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1. Introduction. It is well known that a contact manifold admits a
Riemannian metric compatible with the contact structure. While such a
metric is not unique, the contact structure imposes some restriction on
the curvature. For example, if the characteristic vector field ξ of the
contact structure generates a 1-parameter group of isometries, then the
sectional curvature of all plane sections containing ξ is equal to 1 [1]
(1/4 in their normalization). This is a restrictive class, however as the
tangent sphere bundles are usually not of this type (Tashiro [3]). Our
purpose here is to show that the metric cannot in general be flat.
Precisely we prove the following theorem.

THEOREM. Let M be a contact manifold of dimension >̂ 5. Then M
cannot admit a contact metric structure of vanishing curvature.

The author expresses his appreciation to Professor J. Martinet for
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2. Preliminaries. Let M be a (2n + l)-dimensional C°° manifold.
We say that M has an almost contact structure if it admits a tensor
field φ of type (1, 1), a vector field ξ and a 1-form η such that η{ζ) = 1
and φ2 = — I + f] (x) f. From these conditions one can easily obtain φξ = 0
and r]oφ = §. Moreover on a C°° manifold with an almost contact struc-
ture {φ, ξ, η) there exists a Riemannian metric g satisfying

g(φX, φY) = g(X, Y) - V(X)η{Y)

for any two vector fields X and Y on M. Note that rj is the covariant
form of ξ and we call {φ, ξ, η, g) an almost contact metric structure. We
also define a 2-form Φ by Φ (X, Y) = g(X, ψY).

On the other hand we say M has a contact structure if it admits a
global 1-form η such that η Λ {dη)n Φ 0. It is well known that a manifold
with a contact structure η admits an almost contact metric structure
such that

dη(X, Y) = g(X,φY).
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We then say that (φ, ξ, η, g) is a contact metric structure.
On a manifold with an almost contact structure (φ, ζ, η), S. Sasaki

and Y. Hatakeyama [2] defined four tensors Na\ N{2), NiB) and N{i) by

, Y) = [φ, φ](X, Y) + 2dy(X, Y)ξ ,

, Y) =

where [φ, φ] denotes the Nijenhuis torsion of ψ and £>? denotes Lie
differentiation.

It is easy to show that for a contact metric structure N{2) and
Nιi) vanish [2]. Recall that the Riemannian connection 7 of g is given
by

2g(FxY, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y)

+ g([X, Y], Z) + g([Z, X], Y) - g([Y, Z], X).

Using this and the coboundary formula for d one can straightforwardly
obtain a general formula for the covariant derivative of φ for an almost
contact metric structure {ψ, ξ, f], g), namely

(2.1) 2g{(Vxφ)Y, Z) = UΦ(X, φY, φZ) - UΦ{X, Y, Z)

+ g(Nm(Y, Z), ψX) + N™(Y, Z)v(X)

+ 2dy(φY, X)v(Z) - 2dy(φZ, X)y(Y).

We close this section with the following lemma.

LEMMA. On a manifold with a contact metric structure ^fξφ is a
symmetric operator.

PROOF. Note that for a contact metric structure (φ, ξ, ?], g), Fsξ — 0
and Fξφ = 0. Now

, Y) = gψtφX - Fφxξ - φFξX + φFxξ, Y)

= g{-Fφxξ + φFxξ, Y)

which vanishes if either X or Y is ξ. For X and Y orthogonal to ξ,
Nm = 0 becomes rj{[φX, Y\) + η([X, φY\) = 0; continuing the computation
we have

, Y) = WΨXY) + η(FxφY)

η(F9YX)

, X)
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3. Proof of the theorem. For a contact metric structure (φ, ζ, η, g),
Nm = 0 and Φ = d~η, so equation (2.1) becomes

2g((Fxφ)Y, Z) = g(N"(Y, Z), φX) + 2dη{φY, X)y(Z) - 2dV(φZ, X)η(Y) .

Setting Y = ξ and using the Lemma of Section 2 we obtain

-2g(φFxξ, Z) = g(φ*[ξ, Z] - ψ[ξ, φZ], ψX) - 2dy(φZ, X)

, φX) - 2g(φZ, φX)

, X) - 2g(Z, X) + 2η{Z)τQ{X)

, Z) - 2g(X, Z) + 2g(y(X)ξ, Z) ,

that is

ψxξ ,^ψ) - x

Applying ψ we have

(3.1) Fxξ = -\φ{^φ)X - φX .

