THE HARDY SPACES ASSOCIATED WITH A PERIODIC FLOW ON A VON NEUMANN ALGEBRA

KICHI-SUKE SAITO

(Received October 28, 1975)

0. Introduction. In the study of non-self adjoint subalgebras of von Neumann algebras, several attempts have been made to generalize a theory of function algebras to non-commutative cases. For instance, a theory of subdiagonal algebras was presented by Arveson as an analogue of weak*-Dirichlet algebras in [1]. In this paper we present a method to construct the Hardy spaces associated with a periodic flow on a von Neumann algebra. The method is based on the theory of spectral subspaces for a flow which has been investigated by many authors [2, 3, 9]. Kawamura and Tomiyama [5] studied the Hardy spaces associated with a flow and discussed related situations in operator algebras.

Let T be the unit circle. We define a flow β with period 2π of $L^{\infty}(T)$ as follows: $\beta_t f(z) = f(e^{-it}z)$, $t \in R$, $z \in T$, $f \in L^{\infty}(T)$. Let M be a von Neumann algebra acting on a Hilbert spaces H, M_* its predual and α a periodic flow with period 2π on M. Then M, M_* , H and α correspond to $L^{\infty}(T)$, $L^1(T)$, $L^2(T)$ and β , respectively. Then, in view of the role played by the Hardy spaces H^p in $L^p(T)$, we construct $H^p(\alpha)(p=1,2,\infty)$. In particular $H^{\infty}(\alpha)$ is not only a σ -weakly closed non-self adjoint subalgebra but also turns to be a maximal subdiagonal algebra. If there exists an ergodic, periodic flow on M, then M is generated by a single unitary operator. In this case we use the Cesaro mean defined by a periodic flow on M. If M is σ -finite, we have a decomposition of a von Neumann algebra with respect to a periodic flow and reconsider a part of Takesaki's consequence in [10] for a von Neumann algebra with a homogeneous periodic state.

I would like to thank Prof. M. Fukamiya for allowing me to stay in 1975-76 at Tôhoku University where this work was done and Prof. J. Tomiyama and Mr. S. Kawamura for helpful discussions on the subjects of this paper.

1. Preliminaries. Let M be a von Neumann algebra acting on a Hilbert space H, M_* its predual and $\alpha_t(t \in R)$ a flow on M, that is, a one-parameter group of *-automorphisms of M which is weak*-continuous in

the sense that, for each $x \in M$ and $\rho \in M_*$, the function $t \to \rho(\alpha_t(x))$ is continuous. Let U_t $(t \in R)$ be a strongly continuous unitary group on H.

We define two representations $U(\cdot)$ and $\alpha(\cdot)$ of $L^{\iota}(R)$ into the bounded operators on H and M, respectively, by $U(f)\xi=\int_{-\infty}^{\infty}f(t)\;U_{t}\xi dt\;(\xi\in H)$ and $\alpha(f)x=\int_{-\infty}^{\infty}f(t)\alpha_{t}(x)dt\;(x\in M)$ where $f\in L^{\iota}(R)$. For $f\in L^{\iota}(R)$, we put $Z(f)=\{t\in R\colon \hat{f}(t)=0\}$. Let Sp α be defined as $\cap\{Z(f)\colon f\in L^{\iota}(R),\;\alpha(f)=0\}$. If $\xi\in H$ and $x\in M$, let $Sp_{U}(\xi)=\cap\{Z(f)\colon f\in L^{\iota}(R),\;U(f)\xi=0\}$ and $Sp_{\alpha}(x)=\cap\{Z(f)\colon f\in L^{\iota}(R),\;\alpha(f)x=0\}$.

A flow α on M is said to be periodic if there exists T>0 such that α_T is the identity automorphism of M. The smallest such T>0 is called the period of the flow α . We suppose without loss of generality that all the flows treated here have period 2π .

2. The spectral subspaces and the algebra $H^{\infty}(\alpha)$. Let M be a von Neumann algebra and α a periodic flow on M. Then we put the spectral subspace $H^{\infty}(\alpha) = \{x \in M: Sp_{\alpha}(x) \subset [0, \infty)\}$. If $Sp_{\alpha}(x) \subset [s, \infty)$ and $Sp_{\alpha}(y) \subset [t, \infty)$, then we have $Sp_{\alpha}(xy) \subset [s+t, \infty)$ [2, §3, Lemma 1] and $Sp_{\alpha}(x^*) = -Sp_{\alpha}(x)$. As $\alpha(f)$ is σ -weakly continuous for each $f \in L^1(R)$ [2, §2, Remarks], $H^{\infty}(\alpha)$ is a σ -weakly closed, non-self adjoint subalgebra of M.

