Téhoku Math. Journ.
28 (1976), 373-379.

ON THE NON-EXISTENCE OF FLAT CONTACT
METRIC STRUCTURES

Davip E. BLAIR

(Received March 29, 1975)

1. Introduction. It is well known that a contact manifold admits a
Riemannian metric compatible with the contact structure. While such a
metric is not unique, the contact structure imposes some restriction on
the curvature. For example, if the characteristic vector field & of the
contact structure generates a 1-parameter group of isometries, then the
sectional curvature of all plane sections containing £ is equal to 1 [1]
(1/4 in their normalization). This is a restrictive class, however as the
tangent sphere bundles are usually not of this type (Tashiro [3]). Our
purpose here is to show that the metric cannot in general be flat.
Precisely we prove the following theorem.

THEOREM. Let M be a contact mantifold of dimension =5. Then M
cannot admit a contact metric structure of vanishing curvature.
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many valuable conversations.

2. Preliminaries. Let M be a (2n + 1)-dimensional C* manifold.
We say that M has an almost contact structure if it admits a tensor
field @ of type (1, 1), a vector field £ and a 1-form % such that 7(&§) =1
and @* = —I + 7 ® & From these conditions one can easily obtain @& = 0
and 7o® = 0. Moreover on a C* manifold with an almost contact struc-
ture (@, & 1) there exists a Riemannian metric g satisfying

9(PX, 2Y) = 9(X, Y) — p(X)(Y)

for any two vector fields X and Y on M. Note that » is the covariant
form of & and we call (@, &, 9, g) an almost contact metric structure. We
also define a 2-form @ by @ (X, Y) = g(X, #Y).

On the other hand we say M has a contact structure if it admits a
global 1-form % such that 7 A (d9)" = 0. It is well known that a manifold
with a contact structure 7 admits an almost contact metric structure

such that
an(X, Y) = 9(X, Y).
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We then say that (@, &, 7, g) is a contact metric structure.
On a manifold with an almost contact structure (e, ¢, ), S. Sasaki
and Y. Hatakeyama [2] defined four tensors N, N®, N® and N“ by
NY(X, Y)=|p, 2l(X, Y) + 2d9(X, Y)¢,
NX, Y) = (LxY) — (FL)X) ,
N(X) = (£p)X,
NYX) = (Z)(X) ,
where [@, #] denotes the Nijenhuis torsion of @ and & denotes Lie
differentiation.

It is easy to show that for a contact metric structure N and
N® vanish [2]. Recall that the Riemannian connection // of g is given
by

200V :Y, Z) = X9(Y, Z) + Y9(X, Z) — Zg(X, Y)
+ g([X, Y]’ Z) + g([Z’ X]y Y) - g([ Y’ Z]’ X) .
Using this and the coboundary formula for d one can straightforwardly
obtain a general formula for the covariant derivative of @ for an almost
contact metric structure (@, &, 7, g), namely

(2.1) 207 xP)Y, Z) = 3dV(X, Y, 9Z) — 3dP(X, Y, Z)
+ g(N(Y, 2), pX) + NO(Y, Z(X)
+ 2d9(PY, Xy(Z) — 2dn(PZ, X))(Y) .

We close this section with the following lemma.

LEMMA. On a manifold with a contact metric structure 5P s a
symmetric operator.

Proor. Note that for a contact metric structure (@, &, 7, 9), V.6 =0
and /.9 = 0. Now
I(ZP)X, Y) = gV pX — Voxé — PV X + P46, Y)
=g(—FVox& + PVx§, Y)
which vanishes if either X or Y is &, For X and Y orthogonal to &,
N® = 0 becomes 7([®X, Y]) + 7([X, #Y]) = 0; continuing the computation
we have
0(ZP)X, Y) = 90 Y) + 707 :2Y)
= PV yPX) + NV oy X)
= 9(##9)Y, X) .
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3. Proof of the theorem. For a contact metric structure (@, &, 7, g),
N® =0 and @ = d7, so equation (2.1) becomes
20((Fx@)Y, Z) = g(N(Y, Z), pX) + 2d(Y, X))(Z) — 2d(9Z, X))(Y) .