We denote by Bxγ the curvature transformation FXFT — FYFX — Flx,γ[i.
Then using (3.1)

= ~<PF({[ξ, φX] - φ[ξ, X]) - ψF,X + ±-φ{^φ)[ξ, X] + 9>[£, X]

\ ±-FξFxξ - ±-ψFψU,x,ξ - \ru,nξ - <pFxξ .
Δ Δ Δ Δ

Therefore

(3.2) λ-Rξxξ = ̂ φ(VξVψxξ - Fίξ,φjnξ) + λφΓ^φ)zξ - φVxξ

and hence since M is flat

0 = λ.φ{-Lφ{^φγX - φ(j^ξφ)Xyλ(j^ξφ)X - X + V(X)ξ

h - X

Thus we define a symmetric operator h by h = (l/2)^fξφ and we have
shown that h2 = — φ2; in particular note that h has rank 2n. Clearly
we also have hξ = 0, eigenvectors corresponding to non-zero eigenvalues
are orthogonal to ξ and the non-zero eigenvalues are ± 1 .
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Recall that dη(X, Y) = (l/2)(g(Fxξ, Y) - g(Fγζ, X)) as can be easily
deduced from the eoboundary formula for d. Thus

2g(X, φY) = g(-φhX - <pX, Y) - g{-φKY - φY, X)

giving

g(φhX, Y) = g(φhY, X) = -g(hY, φX) = -g(hφX, Y) ,

that is h and φ anti-commute. In particular then, if X is an eigenvector
of the eigenvalue +1, φX is an eigenvector of —1 and vice-versa.
Thus the contact distribution D defined by η = 0 is decomposed into the
orthogonal eigenspaces of ± 1 which we denote by [ + 1] and [ —1].

We now show that the distribution [ — 1] is integrable. If X and Y
are vector fields belonging to [-1], (3.1) gives Fxξ = 0, Fγζ = 0. Thus
since M is flat 0 - Rχγξ = -FίX)Y]ζ = φh[X, Y] + φ[X, Y]. But η([X, Y]) =
-2dη(X, Y) = 0, thus applying φ we have h[X, Y] - -[X, Y\.

We denote by [ — 1]0[£] the distribution spanned by [ — 1] and ζ, it
is also integrable. For, any vector field belonging to [ — 1] can be written as
φX for some Xe[ + 1]. Thus (3.2) becomes 0 = (l/2)Rζxξ = -(l/2)φFίζ,φx]ξ
and (3.1) shows that [ξ, φX]e[-l].

Since [ — 1] © [ί] is integrable, we can choose local coordinates
{u\---,u2n) such that d/du\ , d/dun 6 [-1] 0 [ξ] and we define local
vector fields Xu i = 1, , n by X, = d/dun+i + Σj^ofίd/du3' where the
/f s are functions chosen so that Xt e [ + 1]. Thus Xlf - , Xn are w linearly
independent vector fields spanning [ + 1]. Clearly [d/duk

9 Xt] e [ — 1] 0 [ξ]
for fc = 0, " 9n and hence ί is parallel along [d/duk, Xt]. Therefore
using (3.1)

0 = F[d/duk,x.^ = Fd/dukFx.ζ - Fx.Fd/dukξ =

from which we have that

(3.3) VΨX.φX, = 0 .

Similarly, noting that [Xif X3] e [ — 1],

0 = RXiXβ = -2FXiφXβ + 2F

giving

(3.4)

or equivalently

(3.5)

Using (3.3) and

0 = B

φ\x»
(3.1)

XiφXjζ —

XΛ

- F ,

?xt<PXS

= -ιy

= VXjφl

zt<P)Xi +

= φh[Xt,
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from which

g([Xt, φXj], Xk) = -g(h[X(, <pXd], Xk) = -g([Xt, <pX,], Xk)

and hence

(3.6) g([Xif φXd]f Xk) = 0.

We now compute {Fx.φ)Xό explicitly. Using (3.3), (3.6) and (3.5)

2g((FXiφ)Xjf Xk) = g([φ, φ](XJf Xk), φXt)

= -g([Xjf Xk], ψXτ)

= g{-<FΣsφ)Xh + (vZhφ)xh xt) .

Since Φ = dη, the sum of the cyclic permutations of ΐ, j , k in
g{{Vx.φ)Xj, Xk) is zero. Thus our computation yields g((Px.φ)Xjf Xk) = 0.
Similarly

2g((FZtφ)Xi9 φXk) = g(-\Xi9 ψXk\ - \φXh Xk], φX.)

= g(-vXjφXk + vΨXkxά - vφx.xk + vZkφXi

which vanishes by (3.3) and (3.4). Finally

2g((FXiφ)Xj, ξ) = g(φ>[XJf ξ] - φ\ψXh ξ], φXd + 2dη(φXjf

- 2g(φhXjf φXτ) + 2g(Xi9 Xt)

- Ag(Xif Xt) .