Now for each $n \in \mathbb{Z}$, we consider the integration

$$arepsilon_{\scriptscriptstyle n}\!(x) = rac{1}{2\pi} \int_{\scriptscriptstyle 0}^{2\pi} \! e^{int} lpha_{\scriptscriptstyle t}\!(x) dt$$
 , $x \in M$

and set $M_n = \{x \in M : \alpha_t(x) = e^{-int}x\}$, $n \in \mathbb{Z}$. Then we have the following properties;

$$arepsilon_n(M)=M_n$$
 , $arepsilon_n\circarepsilon_m=\delta_{nm}arepsilon_n$, $arepsilon_n(axb)=aarepsilon_n(x)b$, $a,b\in M_0$.

Clearly $M_0 = H^{\infty}(\alpha) \cap H^{\infty}(\alpha)^*$ is the algebra of all fixed points with respect to α , and ε_0 is a unique, faithful, normal, α_t -invariant projection of norm one from M onto M_0 . Thus the von Neumann algebra M is α -finite in the sense that there exists a family F of normal α_t -invariant states of M such that if x is any non-zero positive element in M then for some ρ in F, $\rho(x) \neq 0$ [6]. Then we have the following lemma:

LEMMA 1. Keep the notation as above.

- (a) For any $n, m \in \mathbb{Z}$ we have $M_n M_m \subset M_{n+m}$ and $M_n^* = M_{-n}$.
- (b) Let $x, y \in M$. If $\varepsilon_n(x) = \varepsilon_n(y)$ for each $n \in Z$, then x = y.
- (c) For $x \in M$, we have $Sp_{\alpha}(x) = \{n \in Z : \varepsilon_n(x) \neq 0\}$.
- (d) For $n \in \mathbb{Z}$, $M_n = \{x \in M : Sp_{\alpha}(x) = \{n\}\}.$

Proof. (a) and (b) are clear.

(c) For
$$f \in L^1(R)$$
, $n \in Z$ and $x \in M$, we have
$$\varepsilon_n(\alpha(f)x) = \hat{f}(n)\varepsilon_n(x)\cdots\cdots(*).$$

If t is not an integer, then there exists $f \in L^1(R)$ such that $\hat{f}(t) \neq 0$ and $\hat{f}(n) = 0$ for each $n \in Z$ [8, Theorem 2.6.2]. By (b) and (*), $\alpha(f)x = 0$. But $\hat{f}(t) \neq 0$ and so $t \notin Sp_{\alpha}(x)$. Thus $Sp_{\alpha}(x) \subset Z$. Suppose $\varepsilon_n(x) \neq 0$. If $f \in L^1(R)$ such that $\alpha(f)x = 0$, then $\hat{f}(n) = 0$ and so $n \in Sp_{\alpha}(x)$. On the other hand, if $\varepsilon_n(x) = 0$, then there exists $f \in L^1(R)$ such that $\hat{f}(n) \neq 0$ and $\hat{f}(m) = 0$ for each $m(\neq n) \in Z$. By (b) and (*), $\alpha(f)x = 0$. Then $n \notin Sp_{\alpha}(x)$. Therefore we have $Sp_{\alpha}(x) = \{n \in Z : \varepsilon_n(x) \neq 0\}$.

As $\rho((-1)^n \varepsilon_n(x))$ is the Fourier coefficient for $\rho(\alpha_{-t+\pi}(x))$, $x \in H^{\infty}(\alpha)$ if and only if $\varepsilon_n(x) = 0$ ($n \leq -1$) iff the function $[-\pi, \pi] \ni t \mapsto \rho(\alpha_{-t+\pi}(x))$ belongs to the disk algebra for each $\rho \in M_*$. Therefore, taking the periodic flow β of $L^{\infty}(T)$ defined in Introduction, we easily note that $H^{\infty}(\beta) = H^{\infty}$. So we may consider this algebra $H^{\infty}(\alpha)$ the generalized notion of H^{∞} in $L^{\infty}(T)$.

Next we define the notion of the Cesaro mean for an element in M. For $x \in M$, we put $\sigma_n(x, t) = (1/n) \sum_{k=0}^n S_k(x, t) (n \ge 1)$ where $S_n(x, t) = \sum_{k=-n}^n e^{ikt} (-1)^k \varepsilon_k(x) (n \ge 0)$. Since $\rho(\sigma_n(x, t))$ is the Cesaro mean for the continuous function $\rho(\alpha_{-t+\pi}(x))$ for each $\rho \in M_*$, we have the following:

THEOREM 1. For $x \in M$, $t \in R$, we have $\sigma_n(x, t) \to \alpha_{-t+\pi}(x)$ in the weak*-topology as $n \to \infty$. In particular $\sigma_n(x, \pi) \to x$ in the weak*-topology as $n \to \infty$. Thus M is linearly spanned by $\bigcup_{n \in \mathbb{Z}} M_n$ in the weak*-topology.

