόki, was one of the most challenging problems in the theory of
harmonic functions. On the other hand, 0% is strictly contained also in
all O£χ, X= P, B, D, C [12, 20]. The problem of proving the nonempti-
ness of the classes OHX Π QQY thus amounts to finding manifolds which
belong to the "narrow" spaces 0%f)OHX, yet carry Q F-functions. For
X, Y other than Lp we only have fragmentary results on this problem
(see No. 11). On the other hand, the classes OHX ΓΊ 0%τ turn out to be
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nonvoid for X = Lp, all Y, p, N; Y = L\ all X, p, N; and X = L\ Y = ZΛ
all p, q, N.

1. Our first problem is to exclude both HX and Q F functions:

THEOREM 1. 0N

HX Π 0£F Φ 0 /or X, Γ = P, J?, JD, C, Lp; 1 ^ p < oo;

The proof will be given in Nos. 2-4.

2. By means of the Poisson integral and Harnack's inequality we
see immediately that every h e HP in the Euclidean iV-space EN reduces
to a constant. Therefore EN e 0N

HX for X = P, B, D, C.
To show that ENe0ffLP we first consider the case p = 1. Suppose

there exists a nonconstant & 6 HL1. It has a unique representation h =
Σn=o rnSn, with SΛ = SΛ(0) spherical harmonics, characterized by Δ(rnSn) =
0, and (r, 0) = (r, 0lf , tf^i) the polar coordinates. For some n0 > 0,
Sno & 0. Take a function jθ(r) e C[0, oo) with ^(r) = 1/r for r ^ 1 and
set φ — pSnQ. Since φeB, we have ||&9>||i < <». On the other hand,

I hφ |L ̂  I

= α + c

S Λ 0 ) I = c Γ
Jo

Γ rΛ 0 +^-2(ϋ

here and later c is a constant, not always the same. The contradiction
shows that EN e ON

HLu
Now let p > 1 and take p' with 1/p + 1/p' = 1. Suppose there exists

a nonconstant heHLp. In the expansion ft = Σv r*Sn, SnQ =£ 0 for some
n0 > 0. Let ^(r) e C[0, oo) with

for r ^ 1 ,

nQ

and set £> = /θSΛo. Since

|| p ||£ = α + c Γ

\Φ \\P' < °°> a n ( i I (hf Φ) I < °° again have a contradiction:

a + cΓ
a + c [°°

A fortiori EN e O£LJ> for p > 1 as well.

3. To prove EN e O ^ for X = P, B, D, C we recall that O£P < <% Π



HARMONIC AND QUASIHARMONIC DEGENERACY 489

OζD < OζB U OζD = Oξo [12,20]. Thus it suffices to establish ENeO%P.
Since

every q e Q can be written q = q0 + h with some h e H. We are to show
that q 0 P. Set

q = qo + h(0) + k , keH, k(0) = 0 ,

where λ(0), k(0) are the values at the origin. By the mean value theorem
there exists, for every rΛ, an θn = (0Γ, •••, 0£_x) such that &(rΛ, θ

n) = 0.
If {rΛ}S° is an increasing sequence with rn —• oo, then

and therefore q $ P.

4. It remains to show that ENeOqLP. Again we start with p = 1.
For <? e Q, # = g0 + MO) + &, we have

ft(O) = 1 H F = 0 ,

and therefore

The integrand (with respect to drdθ1 dθN_x) is ^ cr2rN~ι, hence || # Hi = °°,
and ENe0%Lu

In the case p > 1, the choice φ{r) e C[0, oo), 9?(r) = r~
{N+1)lP' ΐor r :> 1

gives ||9>||p' < oo. If there exists a qeQLp, q = q0 + h(0) + &, then by
(Jc9 φ) = 0, the integrand in (q, φ) = (g0 + A'(O), 9) is asymptotically

The exponent dominates N/p, hence \(q, φ)\ = 00, in violation of ||9>IIP' < °°
The proof of Theorem 1 is herewith complete.

5. In view of the Euclidean JV-ball it is trivial that O£x f)δ%YΦ 0
for X, Y = P, B, D, C, Lp; 1 ^ p < oo; N ^ 2. Our next problem is to
find an iV-manifold which carries HX functions but no Q Γ functions.

THEOREM 2. 0%x n 0%Y Φ 0 /or X, Y = P, B, C, D, Lp; 1 ^ p < oo;

iSΓ^ 2.

The proof will be given in Nos. 6-10.

6. For X, Y = P, J5, D, C it suffices to show that 0 ^ f)O%PΦ 0 .
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Consider the "beam"

T = {(x, ylf , yN^) 11 x \ < oo, | Vt | ^ 1, i = 1, . . . , N - 1} ,

with each face yt = 1 identified with the opposite face yt = — 1 by a
parallel translation perpendicular to the £-axis. Endow T with a metric
with volume element V g dxdyγ dyN-.lf where g is the determinant of
the metric tensor {giά) with inverse (gij). Let each gi3' depend on x only
and set

p(x) = vU(x) , σ(x) = gn(x) .

