CRITERIA FOR THE NORMALITY OF A COMPACT OPERATOR

Koh-ichi Kitano

(Received October 14, 1975)

We present in this note some criteria for the normality of a compact operator on the result of J. R. Ringrose [5] that every compact operator has a maximal nest of invariant subspaces. The main result of this note is a generalization of the known result (see, p. 93 of [3] or [1]).

Throughout this note \mathscr{H} denotes a complex Hilbert space, operator and subspace mean a bounded linear operator and a closed linear manifold, respectively. Now suppose that T is a compact operator acting in \mathscr{H} . The operator T^*T is positive and compact, that has a unique non-negative square root which is also compact. The characteristic numbers of T are defined to be the eigenvalues $\mu_1, \mu_2, \dots, \mu_n, \dots$ of $(T^*T)^{1/2}$ enumerated with their multiplicities; we arrange them in decreasing order. For $1 \leq p < \infty$, we define $|T|_p$ to be $\{\sum_j \mu_j^p\}^{1/p}$. The von Neumann-Schatten class \mathscr{C}_p is the set of all compact operators for which $|T|_p$ is finite. The class \mathscr{C}_p is a two-sided ideal in $\mathscr{B}(\mathscr{H})$ (the algebra of all operators on \mathscr{H}) which is a Banach algebra under the \mathscr{C}_p -norm, $|\cdot|_p$ (see, Chap. III of [3]).

Next more general than the characteristic numbers of T, we shall consider the non-negative square roots of the eigenvalues $\nu_1, \nu_2, \dots, \nu_n, \dots$, arranged in decreasing order and repeated according to their multiplicities, of $\alpha T^*T + (1 - \alpha)TT^*$, where α is any constant with $0 \leq \alpha \leq 1$ and Tis a compact operator on \mathscr{H} . We shall denote by $\lambda_1, \lambda_2, \dots, \lambda_n, \dots$ the eigenvalues of T. Suppose that are arranged in order of decreasing absolute value, repeated according to their multiplicities.

A generalization of Weyl's inequality; a set of inequalities comparing $|\lambda_j|$ with ν_j , has been found in [K. Fan, 2] (Weyl's inequality is the case for $\alpha = 1$).

Let T be an operator on \mathcal{H} . A family \mathcal{F} of subspaces of \mathcal{H} which is totally ordered by the inclusion relation, will be termed a nest of subspaces. If in addition each subspace belonging to \mathcal{F} is invariant under T we shall describe \mathcal{F} as an invariant nest. For nests the following terminologies are contained in [5]. If \mathcal{F} is a complete nest and $F \in \mathcal{F}$, we define F_{-} by

$$F_{-} = \bigvee \{G: G \in \mathscr{F}, G \subsetneq F\}.$$

If there is no G in \mathscr{F} such that $G \subseteq F$, we define $F_{-} = \{0\}$. If T is a compact operator, then there exists a maximal invariant nest \mathscr{F} , i.e., the quotient space F/F_{-} is at most one-dimensional for every F in \mathscr{F} [J. R. Ringrose, 5].

If \mathscr{F} is a set of subspaces of \mathscr{H} . A linear combination of two operators that leaves \mathscr{F} invariant is another such operator, and the same is true of their product, the identity operator I leaves every F in \mathscr{F} invariant. In other words, the set of all operators that leave \mathscr{F} invariant is always an algebra containing I, it will be denoted in this note by Alg \mathscr{F} .

In [J. A. Erdos, 1] a simple proof of Lidskii's theorem [4] is given based on the fact that every compact operator has a maximal invariant nest.

1. Preliminary results. From the theory of triangular forms, the lemma below summarizes the required results [1, 5].

LEMMA 1. Let T be a compact operator on \mathscr{H} and let \mathscr{F} be a maximal invariant nest for T. Then T is uniquely represented in the form

$$T = D + V$$

where D, D^* and V are all members of Alg \mathcal{F} , D is normal and V is quasinilpotent.

The eigenvalues of T and D coincide and have the same multiplicities.

The compact operator T is quasi-nilpotent if and only if $TF \subset F_{-}$ for all F in \mathscr{F} and consequently the compact quasi-nilpotent operator of Alg \mathscr{F} form a two-sided ideal of Alg \mathscr{F} .

Moreover, if the operator T belongs to the class \mathscr{C}_p for $1 \leq p < \infty$, then D and V belong to the same class \mathscr{C}_p .

LEMMA 2. If an operator A belongs to the class \mathcal{C}_p for $1 \leq p < \infty$, then

$$\sum_{i} |(A\phi_i, \psi_i)|^p \leq |A|_p^p$$

where $\{\phi_i\}$ and $\{\psi_i\}$ are any orthonormal bases of \mathcal{H} .

