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0. Introduction. In the study of non-self adjoint subalgebras of
von Neumann algebras, several attempts have been made to generalize
a theory of function algebras to non-commutative cases. For instance,
a theory of subdiagonal algebras was presented by Arveson as an analogue
of weak*-Dirichlet algebras in [1]. In this paper we present a method
to construct the Hardy spaces associated with a periodic flow on a von
Neumann algebra. The method is based on the theory of spectral sub-
spaces for a flow which has been investigated by many authors [2, 3, 9].
Kawamura and Tomiyama [5] studied the Hardy spaces associated with
a flow and discussed related situations in operator algebras.

Let T be the unit circle. We define a flow 8 with period 27 of L>(T)
as follows: B.f(z) = f(e™*z), teR, ze T, feL”(T). Let M be a von
Neumann algebra acting on a Hilbert spaces H, M, its predual and a a
periodic flow with period 27 on M. Then M, M,, H and « correspond
to L>(T), LNT), LX(T) and B, respectively. Then, in view of the role
played by the Hardy spaces H” in L*(T), we construct H*(a)(p = 1, 2, ).
In particular H*(«) is not only a o-weakly closed non-self adjoint sub-
algebra but also turns to be a maximal subdiagonal algebra. If there
exists an ergodie, periodic flow on M, then M is generated by a single
unitary operator. In this case we use the Cesaro mean defined by a
periodic flow on M. If M is o-finite, we have a decomposition of a von
Neumann algebra with respect to a periodic flow and reconsider a part
of Takesaki’s consequence in [10] for a von Neumann algebra with a
homogeneous periodic state.

I would like to thank Prof. M. Fukamiya for allowing me to stay
in 1975-76 at Tohoku University where this work was done and Prof. J.
Tomiyama and Mr. S. Kawamura for helpful discussions on the subjects
of this paper.

1. Preliminaries. Let M be a von Neumann algebra acting on a
Hilbert space H, M, its predual and a,(tc R) a flow on M, that is, a one-
parameter group of *-automorphisms of M which is weak*-continuous in
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the sense that, for each xe M and pe M,, the function t— p(a(x)) is
continuous. Let U, (¢ € R) be a strongly continuous unitary group on H.

We define two representations U(-) and a(-) of L(R) into the bounded
operators on H and M, respectively, by U(f)¢ = S f() Ugdt (¢ € H) and
a(fNlz=\ [f()a(x)dt(xe M) where f € L'(R). For f e L(R), we put Z(f)=
{teR:f(t)=0). Let Sp a be defined as N {Z(f): f e L(R), a(f) = 0}.
If ée H and x € M, let Spy(&) = N{Z(f): f € L(R), U(f)¢ = 0} and Sp.(x) =
N{Z(f): f e L(R), a(f)x = 0}.

A flow @ on M is said to be periodic if there exists 7" > 0 such that
@, is the identity automorphism of M. The smallest such 7 > 0 is called
the period of the flow @. We suppose without loss of generality that
all the flows treated here have period 27.

2. The spectral subspaces and the algebra H*(«). Let M be a von
Neumann algebra and @ a periodic flow on M. Then we put the spectral
subspace H”(a) = {x € M: Sp(x)C[0, «)}. If Sp.(x) s, ) and Sp.(y)C
[t, =), then we have Sp. (xy)C[s + ¢, ») [2, §3, Lemma 1] and Sp,(2*) =
—Sp(x). As a(f) is o-weakly continuous for each feL'(R) [2, §2,
Remarks], H*(@) is a o-weakly closed, non-self adjoint subalgebra of M.

Now for each neZ, we consider the integration

e(z) = L S"ema,(x)dt . weM
21 Jo

and set M, = {xe M:a(x) = ez}, ncZ. Then we have the following
properties;

sn(M) = Mn y €nofm = amnen ’

e(axb) = as,(x)b, a,beM,.

Clearly M, = H>(@) N H*(x)* is the algebra of all fixed points with respect
to @, and ¢, is a unique, faithful, normal, a,-invariant projection of norm
one from M onto M,. Thus the von Neumann algebra M is a-finite in
the sense that there exists a family F of normal «.invariant states of
M such that if z is any non-zero positive element in M then for some p
in F, o(x) #+ 0 [6]. Then we have the following lemma:

LeEMMA 1. Keep the notation as above.

(@) For any n, meZ we have MM, M,,, and M} = M_,.
(b) Let 2, ye M. If e, (x) = ¢€,(y) for each neZ, then x = y.
(¢) For xc M, we have SpJx) = {ne Z:¢,(x) = 0}.

(d) For neZ, M, = {x € M: Sp(x) = {n}}.