Setting Y = £ and using the Lemma of Section 2 we obtain

—29(9V +&, Z) = g(9*§, Z] — »l¢, Z], pX) — 2d0(9Z, X)

= —9(P(£P)Z, pX) — 29(PZ, PX)

—9((F9)Z, X) — 29(Z, X) + 2n(Z)n(X)
= —9((AP)X, Z) — 29(X, Z) + 29(n(X)§, Z) ,

that is

— P& = —2(FP)X — X + (X% .
Applying @ we have

(3.1) Faé = —Lp(%9)X — 9X.
We denote by Ry, the curvature transformation Vyly — Vel y — Vixp1-
Then using (3.1)
Ry =Vl x — Vieni
= —Lor.(e, oX] - ol XD — 97X + Lo(ZPE, X] + Pt X]

2
= 2PPF ol + 37T 2E = 2P e — ok — Pk
Therefore
(3.2) lp.c=Ltows v 1oy v
. D) exé = ?‘P( Foxé — Vieonf) + ?¢ werxé — PV &€

and hence since M is flat

_ 1 1 2 1
0= 2o(— LA PP X — P(LP)X)—H(ZP)X — X + N(X)

= i—(%p)ﬁx — X + 7(X)E .

Thus we define a symmetric operator h by & = (1/2)® and we have
shown that h? = —@?% in particular note that % has rank 2n. Clearly
we also have h&é = 0, eigenvectors corresponding to non-zero eigenvalues
are orthogonal to & and the non-zero eigenvalues are =+1.
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Recall that dn(X, Y) = (1/2)(g(Fx&, Y) — g(Fy&, X)) as can be easily

deduced from the coboundary formula for d. Thus

29(X, 2Y) = 9(—phX — 9X, Y) — g(—phY — @Y, X)
giving

9(PhX, Y) = g(phY, X) = —g(hY, pX) = —g(hpX, Y),
that is # and ® anti-commute. In particular then, if X is an eigenvector
of the eigenvalue +1, @X is an eigenvector of —1 and vice-versa.
Thus the contact distribution D defined by n = 0 is decomposed into the
orthogonal eigenspaces of +1 which we denote by [+1] and [—1].

We now show that the distribution [—1] is integrable. If X and Y
are vector fields belonging to [—1], (8.1) gives V6 =0, V€ = 0. Thus
since M is flat 0 = Ryyé = —Vippié = Ph[X, Y] + @[ X, Y]. But 9([X, Y]) =
—2dn(X, Y) = 0, thus applying ® we have h[X, Y] = —[X, Y.

We denote by [—1] @ [£] the distribution spanned by [—1] and &, it
is also integrable. For, any vector field belonging to[—1] can be written as
®X for some X e€[+1]. Thus (38.2) becomes 0 = (1/2)R.x& = —(1/2)PV ¢, 0x16
and (3.1) shows that [£, pX]e[—1].

Since [—1]€p[£] is integrable, we can choose local coordinates
@, -+, u*) such that 9/ou’, ---, 0/ou"e[—1] P [£] and we define local
vector fields X,,t=1, -+, n by X, =0d/ou™"* + 37, fio/ou’ where the
f#’s are functions chosen so that X;e[+1]. Thus X, ---, X, are » linearly
independent vector fields spanning [+1]. Clearly [0/ou*, X;]€[—1]&D [£]
for k=0, ---,n and hence & is parallel along [0/0u*, X;]. Therefore
using (3.1)

0 =Visoub,x;06 = VoouV 2,6 — Vi Vajouté = —20;,5,PX,
from which we have that
(3.3) Vor, X, = 0.
Similarly, noting that [X,, X;]e[—1],
0=Ryyxé= -y PX; + 209X,

giving

(3.4) Ve PX; =Vx;PX,

or equivalently

(3.5) PlX,, Xi] = —(Vx,P)X; + Vx;9) X«

Using (3.3) and (3.1)
0=Rypx,t = —Vix,oxpé = PrI X, PX;] + PlX, PX;]
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from which
9([ X, PX;], Xo) = —9(b[X,, X;], X)) = —9((X,, X1, X)
and hence
(3.6) (X, PX;], Xo) = 0.
We now compute (Vx,)X; explicitly. Using (3.3), (3.6) and (3.5)
29((7 »,P)X;, Xo) = 9([9, PI(X;, Xo), 2X))
= _g([ij Xk]; @Xz)
= g(_(VXj¢)Xk + (kaq))ij Xi) .
Since @ = d7, the sum of the cyclic permutations of 4, j, k in
9((7 x,?)X;, X,) is zero. Thus our computation yields g((",,#)X;, X;) = 0.
Similarly
29((VXZ~7’)XJ': ?X,) = 9(—[X;, 2X,] — [9X;, X,], X))
= g(_VXj¢Xk + Vo, X; — Vso,rij + V3, PX; PX0)
which vanishes by (3.3) and (3.4). Finally

= 49(X;, X)) .
Thus for any vector fields X and Y in [+1],
(3.7 VxP)Y = 29(X, Y)5 .