PROOF. We note if $A \ge 0$, $1 \le p < \infty$ and ϕ is any unit vector in \mathscr{H} , then we have

$$(A\phi, \phi)^p \leq (A^p\phi, \phi)$$
.

460

In fact, let $E(\cdot)$ denote the spectral resolution of A. Then we have from the Hölder's inequality,

$$egin{aligned} &(A\phi,\,\phi) = \int_{0}^{\infty} \lambda(E(d\lambda)\phi,\,\phi) \ &\leq \left\{ \int_{0}^{\infty} \lambda^{p}(E(d\lambda)\phi,\,\phi)
ight\}^{1/p} \left\{ \int_{0}^{\infty} \mathbf{1}^{p/(p-1)}(E(d\lambda)\phi,\,\phi)
ight\}^{(p-1)/p} \ &= (A^{p}\phi,\,\phi)^{1/p} \,|\phi|^{2(p-1)/p} = (A^{p}\phi,\,\phi)^{1/p} \;. \end{aligned}$$

By the above considerations and the polar representation of A; $A = U(A^*A)^{1/2}$,

$$egin{aligned} &\sum_{\iota} |(A\phi_{\iota},\,\psi_{\iota})|^p = \sum_{\iota} |(U(A^*A)^{1/2}\phi_{\iota},\,\psi_{\iota})|^p &\leq \sum_{\iota} |(A^*A)^{1/2}\phi_{\iota}|^p |\psi_{\iota}|^p \ &= \sum_{\iota} \left((A^*A)\phi_{\iota},\,\phi_{\iota}
ight)^{p/2} &\leq \sum_{\iota} \left((A^*A)^{p/2}\phi_{\iota},\,\phi_{\iota}
ight) \ &= \mathrm{tr}\,(A^*A)^{p/2} = |A|_p^p \,. \end{aligned}$$

2. Necessary and sufficient conditions that a compact operator be normal. The following result has been found by K. Fan [2].

LEMMA 3. Let T be a compact operator on \mathcal{H} . Let the eigenvalues of T and the non-negative square roots of the eigenvalues of

$$\alpha T^*T + (1-\alpha)TT^*$$

for any constant α , $0 \leq \alpha \leq 1$, be denoted by λ_j and ν_j $(j = 1, 2, 3, \cdots)$ with their multiplicities. Suppose that are arranged in order of decreasing absolute value, respectively. Then we have

$$|
u_1
u_2\cdots
u_k \ge |\lambda_1\lambda_2\cdots\lambda_k| \quad (k=1,\,2,\,3,\,\cdots).$$

By virture of this lemma and Lemma 3.4 [p. 37, 3] is applicable to the numbers $a_j = \log |\lambda_j|$, $b_j = \log \nu_j$ $(j = 1, 2, 3, \cdots)$ and the function $\Phi(t) = (\exp t)^p$ for $1 \leq p < \infty$. From this one obtains the relations

$$\sum_{j=1}^{k} |\lambda_{j}|^{p} \leq \sum_{j=1}^{k} \nu_{j}^{p} \quad (k = 1, 2, 3, \cdots).$$

In particular, if a compact operator T belongs to the class \mathscr{C}_p $(1 \leq p < \infty)$, then T^*T and TT^* belong to the class $\mathscr{C}_{p/2}$. Thus we have

$$\sum\limits_{j=1}^\infty |\lambda_j|^p \leqq \sum\limits_{j=1}^\infty {\mathcal V}_j^p < \infty$$
 .

Next we will give proofs of some criteria for the normality of a certain compact operator.

THEOREM 4. If a compact operator T belongs to the class \mathscr{C}_p (for some $p, 1 \leq p < \infty$), then the following are equivalent:

K. KITANO

(i) T is a normal operator;

(ii) there exists a constant α with $0 \leq \alpha \leq 1$ such that

$$\sum_{j=1}^{\infty} |\lambda_j|^p = \sum_{j=1}^{\infty} \nu_j^p \quad (= |lpha T^*T + (1-lpha)TT^*|_{p/2}^{p/2}).$$

where λ_j and ν_j are as the same as in Lemma 3.

PROOF. The fact that (i) implies (ii) is elementary. Let us go on to the proof of the converse implications. Let \mathscr{F} be a maximal invariant nest for T and write T = D + V as in Lemma 1.

