CRITERIA FOR THE NORMALITY OF A COMPACT OPERATOR

Koh-Ichi Kitano

(Received October 14, 1975)

We present in this note some criteria for the normality of a compact operator on the result of J. R. Ringrose [5] that every compact operator has a maximal nest of invariant subspaces. The main result of this note is a generalization of the known result (see, p. 93 of [3] or [1]).

Throughout this note \mathscr{C} denotes a complex Hilbert space, operator and subspace mean a bounded linear operator and a closed linear manifold, respectively. Now suppose that T is a compact operator acting in \mathscr{H}. The operator $T^{*} T$ is positive and compact, that has a unique non-negative square root which is also compact. The characteristic numbers of T are defined to be the eigenvalues $\mu_{1}, \mu_{2}, \cdots, \mu_{n}, \cdots$ of $\left(T^{*} T\right)^{1 / 2}$ enumerated with their multiplicities; we arrange them in decreasing order. For $1 \leqq p<\infty$, we define $|T|_{p}$ to be $\left\{\sum_{j} \mu_{j}^{p}\right\}^{1 / p}$. The von Neumann-Schatten class \mathscr{C}_{p} is the set of all compact operators for which $|T|_{p}$ is finite. The class \mathscr{C}_{p} is a two-sided ideal in $\mathscr{B}(\mathscr{H})$ (the algebra of all operators on \mathscr{H}) which is a Banach algebra under the \mathscr{C}_{p}-norm, $|\cdot|_{p}$ (see, Chap. III of [3]).

Next more general than the characteristic numbers of T, we shall consider the non-negative square roots of the eigenvalues $\nu_{1}, \nu_{2}, \cdots, \nu_{n}, \cdots$, arranged in decreasing order and repeated according to their multiplicities, of $\alpha T^{*} T+(1-\alpha) T T^{*}$, where α is any constant with $0 \leqq \alpha \leqq 1$ and T is a compact operator on \mathscr{H}. We shall denote by $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}, \cdots$ the eigenvalues of T. Suppose that are arranged in order of decreasing absolute value, repeated according to their multiplicities.

A generalization of Weyl's inequality; a set of inequalities comparing $\left|\lambda_{j}\right|$ with ν_{j}, has been found in [K. Fan, 2] (Weyl's inequality is the case for $\alpha=1$).

Let T be an operator on \mathscr{H}. A family \mathscr{F} of subspaces of \mathscr{H} which is totally ordered by the inclusion relation, will be termed a nest of subspaces. If in addition each subspace belonging to \mathscr{F} is invariant under T we shall describe \mathscr{F} as an invariant nest. For nests the following terminologies are contained in [5]. If \mathscr{F} is a complete nest and $F \in \mathscr{F}$, we define $F_{\text {_ }}$ by

$$
F_{-}=\mathrm{V}\{G: G \in \mathscr{F}, G \subsetneq F\} .
$$

If there is no G in \mathscr{F} such that $G \varsubsetneqq F$, we define $F_{-}=\{0\}$. If T is a compact operator, then there exists a maximal invariant nest \mathscr{F}, i.e., the quotient space F / F_{\ldots} is at most one-dimensional for every F in \mathscr{F} [J. R. Ringrose, 5].

If \mathscr{F} is a set of subspaces of \mathscr{H}. A linear combination of two operators that leaves \mathscr{F} invariant is another such operator, and the same is true of their product, the identity operator I leaves every F in \mathscr{F} invariant. In other words, the set of all operators that leave \mathscr{F} invariant is always an algebra containing I, it will be denoted in this note by Alg \mathscr{F}.

In [J. A. Erdos, 1] a simple proof of Lidskii's theorem [4] is given based on the fact that every compact operator has a maximal invariant nest.

1. Preliminary results. From the theory of triangular forms, the lemma below summarizes the required results [1,5].

Lemma 1. Let T be a compact operator on \mathscr{H} and let \mathscr{F} be a maximal invariant nest for T. Then T is uniquely represented in the form

$$
T=D+V
$$

where D, D^{*} and V are all members of $\operatorname{Alg} \mathscr{F}, D$ is normal and V is quasinilpotent.

