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SOME EXAMPLES OF NON-REGULAR ALMOST CONTACT
STRUCTURES ON EXOTIC SPHERES*
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1. Introduction. Let M be a C°°-manifold of dimension 2n + 1. An
almost contact structure on M is a triple (φ, ζ, rj) of C°°-tensor fields of
type (1, 1), (1, 0) and (0, 1), respectively; such that

(1) η(ξ) — 1, i.e., the contraction of ξ and rj equals 1.
(2) φ\X) = - X + η{X)ζ for all C°°-vector fields X on M.

A manifold with an almost contact structure is called an almost
contact manifold. See S. Sasaki [7], for more details on almost contact
manifolds. An almost contact structure (φ, ζ, rj) is called regular if the
foliation on M given by the maximum integral curves of £ is a regular
foliation in the usual sense, and otherwise called non-regular. A simple
but typical example of an almost contact structure is given by the Hopf

fibration S2n+ί -?-> CPn. This structure on S2n+1 is regular, because the
leaves of the associated foliation are great circles. In fact, any princi-
pal circle bundles over almost complex manifolds can be made into
regular almost contact manifolds in a natural way. Thus, there are
many examples of regular almost contact manifolds. On the other hand,
there seem to be not so many examples of non-regular almost contact
structures on compact manifolds. It is our purpose in this paper to
exhibit, in a unified fashion, some examples of non-regular almost contact
structures on compact manifolds which are given as intersections of
spheres and complex algebraic sets. Furthermore, these almost contact
structures have closed curves as the leaves of the associated foliations.
Many of these manifolds are exotic spheres. Incidentally, it will be
shown that all the odd-dimensional standard spheres have non-regular
almost contact structures whose associated leaves are closed curves.
Finally, the author thanks S. K. Kim for the useful conversations with
him.

2. Brieskorn and weighted homogeneous manifolds. Let (α0, * , c θ
b e a n (n + l ) - t u p l e of p o s i t i v e i n t e g e r s , a n d l e t f(Z0, •••, Zn) — Z%° +

This research was partially supported by NSF Grant GP-43980.



430 K. ABE

• + Zln be a polynomial of complex (n + l)-variables ZQ, , Zn. Then
/ can be regarded as a holomorphic mapping from Cn+1 into C. Denote
by F = V(aQ, •• ,α w ) the locus of the zeros of / in Cu + 1, i.e., V =
{(ZQ, , Z%) 6 C*+1: f(ZQ, •• ,Zn) = 0}, a n d d e n o t e b y ί = Σ(a0, , an)

the intersection of F and the unit sphere S2n+1 in Cn+1, i.e., 2 =
VnS2n+1, where S2*+1 = {(Zo, •••, Zn)eCn+1: \Z0\

2 + . . . + | Z J 2 = 1}. Then
it is easy to see that V has the origin of Cn+1 as its only possible
singular point. Thus, X = X(α0, , αn) = V — {0} is a complex sub-
manifold of C*+1; and therefore, it is a Kahlerian submanifold of Cn+ι

with the induced Hermitian metric. It is well known that Σ = V Π S2n+1 =
XΠ S2n+1 is a compact, smooth and (n — 2)-connected manifold of dimension
2n — l. For the details, see Milnor [6]. We call V and Σ the Brieskorn
variety and the Brieskorn manifold, respectively. Next consider C as the
natural additive Lie group. We introduce a C-action on Cn+1 by

t(Z0, •• ,Zn) = (Zoexp(td/aQ), -- ,Znexv(td/an)) ,

where d is the least common multiple of α0, - , an. Since

(Zo exp (td/ao))a° + - + (Zn exp (td/an))a-

= (exp td)(Z°0° + + Z ) - 0

for all teC, the C-action leaves X invariant. Therefore, C acts on X.
Now if we take t to be purely imaginary numbers, then exp {tdla^s
are elements of the unit circle. Hence, the above C-action restricted to
the imaginary numbers induces a natural S^-action on Σ. This is clear
because this S^-action leaves the unit sphere S2n+1 invariant. Next let
t be real numbers. Then the action of t induces a diffeomorphism
F:Σ x R onto X defined by