(A) We first prove that (ii) implies (i) for p = 2. By virture of Lidskii's theorem [4, 1] and Lemma 1 we show that

$$\operatorname{tr}(DV) = \operatorname{tr}(D^*V) = 0.$$

We have from the results in Chap. III of [3], $\alpha T^*T + (1-\alpha)TT^* \in \mathscr{C}_1$ and

$$\operatorname{tr} (\alpha T^*T + (1 - \alpha)TT^*) = \operatorname{tr} (D^*D) + \alpha \operatorname{tr} (V^*V) + (1 - \alpha) \operatorname{tr} (VV^*),$$

that is

$$\sum_{j=1}^\infty
u_j^2 = \sum_{j=1}^\infty |\lambda_j|^2 + lpha |V|_2^2 + (1-lpha) |V^*|_2^2
onumber \ = \sum_{j=1}^\infty |\lambda_j|^2 + |V|_2^2 \ .$$

Therefore (ii) is equivalent to $|V|_2 = 0$, this implies that V = 0 and hence T is normal.

(B) For $1 \leq p < 2$, if $T \in \mathscr{C}_p$ and

$$\sum\limits_{j=1}^\infty {oldsymbol{\mathcal{V}}_j^p} = \sum\limits_{j=1}^\infty |\lambda_j|^p$$
 ,

then $T \in \mathscr{C}_2$ and

$$\sum\limits_{j=1}^\infty oldsymbol{
u}_j^2 = \sum\limits_{j=1}^\infty |\lambda_j|^2$$
 .

Therefore this case can be reduced the case for p = 2.

In fact, Lemma 3.4 [p. 37; 3] is applicable to the numbers $a_j = \log |\lambda_j|$, $b_j = \log \nu_j$ $(j = 1, 2, 3, \cdots)$ and the strictly convex function $\Phi(t) = (\exp t)^p$. Thus the relation (ii) will hold if and only if $|\lambda_j| = \nu_j$ $(j = 1, 2, 3, \cdots)$.

(C) For p > 2, let $K = (D^*D)^{p/4-1/2}$. Let F be an arbitrary subspace in \mathscr{F} and let P be the orthogonal projection onto F. Since F is invariant under the operators D and D^* (i.e., F is the reducing subspace of D), thus PD = DP. According the above operator K belongs to the second commutant of D, it follows that $K \in Alg \mathscr{F}$. We note the normality

462

of D implies that KD and DK are normal and from the quasi-nilpotentness of V implies that KV and VK are quasi-nilpotent. By definition of K, $K \in \mathscr{C}_{2p/(p-2)}$ and $K(\alpha T^*T + (1 - \alpha)TT^*)K \in \mathscr{C}_1$. We note that

$$\mathrm{tr} \left(K(lpha T^*T + (1-lpha)TT^*)K
ight) \leq |K(lpha T^*T + (1-lpha)TT^*)K|_1 \ \leq |lpha T^*T + (1-lpha)TT^*|_{p/2} \{|K|_{2p/(p-2)}\}^2 \,.$$

Next, by virture of Lemma 1 and Lemma 3,

$$egin{aligned} &|K|_{2p/(p-2)}^{p/(p-2)} \leq |\{lpha T^*T + (1-lpha)TT^*\}^{p/4-1/2}|_{(2p/(p-2))}^{p/(p-2)}|_{(4/(p-2))^{-1}} \ &\leq |lpha T^*T + (1-lpha)TT^*|_{p/2}^{p/4} \ , \end{aligned}$$

therefore we have

$$\{|K|_{2p/(p-2)}\}^2 \leq |\alpha T^*T + (1-\alpha)TT^*|_{p/2}^{(p-2)/2}$$

Summarizing of the aboves we have

$${
m tr} \left(K (lpha T^*T + (1-lpha)TT^*) K
ight) \leq |lpha T^*T + (1-lpha)TT^*|_{p/2}^{p/2} .$$

Now it is easy to verify that

$$\operatorname{tr} \{(DK)^*(DK)\} = \operatorname{tr} \{(KD)(KD)^*\} = \|KD\|_2^2 = \|D\|_p^p$$

By the considerations of the aboves and Lemma 1,

$$egin{aligned} & ext{tr} \left(K(lpha T^*T + (1-lpha)TT^*)K
ight) &= \sum\limits_{j=1}^\infty |\lambda_j|^p + lpha |VK|_2^2 + (1-lpha)|KV|_2^2 \ &\leq |lpha T^*T + (1-lpha)TT^*|_{p/2}^{p/2} \,. \end{aligned}$$

Hence, if $0 < \alpha < 1$, the given relation shows that $|KV|_2 = 0$ and $|VK|_2 = 0$, that is

$$KV = VK = 0.$$

If $\alpha = 0$, we have KV = 0; if $\alpha = 1$, we have VK = 0, respectively. Another by virture of similar arguments one obtains that VK = 0 in the case of $\alpha = 0$ and KV = 0 in the case of $\alpha = 1$, respectively. Therefore the given condition (ii) implies in any case that the relation (1) hold.