The eigenvalues of T and D coincide and have the same multiplicities.

The compact operator T is quasi-nilpotent if and only if $T F \subset F_{-}$ for all F in \mathscr{F} and consequently the compact quasi-nilpotent operator of $\mathrm{Alg} \mathscr{F}$ form a two-sided ideal of $\mathrm{Alg} \mathscr{F}$.

Moreover, if the operator T belongs to the class \mathscr{C}_{p} for $1 \leqq p<\infty$, then D and V belong to the same class \mathscr{C}_{p}.

Lemma 2. If an operator A belongs to the class \mathscr{C}_{p} for $1 \leqq p<\infty$, then

$$
\sum_{l}\left|\left(A \phi_{c}, \psi_{c}\right)\right|^{p} \leqq|A|_{p}^{p}
$$

where $\left\{\phi_{c}\right\}$ and $\left\{\psi_{c}\right\}$ are any orthonormal bases of \mathscr{H}.
Proof. We note if $A \geqq 0,1 \leqq p<\infty$ and ϕ is any unit vector in \mathscr{H}, then we have

$$
(A \phi, \phi)^{p} \leqq\left(A^{p} \phi, \phi\right)
$$

In fact, let $E(\cdot)$ denote the spectral resolution of A. Then we have from the Hölder's inequality,

$$
\begin{aligned}
(A \phi, \phi) & =\int_{0}^{\infty} \lambda(E(d \lambda) \phi, \phi) \\
& \leqq\left\{\int_{0}^{\infty} \lambda^{p}(E(d \lambda) \phi, \phi)\right\}^{1 / p}\left\{\int_{0}^{\infty} 1^{p /(p-1)}(E(d \lambda) \phi, \phi)\right\}^{(p-1) / p} \\
& =\left(A^{p} \phi, \phi\right)^{1 / p}|\phi|^{2(p-1) / p}=\left(A^{p} \phi, \phi\right)^{1 / p}
\end{aligned}
$$

By the above considerations and the polar representation of $A ; A=$ $U\left(A^{*} A\right)^{1 / 2}$,

$$
\begin{aligned}
\sum_{c}\left|\left(A \phi_{l}, \psi_{c}\right)\right|^{p} & =\sum_{c}\left|\left(U\left(A^{*} A\right)^{1 / 2} \phi_{l}, \psi_{c}\right)\right|^{p} \leqq \sum_{c}\left|\left(A^{*} A\right)^{1 / 2} \phi_{t}\right|^{p}\left|\psi_{l}\right|^{p} \\
& =\sum_{l}\left(\left(A^{*} A\right) \phi_{c}, \phi_{c}\right)^{p / 2} \leqq \sum_{l}\left(\left(A^{*} A\right)^{p / 2} \phi_{t}, \phi_{c}\right) \\
& =\operatorname{tr}\left(A^{*} A\right)^{p / 2}=|A|_{p}^{p}
\end{aligned}
$$

2. Necessary and sufficient conditions that a compact operator be normal. The following result has been found by K. Fan [2].

Lemma 3. Let T be a compact operator on \mathscr{H}. Let the eigenvalues of T and the non-negative square roots of the eigenvalues of

$$
\alpha T^{*} T+(1-\alpha) T T^{*}
$$

for any constant $\alpha, 0 \leqq \alpha \leqq 1$, be denoted by λ_{j} and $\nu_{j}(j=1,2,3, \cdots)$ with their multiplicities. Suppose that are arranged in order of decreasing absolute value, respectively. Then we have

$$
\nu_{1} \nu_{2} \cdots \nu_{k} \geqq\left|\lambda_{1} \lambda_{2} \cdots \lambda_{k}\right| \quad(k=1,2,3, \cdots) .
$$