Then ho(x) is harmonic if and only if

Ah0 = -p-'ipσhΌ)' = 0 ,

that is,

hQ(x) = c I p~ισ~ιdt .

The Dirichlet integral over the subspace from — x to x is

Dx(h0) = c[X K2σpdt = c[* p - ' σ - ' d t .
J-x J-x

We recall (loc. cit.) that a manifold belongs to 0%P if and only if the
potential Gl of the constant function 1,

g(ζ,v)dV(y)

exists at some, and hence every, ξe T. In the present case this potential
depends on the ^-coordinate x(ξ) of ξ only, and we can use the notation
Gl(#). Suppose Gl(x) exists. Since AGl(x) = 1,

Gl(x) = qo(x) + hQ(x) ,

where

= — \ p~ιo~ι I pdsdt
Jo Jo

is quasiharmonic by Δtfo = —p'KpσQo)' = 1. Our problem thus reduces to
finding functions p(x), σ(x) such that

Γ p-'σ-'dteB,
J-x

S x rt

p^σ'11 ρ(s)dsdt —* oo as x
o Jo

The choice p — 1, σ — 1 + x2 gives
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Γ ρ-ισ~ιdt = [' (1 + tT'dt = arctan xeHD ,
Jo Jo

hence TeO%D. An arbitrary ho(x)eH is

hQ(x) = a arctan x + b ,

and

Γ i x2) ,l + fΓtdt
2

which tends to — °o as | x \ —> oo. Therefore Gl = q0 + h0 —+ — °°, Gl $ P,
and consequently ΓeOρP.

The relation 0 ^ n OqP we have thus established can be generalized
to polyharmonic functions [3].

7, The relation

oN

HLP r\0N

qτΦ 0

was proved in [1] for Y = P, B, D, C; 1 <; p < oo JV ^ 2. We proceed to
show that

oN

HX n o & , ^ 0
for X = P, 5, D, C; 1 ^ p < oo N^2. Consider the manifold

T: {(x, ylf , yN-x) \ x > 1, | yt \ ̂  π, i = 1, . . . , N - 1} .

It shall be henceforth tacitly understood that the opposite faces yt = π
and yt = — TΓ of such "beams" are identified by pairs as in No. 6. For
the metric we choose

ds2 = dx2 + aP*"-1* Σ dy\ ,

with a a constant > 1.
To show that TeON

HX it suffices to take X = C. The function x~a+1

is in HB, by virtue of

Λαrα+1 = ~^-α(r(χ-α + 1)')' = 0 .

Moreover,

D(x~a+1) = c Γ (ίc~α)2α;α^ < oo .

Therefore TeO%c.

8. To prove TeOqLP we first take p = 1. Since
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every qeQ can be written

q = Qo + aχ-«+ί + 6 + Σ'fn{x)Gn{y) ,

where fnGn e H and Gn ranges over all products of the form

GM=nC?*niyi
i=i sin

with n = (nu ••-, nN^) Φ (0, , 0). Since ί fnGΛdV = 0 ,
Jr

llffll^l \τ(qQ + aχ-^ + b)dV .

The integrand is ~ ez2+α, hence | |g | | i = °° and Γ e O Q V
Now let p > 1, and p ' as before. The function <p(x) = ar ( α + p ' ) / p ' be-

longs to Lpf by virtue of

If there exists a qeLp, then |(?, 0>)| < °o. On the other hand,

I (Qt <p) I = I ( (Qo + α a .-«+ι + b)χ-{*+>f)i>'dV ,

where the integrand with respect to dxάy^ dyN^ is asymptotically
xalP+1. A fortiori |(g, 9>)| = ©o, and the contradiction gives T£OQLP.

9. It remains to show that

oN

HLs n oN

qLt Φ 0

for 1 ^ 8 < oofl^t< oo. First fix £ and consider the manifold

T = {(a?, y lf , y^-O \x > 1, I ^ I ̂  π, ί = 1, . . , N - 1}

with the metric

The function ho(x) = β " β - β / f belongs to HL 8 , and T 6 θ ^ L 8 .

10. To see that Te 0%Lt, note that qo(x) = te~xίt e Q. Every q e Q has
the form

q = q0 + ah0 + 6

For t = 1,

|i ^ c ί + αfto +
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If b Φ 0, then the integrand is ~ be*, and Hgl^rroo. If 6 = 0, the
dominating term in the integrand is qQex, so that again 11 QΓ I Is. = °°> and
TeO»Lu

In the case t > 1, take £' such t h a t 1/ί + 1/έ' = 1. The function

φ(x) = e~xlt'x~ι belongs to Z Λ If there exists a g e QL*, then | {q, φ) | < oo.