ProoF. (a) and (b) are clear.
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(¢) For feL(R),neZ and xc M, we have
e (@(F)2) = F)en (@) nneeerenns OF

If ¢t is not an integer, then there exists fe L'(R) such that f(¢)#0 and
F(n) =0 for each meZ [8, Theorem 2.6.2]. By (b) and (x), a(f)z = 0.
But f(t) # 0 and so ¢t ¢ Sp,(x). Thus Sp,(x)CZ. Suppose &.(x)# 0. If
f e L(R) such that a(f)z = 0, then f(n) =0 and so neSpJx). On the
other hand, if ¢,(x) = 0, then there exists fe L'(R) such that f(n) #*0
and f(m) = 0 for each m(#n)e Z. By (b) and (x), @(f)x = 0. Then n ¢
Sp.(x). Therefore we have Sp.(x) = {n e Z: ¢,(x)#0}.

(d) is clear from (c). q.e.d.

As o((—1)"e,(x)) is the Fourier coefficient for o(a_,,.(x)), x € H*() if
and only if e,(z) = 0(n < —1) iff the function [—=x, 7]3t— p(a_, (x))
belongs to the disk algebra for each peM,. Therefore, taking the
periodic flow B of L*(T) defined in Introduction, we easily note that
H>(B) = H*. So we may consider this algebra H>(a) the generalized
notion of H* in L~(T).

Next we define the notion of the Cesaro mean for an element in M.
For 2eM, we put o,(z,t) = (I/n) D, Sz, t)(n = 1) where S,(z,t) =
S, e*(—1)*e, (x) (r=0). Since p(o,(x, t))is the Cesaro mean for the con-
tinuous function o(a_,..(x)) for each p e M,, we have the following:

THEOREM 1. For xe€ M, te R, we have 0,(x, t) — a_, (%) in the weak*-
topology as m— . In particular o.(x, T)— = in the weak*-topology as
n— . Thus M is linearly spanned by U..; M, in the weak*-topology.

We recall that H* is a maximal weak*-Dirichlet algebra of L*(T).
The notion of weak*-Dirichlet algebras is extended in the present case.

DEFINITION 1. Let M be a von Neumann algebra acting on a separable
Hilbert space H and @ a faithful, normal projection of norm one from
M into itself. A subalgebra N of M is said to be subdiagonal with
respect to @ if (1) N + N* is o-weakly dense in M; (2) &(zy) = 0(x)P(y)
for z, ye N; (8) (M) NN N*; (4) (N N N*)* is non-degenerate. A sub-
diagonal algebra N of M with respect to @ is said to be maximal if it is
contained properly in no larger subdiagonal algebra of M with respect
to 0.

Then H”(x) may be characterized as a maximal subdiagonal algebra
with respect to . We give here a simple proof when the flow « is
periodic. Kawamura and Tomiyama [5] proved this fact for any (not
necessarily periodic) flow @ on M such that M is a-finite.
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THEOREM 2. Let M be a von Neumann algebra acting on a separable
Hilbert space H and a a periodic flow. Then H™(a) is a maximal sub-
diagonal algebra with respect to &,.

Proor. By Theorem 1, we have o,(x, 7) — 2 in the weak*-topology
as n— co for each xe M. Thus H"(a) + H*(a)* is weak*-dense in M
and so H*(@) + H*(a)* is o-weakly dense in M. Putting

Hi(a) = {w e H™(@): &) = 0},

Hy(a) is a two-sided ideal of H*(«). Therefore one may easily show that
€, is multiplicative on H>(«x). The statements (3) and (4) of Definition 1
are clear. Hence H=(«) is a subdiagonal algebra with respect to ¢,

Next we show that H*() is maximal. Put A = {x € M: ¢,(Hy(a)x) = 0}.
Since A is a maximal subdiagonal algebra of M containing H*(a) [1,
Theorem 2.2.1], it is sufficient to show that H<(a) = A. For any z€ A,
o,.(x, 7) converges to = in the weak*-topology by Theorem 1. Let m be
a negative integer. Let ¢,(x) = u|e.(x)| be the canonical polar decom-
position of ¢,(x) with » partial isometric. Note that u € M,, and |¢,.(2)| € M,.
By Lemma 1 (a), w*e M_,, C Hy(a). For n > —m, we have

W, @, 7)) = =5 e (u*Sy(x, ™) = B Myren(a)— ue,(®) as m— oo
n k=o

On the other hand, as ¢, is normal and z € A, e(u*0,(x, 7)) converges to
g(u*x) = 0 in the weak*-topology. Thus w*c,(x) = 0 and so ¢,(x) = 0.
Hence z € H*(@). This completes the proof. q.e.d.

DEFINITION 2. A flow «@ is said to be ergodic if, for x € M, a,(x) = x
for all t€ R implies 2 = @ 1 for some complex number w.

THEOREM 8. Let M be a von Neumann algebra. If there exists an
ergodic, periodic flow on M, then M 1is generated by a single unitary
operator.