By virture of this lemma and Lemma 3.4 [p.37, 3] is applicable to the numbers $a_{j}=\log \left|\lambda_{j}\right|, b_{j}=\log \nu_{j}(j=1,2,3, \cdots)$ and the function $\Phi(t)=(\exp t)^{p}$ for $1 \leqq p<\infty$. From this one obtains the relations

$$
\sum_{j=1}^{k}\left|\lambda_{j}\right|^{p} \leqq \sum_{j=1}^{k} \nu_{j}^{p} \quad(k=1,2,3, \cdots) .
$$

In particular, if a compact operator T belongs to the class $\mathscr{C}_{p}(1 \leqq p<$ ∞), then $T^{*} T$ and $T T^{*}$ belong to the class $\mathscr{C}_{p / 2}$. Thus we have

$$
\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p} \leqq \sum_{j=1}^{\infty} \nu_{j}^{p}<\infty
$$

Next we will give proofs of some criteria for the normality of a certain compact operator.

Theorem 4. If a compact operator T belongs to the class \mathscr{C}_{p} (for some $p, 1 \leqq p<\infty$), then the following are equivalent:
(i) T is a normal operator;
(ii) there exists a constant α with $0 \leqq \alpha \leqq 1$ such that

$$
\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p}=\sum_{j=1}^{\infty} \nu_{j}^{p} \quad\left(=\left|\alpha T^{*} T+(1-\alpha) T T^{*}\right|_{p / 2}^{p / 2}\right) .
$$

where λ_{j} and ν_{j} are as the same as in Lemma 3.
Proof. The fact that (i) implies (ii) is elementary. Let us go on to the proof of the converse implications. Let \mathscr{F} be a maximal invariant nest for T and write $T=D+V$ as in Lemma 1.
(A) We first prove that (ii) implies (i) for $p=2$. By virture of Lidskii's theorem [4, 1] and Lemma 1 we show that

$$
\operatorname{tr}(D V)=\operatorname{tr}\left(D^{*} V\right)=0
$$

We have from the results in Chap. III of [3], $\alpha T^{*} T+(1-\alpha) T T^{*} \in \mathscr{C}_{1}$ and

$$
\operatorname{tr}\left(\alpha T^{*} T+(1-\alpha) T T^{*}\right)=\operatorname{tr}\left(D^{*} D\right)+\alpha \operatorname{tr}\left(V^{*} V\right)+(1-\alpha) \operatorname{tr}\left(V V^{*}\right)
$$

that is

$$
\begin{aligned}
\sum_{j=1}^{\infty} \nu_{j}^{2} & =\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{2}+\alpha|V|_{2}^{2}+(1-\alpha)\left|V^{*}\right|_{2}^{2} \\
& =\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{2}+|V|_{2}^{2}
\end{aligned}
$$

Therefore (ii) is equivalent to $|V|_{2}=0$, this implies that $V=0$ and hence T is normal.
(B) For $1 \leqq p<2$, if $T \in \mathscr{C}_{p}$ and

$$
\sum_{j=1}^{\infty} \nu_{j}^{p}=\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p},
$$

then $T \in \mathscr{C}_{2}$ and

$$
\sum_{j=1}^{\infty} \nu_{j}^{2}=\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{2} .
$$

Therefore this case can be reduced the case for $p=2$.
In fact, Lemma 3.4 [p. 37; 3] is applicable to the numbers $a_{j}=\log \left|\lambda_{j}\right|$, $b_{j}=\log \nu_{j}(j=1,2,3, \cdots)$ and the strictly convex function $\Phi(t)=(\exp t)^{p}$. Thus the relation (ii) will hold if and only if $\left|\lambda_{j}\right|=\nu_{j}(j=1,2,3, \cdots)$.
(C) For $p>2$, let $K=\left(D^{*} D\right)^{p / 4-1 / 2}$. Let F be an arbitrary subspace in \mathscr{F} and let P be the orthogonal projection onto F. Since F is invariant under the operators D and D^{*} (i.e., F is the reducing subspace of D), thus $P D=D P$. According the above operator K belongs to the second commutant of D, it follows that $K \in \mathrm{Alg} \mathscr{F}$. We note the normality
of D implies that $K D$ and $D K$ are normal and from the quasi-nilpotentness of V implies that $K V$ and $V K$ are quasi-nilpotent. By definition of K, $K \in \mathscr{C}_{2 p /(p-2)}$ and $K\left(\alpha T^{*} T+(1-\alpha) T T^{*}\right) K \in \mathscr{C}_{1}$. We note that