We recall that H^{∞} is a maximal weak*-Dirichlet algebra of $L^{\infty}(T)$. The notion of weak*-Dirichlet algebras is extended in the present case.

DEFINITION 1. Let M be a von Neumann algebra acting on a separable Hilbert space H and Φ a faithful, normal projection of norm one from M into itself. A subalgebra N of M is said to be subdiagonal with respect to Φ if (1) $N+N^*$ is σ -weakly dense in M; (2) $\Phi(xy)=\Phi(x)\Phi(y)$ for $x,\ y\in N$; (3) $\Phi(M)\subset N\cap N^*$; (4) $(N\cap N^*)^2$ is non-degenerate. A subdiagonal algebra N of M with respect to Φ is said to be maximal if it is contained properly in no larger subdiagonal algebra of M with respect to Φ .

Then $H^{\infty}(\alpha)$ may be characterized as a maximal subdiagonal algebra with respect to ε_0 . We give here a simple proof when the flow α is periodic. Kawamura and Tomiyama [5] proved this fact for any (not necessarily periodic) flow α on M such that M is α -finite.

Theorem 2. Let M be a von Neumann algebra acting on a separable Hilbert space H and α a periodic flow. Then $H^{\infty}(\alpha)$ is a maximal subdiagonal algebra with respect to ε_0 .

PROOF. By Theorem 1, we have $\sigma_n(x,\pi) \to x$ in the weak*-topology as $n \to \infty$ for each $x \in M$. Thus $H^{\infty}(\alpha) + H^{\infty}(\alpha)^*$ is weak*-dense in M and so $H^{\infty}(\alpha) + H^{\infty}(\alpha)^*$ is σ -weakly dense in M. Putting

$$H^{\scriptscriptstyle{\infty}}_{\scriptscriptstyle{0}}(lpha)=\{x\in H^{\scriptscriptstyle{\infty}}(lpha)\colon arepsilon_{\scriptscriptstyle{0}}(x)=0\}$$
 ,

 $H_0^{\infty}(\alpha)$ is a two-sided ideal of $H^{\infty}(\alpha)$. Therefore one may easily show that ε_0 is multiplicative on $H^{\infty}(\alpha)$. The statements (3) and (4) of Definition 1 are clear. Hence $H^{\infty}(\alpha)$ is a subdiagonal algebra with respect to ε_0 .

Next we show that $H^{\infty}(\alpha)$ is maximal. Put $A=\{x\in M\colon \varepsilon_0(H_0^{\infty}(\alpha)x)=0\}$. Since A is a maximal subdiagonal algebra of M containing $H^{\infty}(\alpha)$ [1, Theorem 2.2.1], it is sufficient to show that $H^{\infty}(\alpha)=A$. For any $x\in A$, $\sigma_n(x,\pi)$ converges to x in the weak*-topology by Theorem 1. Let m be a negative integer. Let $\varepsilon_m(x)=u\,|\,\varepsilon_m(x)|$ be the canonical polar decomposition of $\varepsilon_m(x)$ with u partial isometric. Note that $u\in M_m$ and $|\,\varepsilon_m(x)\,|\,\in M_0$. By Lemma 1 (a), $u^*\in M_{-m}\subset H_0^{\infty}(\alpha)$. For n>-m, we have

$$arepsilon_0(u^*\sigma_n(x,\pi))=rac{1}{n}\sum_{k=0}^{n-1}arepsilon_0(u^*S_k(x,\pi))=rac{n+m}{n}u^*arepsilon_m(x)
ightarrow u^*arepsilon_m(x)\quad ext{as}\quad n
ightarrow\infty$$
 .

On the other hand, as ε_0 is normal and $x \in A$, $\varepsilon_0(u^*\sigma_n(x,\pi))$ converges to $\varepsilon_0(u^*x) = 0$ in the weak*-topology. Thus $u^*\varepsilon_m(x) = 0$ and so $\varepsilon_m(x) = 0$. Hence $x \in H^{\infty}(\alpha)$. This completes the proof.

DEFINITION 2. A flow α is said to be ergodic if, for $x \in M$, $\alpha_i(x) = x$ for all $t \in R$ implies $x = \omega 1$ for some complex number ω .