F((ZQf , Z%),t) = (Zo exp (ίd/α0), , Zn exp (td/an)) ,

where Σ i U l ^ i l 2 = 1. As for the weighted case, let (w0, -••, wn) be an
(n + l)-tuple of positive rational numbers. Then a polynomial f(ZQf «, Z%)
is said to be weighted homogeneous with weights (wQ, , wn) if / is a
linear combination of monomials Z&Z11 Z\n for which io/wo + h
ijwn = 1. For more details and some examples, see Milnor [6]. As
before, we define V— V(w09 •• , w j to be the locus of the zeros of
f(ZOf , Zn). If F h a s its only possible singular point, X=X(w0, « , wn) =
V - {0} is a Kahlerian submanifold of Cn+1. We denote by Σ =
2X^0, •••,'M Ĵ the intersection of -X" and S2n+1, which is an (n — 2)-con-
nected smooth manifold of dimension 2n — 1. We call V and Σ the
weighted homogeneous variety and the weighted homogeneous manifold
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of weight (w0, , wn), respectively. Set ws = Uj/vjf j = 0, , n, where
Uj and Vj are mutually prime positive integers. Let d be the least common
multiple of (u0, , un). As in the Brieskorn manifold case, C acts on X
by

t ( Z 0 , , Z n ) = ( Z o e x p (td/w0), , Z n e x p ( t d / w n ) ) , f o r a l l ί e C .

It also gives a S'-action on I' induced by its restriction to purely
imaginary numbers.

3. Almost contact structures on Σ. From now on, we shall treat
the Brieskorn manifolds alone, since the same argument works in the
weighted homogeneous case. Let (a0, •••, an) be the given (n + 1) posi-
tive integers, and let f(Z) = Za

0° + + Zl° be the polynomial. It is
well known that each element of the Lie algebra of a Lie transformation
group generates a vector field in a natural way on the manifold on
which it acts. In particular, 1 and V—1 considered to be elements of
Lie algebra of C generate vector fields 2ί and 35 on X given as follows:

St - ((d/ao)Zo, , (d/an)Zn) at (Zo, - , 2 J e I

35 - (V^Ϊ(d/ao)Zo, , V=ϊ(d/an)Zn) at (Zo, • , Zn) e X .

It is clear that these two nowhere vanishing vector fields 2t and 35 are
tangent to the orbit of (ZQ, -—,Zn) of C-action in X. Since 35 = V^Λ or
= 5 and since the complex structure J on X is induced from that of Cn+1,
we see that the tangent space to the orbit of (ZQ, , Zn) is J-invariant.
In fact, each C-orbit in X is a complex curve. It is easy to show that
2t and 35 are orthogonal to each other with respect to the induced
metric from that of Cn+1. Let TX be the tangent bundle of X. Then
TX = A 0 B φ (A 0 J?)1, where A, J3 and ( A 0 5 ) 1 are the line bundle
over X generated by Sί, the line bundle over X generated by 35 and
the orthogonal complement of i φ δ in TX, respectively, and 0 denotes
an orthogonal direct sum. Since X is a Kahlerian manifold and since
A@B is a /-invariant subbundle of TX, (A02J) 1 is also a J-invariant
subbundle of TX. Next, let Σ have the Riemannian metric induced
from that of Cn+1, which is the same metric as the induced metric from
that of S2n+ί or X; and let R have the natural metric. We consider
that Σ x R has the product Riemannian structure. Thus, the tangent
bundle T(Σ x R) has the orthogonal decomposition T(Σ xR) = (Γ2')'0(Γiί)'
with respect to the product metric, where (TΣ)' = (TΣ) x R and (TRY =
Σ x (ΓJK). Since F: Σ x R-+X is a diffeomorphism, we have a C°°-vector
bundle isomorphism F*: T(Σ x R)-+TX such that the following diagram
commutes:
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T(Σ x Λ)-^L> TX

Σ x

Here πx and τr2 are the bundle projections. Denote by F*1 the inverse
isomorphism which covers F~U.X-+Σ x R. By the definition of F, F*1

maps the A-factor of TX onto the (TRY factor of 7X27 x R) and the
.B-f actor of TX into (ΓJ)' factor of T(Σ x /?), respectively. Now if
we denote by Bf the line bundle over Σ x R generated by i<V(23), we
have the following orthogonal decomposition of T(Σ x R) with respect
to the product metric:

T(Σ x R) = (TRY 0 5 ' φ ((TRY 0 By .