Now, if E is the orthogonal projection onto the range of D, we have from the relation (1)

$$(2) VE = EV = 0.$$

We complete the proof by showing that

(3)
$$V(I-E) = 0$$
 or $V^*(I-E) = 0$.

Note that for any two orthonormal sets $\{\phi_i\}$, $\{\psi_i\}$, from Lemma 2

$$\sum |(\{lpha T^*T + (1-lpha)TT^*\}\phi_{\iota},\,\psi_{\iota})|^{p/2} \leq |lpha T^*T + (1-lpha)TT^*|_{p/2}^{p/2}$$
 .

K. KITANO

Let ϕ_0 be an arbitrary unit vector in the range of I - E and let $\phi_{\iota} = \psi_{\iota} = \chi_{\iota}$ where $\{\chi_{\iota}\}$ is a set of eigenvectors of D which is complete in the range of D. Since from the relation (2) and T = D + V, for each ι

$$T\chi_{\iota}=D\chi_{\iota}=\lambda_{\iota}\chi_{\iota}$$
 , $T^{*}\chi_{\iota}=D^{*}\chi_{\iota}=\overline{\lambda}_{\iota}\chi_{\iota}$,

it follows that

$$egin{aligned} & (\{lpha T^*T + (1-lpha)TT^*\}\phi_0,\,\phi_0)|^{p/2} + \sum_{\epsilon} |\,\lambda_\epsilon|^p \ & = |(\{lpha T^*T + (1-lpha)TT^*\}\phi_0,\,\phi_0)|^{p/2} + \sum_{j=1}^\infty |\,\lambda_j\,|^p \ & \leq \sum_{j=1}^\infty oldsymbol{
u}_j^p \,. \end{aligned}$$

Since $T\phi_0 = V\phi_0$, $T^*\phi_0 = V^*\phi_0$, we have from the given relation (ii)

$$lpha(V\phi_{\scriptscriptstyle 0}, \ V\phi_{\scriptscriptstyle 0}) + (1-lpha)(\ V^*\phi_{\scriptscriptstyle 0}, \ V^*\phi_{\scriptscriptstyle 0}) = 0$$
 .

Thus we have the relation (3) (if $\alpha = 0$, $\alpha = 1$ and $0 < \alpha < 1$, then $V^*(I - E) = 0$, V(I - E) = 0 and $V(I - E) = V^*(I - E) = 0$, respectively). Hence, by virture of the relations (2) and (3) implies that V = 0. Therefore T = D, that is normal. This completes the proof of Theorem 4.

REMARK. For a compact operator T belonging to \mathscr{C}_p $(1 \leq p < \infty)$, if there exists a constant α $(0 \leq \alpha \leq 1)$ such that the equality (ii) in Theorem 4 holds, then for any constant α $(0 \leq \alpha \leq 1)$ the equality (ii) holds.

Similar arguments in the proof of Theorem 4 implies that the following theorem holds.

THEOREM 5. (cf. p. 58 Theorem 6.1 in Chap. II of [3], [1]) Let T be a compact operator belonging to the class \mathscr{C}_p $(1 \leq p < \infty)$. Then the following are equivalent:

(i) T is a normal operator;

(ii)
$$\sum_{j=1}^{\infty} |\mathscr{R}\lambda_j|^p = |\mathscr{R}T|_p^p;$$

(iii) $\sum_{j=1}^{\infty} |\mathscr{I}\lambda_j|^p = |\mathscr{I}T|_p^p,$

where $\mathscr{BT} = (T + T^*)/2$, $\mathscr{FT} = (T - T^*)/2i$ and \mathscr{B}_{λ_j} , \mathscr{F}_{λ_j} are the real part and the imaginary part of λ_j , respectively.

References

- J. A. ERDOS, On the trace of a trace class operator, Bull. London Math. Soc., 6 (1974), 47-50.
- [2] K. FAN, On a theorem of Weyl concerning eigenvalues of linear transformations. II,

Proc. Nat. Acad. Sci. USA., 36 (1950), 31-35.

- [3] I. C. GOHBERG AND M. G. KREIN, Introduction to the theory of linear non-selfadjoint operators, Translations of Mathematical Monographs, vol. 18, American Mathematical Society, Providence, R.I., 1969.
- [4] V. B. LIDSKII, Non-selfadjoint operators with a trace, Dokl. Akad. Nauk SSSR., 125 (1959), 485-487; English Transl. Amer. Math. Soc. Transl. Ser II., 47 (1965), 43-46.
- [5] J. R. RINGROSE, Super-diagonal forms for compact linear operators, Proc. London Math. Soc., Ser. III., 12 (1962), 367-384.

DEPARTMENT OF MATHEMATICS TOHOKU UNIVERSITY College of General Education Kawauchi, Sendai, Japan