THEOREM 3. Let M be a von Neumann algebra. If there exists an ergodic, periodic flow on M, then M is generated by a single unitary operator.

PROOF. Let α be an ergodic, periodic flow on M. Note from the proof of Theorem 3.2 (1) in [9] that $Sp \ \alpha = Z$. On the other hand $Sp \ \alpha = \bigcup_{x \in M} Sp_{\alpha}(x)$ [3, Lemma 2.13]. Therefore $M_1 \neq \{0\}$. There exists $u \in M_1$ such that ||u|| = 1. As u^*u , $uu^* \in M_0$ and α is ergodic, $u^*u = uu^* = 1$ and so u is a unitary operator. If $x \in M_1$, there exists a complex number ω such that $u^*x = \omega 1$. Thus $x = \omega u$ and so $M_1 = Cu$. By Lemma 1, $M_n = Cu^n$ for each $n \in Z$. Therefore M is generated by a single unitary operator by Theorem 1.

3. The space $H^1(\alpha)$. Let M be a von Neumann algebra and α a periodic flow. We define the periodic action α'_t on M_* such that $\alpha'_t(\rho)(a) =$

 $\rho(\alpha_{-t}(a)), a \in M, \rho \in M_*$ and the integration

$$lpha'(f)
ho(a)=\int_{-\infty}^{\infty}f(t)lpha'_t(
ho)dt$$
 , $a\in M,\
ho\in M_*$.

Let the spectrum for ρ in the following: $Sp_{\alpha'}(\rho) = \bigcap \{Z(f): f \in L^1(R), \alpha'(f)\rho = 0\}$ and put the following integration:

$$arepsilon_{n}'(
ho)=rac{1}{2\pi}\int_{0}^{2\pi}\!e^{int}lpha_{t}'(
ho)dt$$
 , $n\in Z$.

Now we define the Hardy space $H^1(\alpha) = \{ \rho \in M_* : Sp_{\alpha'}(\rho) \subset [0, \infty) \}$. Then $H^1(\alpha)$ is a norm-closed subspace of M_* . As in §2, we define the Cesaro mean for ρ in M_* .

THEOREM 4. (a) The following statement are equivalent.

- (1) $\rho \in H^1(\alpha)$.
- (2) The function $[-\pi, \pi] \ni t \mapsto \alpha'_{-t+\pi}\rho(x)$ belongs to the disk algebra for each $x \in M$.
 - $(3) \quad \rho(H_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty}(\alpha)) = 0 \ \ where \ \ H_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty}(\alpha) = \{x \in H^{\scriptscriptstyle \infty}(\alpha) \colon \varepsilon_{\scriptscriptstyle 0}(x) = 0\}.$
- (b) Let $\rho \in M_*$ and $\sigma_n(\rho, t)$ the Cesaro mean for ρ . Then $\sigma_n(\rho, t)$ converges to $\alpha'_{-t+\pi}(\rho)$ in the norm on M_* . Therefore $H^1(\alpha) + H^1(\alpha)^*$ is norm-dense in M_* .

PROOF. (a) cf. [2, Proposition 5.1].

- (b) Since the action $t \to \alpha'_{-t}(\rho)$ ($\rho \in M_*$) moves continuously in the norm of M_* [2, Proposition 3.0], we easily note that $\sigma_n(\rho, t)$ converges to $\alpha'_{-t+\pi}(\rho)$ in the norm on M_* (cf. [4, p. 17, Theorem]).
- 4. A decomposition of von Neumann algebras and the space $H^2(\alpha)$. Suppose that M is σ -finite and α a periodic flow on M. Then there exists a faithful, normal, α_t -invariant state φ of M. Consider the *-representation $\{\pi, H\}$ of M, where π is the representation associated with φ via the Gelfand-Neumark-Segal construction and H is the associated Hilbert space. As φ is faithful, π is a *-isomorphism and so we may identify M with $\pi(M)$ for simplicity. Thus there is a cyclic and separating vector ξ_0 for M such that $\varphi(a) = (a\xi_0, \xi_0)$, $a \in M$. As φ is α_t -invariant, there exists a strongly continuous unitary group u_t such that $\alpha_t(a) = u_t a u_t^*$ and $u_t \xi_0 = \xi_0$. Since the period of α is 2π , that of u is 2π . Hence $u_t = \sum_{n=-\infty}^{\infty} e^{-int} p_n$, $\sum_{n=-\infty}^{\infty} p_n = 1$, where the mutually orthogonal projection p_n are also written as follows:

$$p_n \xi = rac{1}{2\pi} \!\! \int_0^{2\pi} \!\! e^{int} u_t \xi dt$$
 , $\ \xi \in H$.