$$
\begin{aligned}
\operatorname{tr}\left(K\left(\alpha T^{*} T+(1-\alpha) T T^{*}\right) K\right) & \leqq\left|K\left(\alpha T^{*} T+(1-\alpha) T T^{*}\right) K\right|_{1} \\
& \leqq\left|\alpha T^{*} T+(1-\alpha) T T^{*}\right|_{p / 2}\left\{|K|_{2 p /(p-2)}\right\}^{2}
\end{aligned}
$$

Next, by virture of Lemma 1 and Lemma 3,

$$
\begin{aligned}
|K|_{2 p}^{p /(p-2)} \mid(p-2) & \leqq\left|\left\{\alpha T^{*} T+(1-\alpha) T T^{*}\right\}^{p / 4-1 / 2}\right|_{\left(2 p /(p-2) \mid(\mid /(p-2)\}^{-1}\right.}^{p / p-1} \\
& \leqq\left|\alpha T^{*} T+(1-\alpha) T T^{*}\right|_{p \mid 2}^{p / 4},
\end{aligned}
$$

therefore we have

$$
\left\{|K|_{2 p /(p-2)}\right\}^{2} \leqq\left|\alpha T^{*} T+(1-\alpha) T T^{*}\right|_{p \mid 2}^{(p-2) / 2}
$$

Summarizing of the aboves we have

$$
\operatorname{tr}\left(K\left(\alpha T^{*} T+(1-\alpha) T T^{*}\right) K\right) \leqq\left|\alpha T^{*} T+(1-\alpha) T T^{*}\right|_{p \mid 2}^{p / 2}
$$

Now it is easy to verify that

$$
\operatorname{tr}\left\{(D K)^{*}(D K)\right\}=\operatorname{tr}\left\{(K D)(K D)^{*}\right\}=|K D|_{2}^{z}=|D|_{p}^{p}
$$

By the considerations of the aboves and Lemma 1,

$$
\begin{aligned}
\operatorname{tr}\left(K\left(\alpha T^{*} T+(1-\alpha) T T^{*}\right) K\right) & =\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p}+\alpha|V K|_{2}^{2}+(1-\alpha)|K V|_{2}^{2} \\
& \leqq\left|\alpha T^{*} T+(1-\alpha) T T^{*}\right|_{p / 2}^{p / 2}
\end{aligned}
$$

Hence, if $0<\alpha<1$, the given relation shows that $|K V|_{2}=0$ and $|V K|_{2}=$ 0 , that is

$$
\begin{equation*}
K V=V K=0 \tag{1}
\end{equation*}
$$

If $\alpha=0$, we have $K V=0$; if $\alpha=1$, we have $V K=0$, respectively. Another by virture of similar arguments one obtains that $V K=0$ in the case of $\alpha=0$ and $K V=0$ in the case of $\alpha=1$, respectively. Therefore the given condition (ii) implies in any case that the relation (1) hold.

Now, if E is the orthogonal projection onto the range of D, we have from the relation (1)

$$
\begin{equation*}
V E=E V=0 \tag{2}
\end{equation*}
$$

We complete the proof by showing that

$$
\begin{equation*}
V(I-E)=0 \quad \text { or } \quad V^{*}(I-E)=0 \tag{3}
\end{equation*}
$$

Note that for any two orthonormal sets $\left\{\phi_{c}\right\}$, $\left\{\psi_{c}\right\}$, from Lemma 2

$$
\sum_{l}\left|\left(\left\{\alpha T^{*} T+(1-\alpha) T T^{*}\right\} \phi_{\iota}, \psi_{\iota}\right)\right|^{p / 2} \leqq\left|\alpha T^{*} T+(1-\alpha) T T^{*}\right|_{p / 2}^{p / 2}
$$