But

I to, Ψ) I = I (ffo + ah0 + b + Σ'fnGn, φ) I = I too + α/*o + 6, ψ) I .

If 6 Φ 0, the integrand is ~ be~xlt'x~ιex = bexltx~\ and we have the con-
tradiction \(qfφ)\ = oo. If 6 = 0, since ^0 dominates h09 the integrand
is asymptotically

ce-!t-mtt'χ-ιea = ra"1 ,

and again we have divergence. Therefore T^OqLt.
The proof of Theorem 2 is herewith complete.

11. Our final problem is to find iSΓ-manifolds which carry QY func-
tions but no HX functions. For X, Y other than Lp we only have two
fragmentary results, both quite immediate. First, 0%D Π OQC Φ 0 for
N ^ 5 is a consequence of what is known of the Poincare iV-ball Bξ,
that is, the ball {r < 1} with the metric ds = (1 — r 2)α | dx |, α a real con-
stant. It was shown in [5] that Bξ e ON

HD if and only if | α \ ̂  (N - 2)"1,
N ^ 3, and in [26] that

if and only if -3/(2V+ 2 ) < α: < 1/(2V- 2), ^ ^ 3 . A fortiori,

if and only if — 3/(iSΓ + 2 ) < α ^ — 1/(JSΓ - 2).
Another result, ON

HD nO%BΦ 0 and ON

HD f)O%PΦ 0, both for ^ ^ 4 ,
is also offered by Bξ. We know [26] that B%eO%B if and only if — 1 <
α < 1/(N — 2), and Bξ e O^F is characterized by the same range of α.
As a consequence,

if and only if - 1 < α ^ -1/(ΛΓ - 2).

12. In the case of Lp functions we have a complete result:

THEOREM 3. ON

HX f)d%rΦ0forX=Lp, Y = P, B, D, C, 1 ^ p< «>,
i\Γ^2; X= P,B,D, C, Y= Lp, l^p< oo,N^2; αndX=L% Y=L\
l ^ s < o o , l ^ ί < o o , iSΓ^2.

The proof will be given in Nos. 13-14.
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13. The first case,

oN

HLP n oN

qτ Φ 0
for Y= P, B, D, C, 1 ^ p < oo, JV^ 2, was established in [1], and we
proceed to the case 0N

HX Π 0$LP Φ 0 for X = P, B, D, C, 1 ^ p< oo, N ^ 2.
It suffices to prove

oN

HP n oN

qLP Φ 0 .
Take the manifold

T={(x,yu •• , ^ _ 1 ) | | x | < oo,\yt\£l,i = l9...,N-l)

with the metric

ds2 = e~χ2dx2 + e-χ2l{N~l) Σ ! dy\.
1 = 1

Since xeH, T is parabolic, hence in 0%P. The function

ίo(a?) = -[* [*e-°2dsdt
Jo Jo

is quasiharmonic and for 1 ^ p < oo

\qo\
pe-χ2dx< oo .

o

In fact, I q0 \
p ^ I Γ adx * ^ αp | x \\ where α = \ e~t2dt. Therefore Te 0%LP.

14. The remaining case of Theorem 3 is

oN

HLs n o$Lt Φ 0

for l ^ s < ° o , l ^ ί < o o , N^2. Take the AΓ-space M with the metric

ds2 = <p(r)drz + ^(r)1/^-^ 5 !

where <p, | eC[O, oo) and the λ* are trigonometric functions of θ =
(0i, , ^-i) such that the metric is Euclidean for r ^ 1/2. For r ^ 1
we choose

The volume element of M for r ^ 1 is simply drdθι dθN_1.
To prove MeO%L8 take a nonconstant

ΛefΓ, h

In each term, if fn & 0, then by the maximum principle, fn(r) Φ 0 for
every r > 0, and l i m ^ / ^ r ) =̂  0, so that \fn(r) \ > cn > 0 for r > 1, say.
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For some nQ, fno =£ 0. Take a function ρ(r) e C[0, oo) with p(r) = 1/r for
r ^ 1, and set φ = ρSno. Since ||/0|| f, < oo, \\φ\\8, < oo. It heL8, then
l(λ, 0>)| < «>. But

I (*,?>) I = α + 6 S oo

where \fnj> | ^ enjr and fno is of constant sign, hence | (h, φ) | = oo. This
contradiction gives Me 0%Ls.

To see that MeOqLt, 1 <S ί < oo, we note that the function

Qo(r) = ( φll2ψ~112 Γ .
Jr JO

is quasiharmonic and ||?0||« < °°.
This completes the proof of Theorem 3.

The authors are indebted to Professor Cecilia Wang for a careful
checking of the manuscript.
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