Note here that ((TRY 0 Bf)L is actually the orthogonal complement of
B' in (Tiy. We next make a C°°-bundle isomorphism from ( A φ ΰ ) 1

onto ((Ϊ72)' 0 B'Y by making use of Fιι. Let a; be a point of X, and
let v be a vector of ( 4 © δ ) ί , i.e., the fibre of ( i φ δ ) 1 at a?. Then
F*l(v) has the unique decomposition a 0/9 0 7 , where α e (ΓΛ)J.-i(ϊ),
βeB'F-ιix) and Ίe((TR)' @B%-iw. Define a mapping #x by

flrβ: (A 0 5)ί - ((27?)' 0 B%-Mx) by flr.(ι;) - 7 .

It is obvious that gx is linear. Next we show that gx is 1-1; hence
onto, because dim (A 0 B)ϊ = dim ((TΛ)' 0 B')έ-i(ίB) = 2(w - 1). Now let
gx(v) = 0. Then F i^) = ^ 0 / 5 0 0 . Therefore, v = ί 7 ^ - 1 , ^ ^ ^ ) -
i ^ - ^ O z Θ /S) = ^*p~1(S)(α) 0 F*F-i(x)(β). Since the definition of î 7 tells
us that -F7* maps (TRY and JB' onto A and JB, respectively, i; belongs to
( i φ ΰ ) L n ( i 0 S ) = {0}, i.e., v = 0. This shows that ^ is 1-1; hence,
an isomorphism. It is easy to prove that the vector bundle map
g:(A(B B)L ~>((TRY @ B')L which is pointwisely given by gx as above is
a C°°-isomorphism which covers F~\ Now we have come to the defini-
tion of the triple (φ, ζ, η). First of all, we denote by P the natural
projection from Br 0 ((TRY 0 B')L = (TΣ)' onto the second factor
((TRY 0 By. Then define a bundle map φf from (TΣY into itself by
φf = goJog~ιoP, where J is the complex structure restricted to (4 0 B ) 1 .
Define £' = F ŜB). Finally, define rf to be the C°°-section of Horn ((TΣY,
R) given by )/(£') = 1 and η'(T(TRr φ B')1) = 0. It is easy to show that
(φJ(X) = ~ X + ?'(X)ί' for any O-section X of the bundle (TΣY. As
before, we identify (TΣY with (ΓJ) x Λ. Then, for any teR, (φ\ ξ', iff)
restricted to ((TΣ), t) gives a triple (φt, ξt, yt) on Σ which satisfies the
definition of the almost contact structure. We next show that most of
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these structures are non-regular with closed curves as their leaves. As
is mentioned before, the C-action on X restricted to the imaginary
numbers induces the circle action on X given by

t(Z0, ---,Zn) = (Zo exp (V/~^ϊtd/a0)f , Zn exp (V=

where t e S1 = [0, 2π). Since the leaves of the associated foliation of
(Φt, ξt, Vt) are precisely the i^-image of the orbits of the above S1-
action on X, ξt's are the same vector fields for all teR. Thus, it is
sufficient to show that f0 = f is a non-regular vector field. Since we
defined ξ' to be JFV(93) and since F is the identity mapping at t = 0 (or
on 2), the leaves of the associated foliation of (φ0, ξ09 η0) are precisely
the S^orbits on 2. This S^-action gives a non-regular foliation if the
slice diagram of the S^action contains at least two different slice types.
Thus, for most of (n + l)-tuples of positive integers, Σ(a0, , an) = Σ
has a one-parameter family of non-regular almost contact structures
{φt, ζu Vt)- For example, if α0 = 3, aλ = 2, a2 = 2 and α3 = 2, the orbit
of a point (0, Zlf Z2, Z3) such that Z2 + Z2

2 + Z3

2 = 0 and | Z,\2 + \Z2\
2 +

Z3\
2 — 1 is a closed curve, and it is an exceptional orbit with the

isotropy group Z3. Thus, any cubical Frobenius neighborhood meets
some of principal orbits precisely in three distinct slices of the neighbor-
hood.