Let ϕ_{0} be an arbitrary unit vector in the range of $I-E$ and let $\phi_{l}=$ $\psi_{c}=\chi_{c}$ where $\left\{\chi_{c}\right\}$ is a set of eigenvectors of D which is complete in the range of D. Since from the relation (2) and $T=D+V$, for each ς

$$
T \chi_{t}=D \chi_{t}=\lambda_{t} \chi_{t}, \quad T^{*} \chi_{t}=D^{*} \chi_{t}=\bar{\lambda}_{t} \chi_{t},
$$

it follows that

$$
\begin{aligned}
& \left|\left(\left\{\alpha T^{*} T+(1-\alpha) T T^{*}\right\} \phi_{0}, \phi_{0}\right)\right|^{p / 2}+\sum_{l}\left|\lambda_{l}\right|^{p} \\
& \quad=\left|\left(\left\{\alpha T^{*} T+(1-\alpha) T T^{*}\right\} \phi_{0}, \phi_{0}\right)\right|^{p / 2}+\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p} \\
& \quad \leqq \sum_{j=1}^{\infty} \nu_{j}^{p}
\end{aligned}
$$

Since $T \phi_{0}=V \phi_{0}, T^{*} \phi_{0}=V^{*} \phi_{0}$, we have from the given relation (ii)

$$
\alpha\left(V \phi_{0}, V \phi_{0}\right)+(1-\alpha)\left(V^{*} \phi_{0}, V^{*} \phi_{0}\right)=0
$$

Thus we have the relation (3) (if $\alpha=0, \alpha=1$ and $0<\alpha<1$, then $V^{*}(I-E)=0, \quad V(I-E)=0$ and $\quad V(I-E)=V^{*}(I-E)=0$, respectively). Hence, by virture of the relations (2) and (3) implies that $V=0$. Therefore $T=D$, that is normal. This completes the proof of Theorem 4.

Remark. For a compact operator T belonging to $\mathscr{C}_{p}(1 \leqq p<\infty)$, if there exists a constant $\alpha(0 \leqq \alpha \leqq 1)$ such that the equality (ii) in Theorem 4 holds, then for any constant $\alpha(0 \leqq \alpha \leqq 1)$ the equality (ii) holds.

Similar arguments in the proof of Theorem 4 implies that the following theorem holds.

Theorem 5. (cf. p. 58 Theorem 6.1 in Chap. II of [3], [1]) Let T be a compact operator belonging to the class $\mathscr{C}_{p}(1 \leqq p<\infty)$. Then the following are equivalent:
(i) T is a normal operator;
(ii) $\sum_{j=1}^{\infty}\left|\mathscr{R} \lambda_{j}\right|^{p}=|\mathscr{R} T|_{p}^{p}$;
(iii) $\sum_{j=1}^{\infty}\left|\mathscr{J} \lambda_{j}\right|^{p}=|\mathscr{J} T|_{p}^{p}$,
where $\mathscr{R} T=\left(T+T^{*}\right) / 2, \mathscr{F} T=\left(T-T^{*}\right) / 2 i$ and $\mathscr{R} \lambda_{j}, \mathscr{J}_{\lambda_{j}}$ are the real part and the imaginary part of λ_{j}, respectively.

References

[1] J. A. Erdos, On the trace of a trace class operator, Bull. London Math. Soc., 6 (1974), 47-50.
[2] K. FAN, On a theorem of Weyl concerning eigenvalues of linear transformations. II,

Proc. Nat. Acad. Sci. USA., 36 (1950), 31-35.
[3] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non-selfadjoint operators, Translations of Mathematical Monographs, vol. 18, American Mathematical Society, Providence, R.I., 1969.
[4] V. B. LidskiI, Non-selfadjoint operators with a trace, Dokl. Akad. Nauk SSSR., 125 (1959), 485-487; English Transl. Amer. Math. Soc. Transl. Ser II., 47 (1965), 43-46.
[5] J. R. Ringrose, Super-diagonal forms for compact linear operators, Proc. London Math. Soc., Ser. III., 12 (1962), 367-384.
Department of Mathematics
Tôhoku University
College of General Education
Kawauchi, Sendai, Japan