Note that (3.5) now gives [X;, X;] = 0.
Before differentiating (3.7) we show that /; X;e[+1]. First note

that

—ZQ(VSOXin; X,) = 29((V¢xi¢’)Xh ?X,) ,
but the right side vanishes by a computation of the type we have been
doing. Therefore

9V 2, X;, 2X3) = —9(X;, V3,2 X,) = —9(X;, [ X, X)) = 0

by (8.6). That g(Vx,X;, &) = 0 is trivial.

Now to show the non-existence of flat contact metric structures for
dim M = 5, we shall contradict the linear independence of the X;’s. Note
also that we have so far used only the vanishing of R;,¢. Equation (3.7)
can be written as

Ve PX; — PV X5 = 29(X;, X;)5 .

Differentiating this we have
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VXkVXi¢Xj - (VXkQ)VXin - @VX,,VXiXJ‘
= 2X9(X,, X)))E — 49(X,, X))PX; .

Taking the inner product with ¢X,, remembering (3.7) and that V', ,X;¢€
[+1], we have

g(VXkVXi¢Xj, ?X)) — g(VX,,VXin, X)) = —49(X;, X;)9(X,, X)) .
Interchanging 4 and %, 7 + k& and subtracting we have
0 = g(X;, Xy)g(Xi, X)) — 9(X,, Xy)9(X;, X))

by virtue of the flatness and [X, X;] = 0. Setting 7= 7 and k=1 we
have 0 = g(X,, X))9(X,, X.) — 9(X,, X,)* contradicting the linear indepen-
dence of X, and X,.

4. Remarks. In dimension 3 it is easy to construct flat contact
metric structures. For example, consider R® with coordinates (X', X?, X?)
and define a contact structure 7» by 7 = (1/2)(cos X’dX"' + sin X’dX?).
Then ¢ is 2(cos X®3/0X"' + sin X?6/0X?) and the metric ¢ whose components
are g,; = (1/4)0,; gives a flat contact metric structure. Geometrically we
see that 9/0X*® spans the [+1] distribution and sin X%3/0X' — cos X°0/0X*
spans [—1], i.e. & is parallel along [—1] and rotates as we move parallel
to the X’-axis. Note also that 7 is invariant under the group of trans-
lations generated by {X*— X* + 27, A =1, 2,3} and therefore the 3-
dimensional torus 7° also carries this structure. It is still an open
question whether or not 7T° carries a contact structure, but if it does it
can not have a flat associated metric.

Constructing the diffeomorphism of R® that maps this 7 to the
standard contact form 7, = (1/2)(dZ — YdX) we see that the metric g,
whose components are given by

L 1+ Y*+2° Z —-Y
1 Z 1 0
—-Y 0 1
makes (7, g,) a flat contact metric structure.
Note that in the proof of our theorem, the vanishing of R ;& is
enough to obtain the decomposition of the contact distribution into the
+1 eigenspaces of the operator h = (1/2).%59. Moreover Ry;yé = 0 for X

and Y in [—1] is sufficient for the integrability of [—1]. Thus we have
the following result.

THEOREM. Let M be a contact manifold of dimension 2n + 1 with
contact metric structure (@, &, 1, 9). If the sectiomal curvature of all
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plane sections containing & vanish, then the operator h = (1/2).£® has
rank 2n and the contact distribution is decomposed into +1 eigenspaces
of h. Moreover if Ry & =0 for X, Ye[—1], M admits a foliation by
n-dimensional integral submanifolds of the contact distribution.

We close with an example of such a structure. Consider on R° with
coordinates (X, ---, X°), the standard contact structure

7 = %(dxﬁ — XX — X'dX?) .

Then 7 together with the metric ¢ whose components are given by

1+ (X + (XO) XX X 0 —-X°
XX 1+ X+ (X% 0 X° —X*
% X 0 1 0 0
0 X 0 1 0
—X? — Xt 0o o0 1

is a contact metric structure. g is not flat, but R,& =0 and R;,;x55,:x:£& = 0.
Defining % by h = (1/2).%:®, one can easily check that % determines a de-
composition of the contact distribution into +1 eigenspaces of k. [—1]
is spanned by 0/0X*® and 0/0X* and [+1] is spanned by §/0X' — X°0/0X* +
X%/0X® and 0/0X* — X°3/0X* + X'0/0 X"
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