4. Concluding remarks.

REMARK 1. Brieskorn [3] showed that for n Φ 2 and every (2n — 1)-
dimensional homotopy sphere bounding a parallelizable manifold, there
are infinitely many (n + l)-tuples of positive integers (aOJ an) such
that Σ(aQ, , an) is diffeomorphic to the homotopy sphere. Thus such
homotopy spheres admit non-regular almost contact structures. In parti-
cular, every 7-dimensional homotopy spheres admits a non-regular almost
contact structure. Now let 2X3, 2, . , 2) = F(3, 2, -, 2) f] S2n+1 be a
Brieskorn manifold. It is known that 2X3, 2, , 2) is homeomorphic
to S2"-1 for every odd value of n. If n = 5, 2(3, 2, 2, 2, 2, 2) is an
exotic 9-sphere, and it admits a non-regular almost contact struc-
ture. If n = 3, 2X3, 2, 2, 2) is diffeomorphic to the standard 5-sphere,
since there is no exotic sphere of dimension 5. Therefore, our almost
contact structure on 2T(3, 2, 2, 2) is a non-regular almost contact
structure on S5. If we take a Brieskorn polynomial of the form
f(Z0, , Zn) = Zo° + + Zln such that one of α/s is equal to 1, then
Σ(aQ, — , an) is diffeomorphic to the standard (2n — l)-sphere [6]. Thus,
our almost contact structure on Σ(a0, , an) is a non-regular structure
on S2n~\
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REMARK 2. Σ(l, — , 1) is the total space of the Hopf fibration over
CPn~ι\ therefore, the standard SZn~\ Σ(2, -- ,2) is a circle bundle over
the complex quadric CQn~\ In general, Σ(a, , a) gives the total space
of a circle bundle over a complex submanifold of CPn, i.e., (n — l)-drics.
They, of course, admit a regular almost contact structure. It would
be interesting to ask whether or not an exotic sphere can admit a
regular almost contact structure. To this end, it might be of some
help to observe that some exotic 7-spheres are circle bundle over
6-dimensional manifolds which have the same homotopy type as CPZ.
Also notice that some exotic 7-spheres can be considered as the total
spaces of fiber bundles over S* with S3 as its typical fiber.

REMARK 3. If we consider a finite number of generalized Brieskorn
polynomials or weighted homogeneous polynomials under certain condi-
tions, we can obtain more examples of compact manifold admitting almost
contact structures whose associated foliations have closed curves as their
leaves. Some of them are regular and some are non-regular. In fact,
in the forthcoming paper [1], we study these cases. We show that these
manifolds admit many 1-parameter families of (almost) contact structures.
In particular, one of them is normal; therefore, we are able to introduce
complex structures on products of these manifolds. These complex
structures are closely related to those of Calabi-Eckmann [5] and
Brieskorn-Van de Ven [4].

REMARK 4. It is well known that any orientable submanifold of
codimension 1 of a Kahlerian manifold admits an almost contact structure
which is induced from the complex structure of the Kahlerian manifold
in a natural way. Since our Σ is a codimension one submanifold of X,
Σ certainly admits an almost contact structure. Neither is known to
the author under what conditions our examples and these natural struc-
tures coincide, nor whether the latter is regular (or non-regular).

REMARK 5. Having known that these manifolds admit almost contact
structures, it would be natural to ask whether or not they admit contact
structures. Recently, Erbacher and the author [1] and [2] have shown that
a family of C°°-manifolds which are given as intersections of spheres and
complex algebraic sets admit contact structures (also see [8]). In parti-
cular, all the generalized Brieskorn manifolds belong to this family.

BIBLIOGRAPHY

[ 1 ] K. ABE, On a generalization of the Hopf fibrations, I and II, to appear.
[2] K. ABE AND J. ERBACHER, Non-regular contact structures on generalized Brieskorn



ALMOST CONTACT STRUCTURES 435

manifolds, to appear in the Bulletin of A. M. S.
[ 3 ] E. BRIESKORN, Beispiele zur Differentialtopologie von Singularitaten, Inventiones Math.

2 (1966), 1-14.
[4] E. BRIESKORN AND A. VAN DE VEN, Some complex structures on products of homo-

topy spheres, Topology, Vol. 7 (1968), 389-393.
[5] E. CALABI AND B. ECKMANN, A class of compact complex manifolds which are not

algebraic, Ann. of Math., 58 (1953), 498-500.
[6] J. MILNOR, Singular points of complex hypersurfaces, Annals of Math. Studies 61,

Princeton Press.
[7] S. SASAKI, Almost contact manifolds, Lecture Note, Tόhoku University, 1968.
[8] S. SASAKI AND C.-J. HSU, On a property of Brieskorn manifolds, Tόhoku Math. J., 28

(1976), 67-78.

THE UNIVERSITY OF CONNECTICUT

STORRS, CONNECTICUT 06268