PROOF. Let @ be an ergodic, periodic flow on M. Note from the proof
of Theorem 3.2 (1) in [9] that Sp @ = Z. On the other hand Sp a =
U.xSpx) [3, Lemma 2.13]. Therefore M, # {0}. There exists ue M,
such that ||u|| =1. As w*u, uu*e M, and a is ergodic, u*u = uu* =1
and so % is a unitary operator. If x e M,, there exists a complex number
w such that w*zx = wl. Thus z = wu and so M, = Cu. By Lemma 1,
M, = Cu" for each neZ. Therefore M is generated by a single unitary
operator by Theorem 1. q.e.d.

3. The space H(a). Let M be a von Neumann algebra and a a
periodic flow. We define the periodic action a; on M, such that ai(o)(e) =
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ola_[a)), ac M, pc M, and the integration

@(Ne@ = | faoat, aeM oeM, .
Let the spectrum for p in the following: Sp.(0) = N{Z(f): f € L'(R),
a'(f)o = 0} and put the following integration:
1
2
Now we define the Hardy space H'(a)={0 € M,: Sp.(0)Z[0, )}. Then

H'Y(a) is a norm-closed subspace of M,. As in §2, we define the Cesaro
mean for o in M,.

en(0) = S:”ei"‘a:(p)dt , meZ.

THEOREM 4. (a) The following statement are equivalent.

(1) peHYa).

(2) The function [—m, )]st — al, . 0(x) belongs to the disk algebra
for each xe M.

(3) p(H; () =0 where Hy(a) = {x € H(a): &(x) = 0}.

(b) Let pe M, and o,(0,t) the Cesaro mean for o. Then o,(p,t)

converges to o, (0) in the norm on M,. Therefore H () + HY(@)* 1is
norm-dense in M,.

Proor. (a) cf. [2, Proposition 5.1].

(b) Since the action ¢—a’,(0) (0 € M,) moves continuously in the
norm of M, [2, Proposition 3.0], we easily note that o,(po, t) converges
to a’,.(0) in the norm on M, (cf. [4, p. 17, Theorem]). q.e.d.

4. A decomposition of von Neumann algebras and the space H*a).
Suppose that M is o-finite and « a periodic flow on M. Then there exists
a faithful, normal, a,invariant state ¢ of M. Consider the *-represen-
tation {z, H} of M, where 7 is the representation associated with ¢ via
the Gelfand-Neumark-Segal construction and H is the associated Hilbert
space. As ¢ is faithful, 7= is a *-isomorphism and so we may identify
M with ©(M) for simplicity. Thus there is a cyclic and separating vector
& for M such that ¢(a) = (a&, &), a € M. As @ is a,-invariant, there exists
a strongly continuous unitary group u, such that a,a) = w.euf and
u.E, = &. Since the period of « is 2z, that of u is 2r. Hence u, =

o €™, S . p, =1, where the mutually orthogonal projection p,
are also written as follows:

pé = =\ erugdt, ceH.
2 Jo

Then p, is the projection of H onto the closed subspace
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H,={¢cH wt=e¢"¢ ={cH:Sp(8) = {n}l},neZ.

LEMMA 2. (1) e,(x)é = p,2&, x € M.

( 2 ) xEO = :‘l,o=—oo en(x)éoy X e M.

(8) For each meZ we have H, = [M,§].
(4) M\H,CcH,.,, mn, meZ.

THEOREM 5. Let M be a o-finite von Neumann algebra and a a
periodic flow on M. Then, in the pre-Hilbert space structure induced
by a faithful, normal, a-invariant state ¢, M is decomposed into an
orthogonal direct sum as follows:

M=.---OM_. M _  OM,PMPMD:--.
In this case H*(«) in the previous section has the following form:
Ho)= MM PMEB------
M, = {e‘i”‘miwpmxpm: e M} , Ea(®) =m=§_‘.mpm+”xpm -

Now we define the Hardy space H*«) in the following way:
H¥a) = {¢c H: Sp.(§) C [0, =)} .

By Lemma 2, we have
H(a)=HOHOH® - = [H(@)E] = i; 0,H.

Next suppose that M has a homogeneous periodic state ¢ in the
sense that G(p) = {0 € Aut (M): poo = @} acts ergodically on M and the
modular automorphism group of of M associated with @ is a periodic
flow. Since a homogeneous state is faithful, then Takesaki proved that
there exists an isometry u of M, such that M, = Mu"(n = 1) and M, =
u* "My(n £ —1). But in case M has a faithful, normal a,-invariant state,
we don’t know the relation between M, and M, It may happen that
there exists n e Z such that M, = {0} and H, = {0}. For instance we
take M = B(H)(dim H = 2) and a strongly continuous unitary group u, =
p + ¢! where p and q are non-zero projections of M such that »p + ¢ = 1.
Then we consider a periodic flow a, = ad u,.
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