Then p_n is the projection of H onto the closed subspace

$$H_n = \{\xi \in H : u_t \xi = e^{-int} \xi\} = \{\xi \in H : Sp_u(\xi) = \{n\}\}, n \in Z$$
.

LEMMA 2. (1) $\varepsilon_n(x)\xi_0 = p_n x \xi_0$, $x \in M$.

- (2) $x\xi_0 = \sum_{n=-\infty}^{\infty} \varepsilon_n(x)\xi_0, x \in M.$
- (3) For each $n \in Z$ we have $H_n = [M_n \xi_0]$.
- $(4) \quad M_nH_m \subset H_{n+m}, \quad n, \quad m \in \mathbb{Z}.$

THEOREM 5. Let M be a σ -finite von Neumann algebra and α a periodic flow on M. Then, in the pre-Hilbert space structure induced by a faithful, normal, α_t -invariant state φ , M is decomposed into an orthogonal direct sum as follows:

$$M = \cdots \oplus M_{-2} \oplus M_{-1} \oplus M_0 \oplus M_1 \oplus M_2 \oplus \cdots$$

In this case $H^{\infty}(\alpha)$ in the previous section has the following form:

$$H^{\circ}(lpha)=M_{\scriptscriptstyle 0} \oplus M_{\scriptscriptstyle 1} \oplus M_{\scriptscriptstyle 2} \oplus \cdots$$

$$M_n = \left\{e^{-int}\sum_{m=-\infty}^{\infty}p_{m+n}xp_m \colon x\in M
ight\} \;, \quad arepsilon_n(x) = \sum_{m=-\infty}^{\infty}p_{m+n}xp_m \;.$$

Now we define the Hardy space $H^2(\alpha)$ in the following way:

$$H^2(\alpha)=\{\xi\in H: Sp_u(\xi)\subset [0,\infty)\}$$
 .

By Lemma 2, we have

$$H^{\imath}(lpha)=H_{\scriptscriptstyle 0} \oplus H_{\scriptscriptstyle 1} \oplus H_{\scriptscriptstyle 2} \oplus \cdots = [H^{\scriptscriptstyle \infty}(lpha)\xi_{\scriptscriptstyle 0}]=\sum\limits_{n=0}^{\infty}p_nH$$
 .

Next suppose that M has a homogeneous periodic state φ in the sense that $G(\varphi)=\{\sigma\in\operatorname{Aut}(M)\colon \varphi\circ\sigma=\varphi\}$ acts ergodically on M and the modular automorphism group σ_t^e of M associated with φ is a periodic flow. Since a homogeneous state is faithful, then Takesaki proved that there exists an isometry u of M_1 such that $M_n=M_0u^n(n\geq 1)$ and $M_n=u^{*^{-n}}M_0(n\leq -1)$. But in case M has a faithful, normal α_t -invariant state, we don't know the relation between M_n and M_0 . It may happen that there exists $n\in Z$ such that $M_n=\{0\}$ and $H_n=\{0\}$. For instance we take $M=B(H)(\dim H\geq 2)$ and a strongly continuous unitary group $u_t=p+e^{it}q$ where p and q are non-zero projections of M such that p+q=1. Then we consider a periodic flow $\alpha_t=\mathrm{ad}\ u_t$.

REFERENCES

- [1] W. ARVESON, Analyticity in operator algebras, Amer. J. Math., 89 (1967), 578-642.
- [2] W. ARVESON, On groups of automorphisms of operator algebras, J. Funct. Anal., 15 (1974), 217-243.
- [3] A. CONNES, Une classification des facteurs de type III, Ann. Scient. Éc. Norm. Sup. 6 (1973), 133-252.

- [4] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- [5] S. KAWAMURA AND J. TOMIYAMA, On the subalgebra of analytic operators associated with a flow on an operator algebra, in preparation.
- [6] I. KOVACS AND J. SZUCS, Ergodic type theorems in von Neumann algebras, Acta. Sci. Math. 27 (1966), 233-246.
- [7] R. I. LOEBL AND P. S. MUHLY, Reductive algebras and automorphism groups of von Neumann algebras, Bull. Amer. Math. Soc. 81 (1975), 759-761.
- [8] W. Rudin, Fourier analysis on groups, Intersciences, 1960.
- [9] E. Størmer, Spectra of ergodic transformations, J. Funct. Anal. 15 (1974), 202-215.
- [10] M. TAKESAKI, The structure of a von Neumann algebra with a homogeneous periodic state, Acta. Math. 131 (1973), 79-121.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE, NIIGATA UNIVERSITY NIIGATA, JAPAN