Thus for any vector fields X and Y in [ + 1],

(3.7) (Fxφ)Y=2g(Xf Y)ξ .

Note that (3.5) now gives [Xif X5\ = 0.
Before differentiating (3.7) we show that FXiXάe[ + l]. First note

that

-2g(FΨXiXJ9 Xk) = 2g((FφXiφ)Xj, φXk) ,

but the right side vanishes by a computation of the type we have been
doing. Therefore

g(FXiXjf φXk) = -g(X3 , FXiφXk) = -g(Xjf [Xi9 φXh\) - 0

by (3.6). That g(Fx.Xjf ξ) = 0 is trivial.
Now to show the non-existence of flat contact metric structures for

dim M ^ 5, we shall contradict the linear independence of the X/s. Note
also that we have so far used only the vanishing of Rxγς. Equation (3.7)
can be written as

VXiψX} - φFXiXs = 2g(X{> X,)ξ .

Differentiating this we have
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- (VXkφ)VΣίXά - φPXhVXiXi

= 2(Xkg(X(, X^ξ - Ag{Xit X3)φXk .

Taking the inner product with φXu remembering (3.7) and that FX.X3- e
[ + 1], we have

g{FxfXiψX3, φXί) - g(FXkFXiX3; X,) = -ig(Xt, X3)g(Xk, Xι).

Interchanging i and k, i Φ k and subtracting we have

o - g(Xίf XMXk, Xι) - g(Xk, XMXi, %ι)

by virtue of the flatness and [Xi9 Xk] = 0. Setting i = j and k = I we
have 0 = g(Xi9 Xx)g{Xky Xk) — g(Xif Xkf contradicting the linear indepen-
dence of Xi and Xk.

4. Remarks. In dimension 3 it is easy to construct flat contact
metric structures. For example, consider R3 with coordinates (X1, X\ X3)
and define a contact structure η by η = (l/2)(cos X3dXL + sin X3dX2).
Then ξ is 2(cos Xsd/dXι + sin X3d/dX2) and the metric g whose components
are giό — (l/4)δo gives a flat contact metric structure. Geometrically we
see that d/dX* spans the [ + 1] distribution and sin X3d/dXι - cos X3d/dX2

spans [ —1], i.e. ζ is parallel along [ — 1] and rotates as we move parallel
to the X3-axis. Note also that η is invariant under the group of trans-
lations generated by {XA -+XΛ -\- 2π, A = 1, 2, 3} and therefore the 3-
dimensional torus Γ3 also carries this structure. It is still an open
question whether or not Tδ carries a contact structure, but if it does it
can not have a flat associated metric.

Constructing the diffeomorphism of R3 that maps this ΎJ to the
standard contact form η0 = (l/2)(dZ — YdX) we see that the metric g0

whose components are given by

makes (Ύ]Q, g0) a flat contact metric structure.
Note that in the proof of our theorem, the vanishing of RξXξ is

enough to obtain the decomposition of the contact distribution into the
± 1 eigenspaces of the operator h = (l/2)£fζφ. Moreover Rχγξ = 0 for X
and Y in [ — 1] is sufficient for the integrability of [ — 1]. Thus we have
the following result.

THEOREM. Let M be a contact manifold of dimension 2n + 1 with
contact metric structure (φ, ξ, Ύ], g). If the sectional curvature of all



FLAT CONTACT METRIC STRUCTURES 379

plane sections containing ζ vanish, then the operator h = (l/2)^fζφ has
rank2n and the contact distribution is decomposed into ± 1 eigenspaces
of h. Moreover if Rχγξ = 0 for X, Γ e [ - 1 ] , M admits a foliation by
n-dimensional integral submanifolds of the contact distribution.

We close with an example of such a structure. Consider on R5 with
coordinates (X1, •••, X5), the standard contact structure

η = —(dX5 - X'dX1 - X'dX2) .

Then rj together with the metric g whose components are given by

xzx*
X"

0

-Xs

l + (xy
0

X5

-X*

Xδ

0

1

0

0

0

X5

0

1

0

-X

-X

0

0

1

is a contact metric structure, g is not flat, but Rζxζ = 0 and Rd/dZ3d/BZ*ξ = 0.
Defining h by h = (l/2)£fξφ, one can easily check that h determines a de-
composition of the contact distribution into ± 1 eigenspaces of h. [ — 1]
is spanned by d/dX3 and d/dX4 and [ + 1] is spanned by d/dX1 - Xδd/dX3 +
X*d/dX5 and d/dX2 - X'd/dX4 + X'd/dX5.
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