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Introduction. Let k be a complete field under a discrete valuation
with a perfect residue field k of characteristic p Φ 0, and let Kjk be a
fully ramified finite Galois extension with Galois group G. Let G* denote
the i-th ramification group of G. Then it is well known that the sequence
G = Go 2 G1 2 2 Gi 2 Gi+12 has the following properties:

Gi is normal in G for i ^ 0, and there exists i0 > 0 such that Gt = 1
/or ΐ ^ io; Go/ί?! is α ĉ /cϊic group of order prime to p; for i ^ 1, GJGi+1

is an elementary abelian p-group contained in the center of GJGi+1; as
a Go/Gi-module, GJGt+ι is the direct sum of irreducible submodules which
are isomorphic each other, for i ^ 1.

Maus [3] has proved the 'inverse' of the above when k is a finite
algebraic extension of the field of p-adic numbers Qp and when k is of
characteristic p, by using local class field theory and Artin-Schreier
theory, respectively.

The purpose of this paper is to show that Maus' theorem is also
valid when k is a complete field of characteristic 0 under a discrete valu-
ation with a perfect residue field k of characteristic p, using Kummer
theory.

For a Galois extension K of k, the sequence of ramification groups
of K/k means the descending sequence of all ramification groups of K/k,
without taking ramification numbers into account.

MAUS' THEOREM. Let k be a complete field of characteristic 0 under
a discrete valuation with a perfect residue field k of characteristic p
and with absolute ramification order ek, i.e., ek — ordfc(p), where ordfc

is the normalized additive valuation of k. Let G = G(0) 2 G(1) 3 3
G(r) 3 G(r+1) = 1 be the sequence of finite groups satisfying the following:

( i ) G(ί) is a normal subgroup of G for i = 0, 1, , r;
(ii) G(0)/G(1) is a cyclic group of order prime to p;
(iii) Gr(<)/(x(<+1> is an elementary abelian p-group contained in the

center of G ( 1 ) /G ( ί + 1 ) for i ^ 1;

(iv) As a G(0)/G(1)-module, G ( ί ) /G ( ί + 1 ) is the direct sum of irreducible

submodules which are isomorphic each other, for i = 1, 2, •••, r . Then
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there exist a finite algebraic extension kf of k and a fully ramified finite
Galois extension K' of kr with Galois group G whose sequence of rami-
fication groups is G = G{0) 2 G{1) ϋ ϋ G{r) i> G(r+1) = 1. Moreover, if
ek ^ O(mod p — 1), then we can take kf such that ek, ^ O(mod p — 1).

In the above theorem, Maus assumed that G = G(1) or r = 1 when ζ e k,
where ζ is a primitive p-th root of unity, but this assumption is not
necessary.

The condition ek ^ 0(mod p — 1) is slightly stronger than the condition
that ζ ί k. Precisely, it is equivalent to that the ramification index of
k(ζ)/k is greater than 1 (see [5], Lemma 8).
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NOTATIONS

(1) &: a complete field of characteristic 0 under a discrete valuation
with an arbitrary residue field of characteristic p Φ 0. ordfc: the
normalized additive valuation of k. ^k\ the ring of integers of k. Uk:
the group of units of k. Uk

i] = {ue Uk\orάk(u — 1) ^ i} for i Ξ> 1. ϊc:
the residue field of k. ek: the absolute ramification order of k, i.e.,
ek = ordfc (p). a (for a e ^k): the image of a by the canonical homomor-
phism of &k to k. Gt (for a fully ramified finite Galois extension K of
k with Galois group G): the i-th ramification group of G for an integer
i ^ 0, i.e., Gi = {σ e G|ordfc (Πσ — Π) ^ i + 1}, where Π is a prime element
of K. A ramification number t of K/k: a rational integer such that
Gt 3 Gt+1. The first ramification number of K/k: the minimum of all
the ramification numbers of K/k. ψκ/k. the Hasse function of K/k.

(2) Z: the ring of all rational integers. N = {z eZ\z ^ 1}. Fp:
the finite field of p elements. G(K/k): the Galois group of a Galois ex-
tension K/k. Kx: the multiplicative group of a field K. Zp: the ring of
p-adic integers, ζ: a primitive p-th root of unity.

1. A certain filter of subgroups of a complete field. Let p, ζ, k
and Uk

i] be as in Notations. Put k' = k{Q, and fix a generator σ of
G{kf/k). Regard U$ as a Zp[G(&7&)]-module in the natural way. Let
ηeZp be a unique primitive iVi-th root of unity such that ζσ = ζ\
where N± = [kr: k]. We define subgroups Ak

ί} of U{

k) and an element Ω of
Zp[G(k'/k)] in the following:
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DEFINITION. For any integer i ^ 1,

and

Ω = (σ

N^ + σN^2η + + σrf^ + ψ

For the properties of the operator Ω we have the following

LEMMA 1 ([7], Lemma 3). Let notations and assumptions be as
above. Then the operator Ω has the properties:

( 1 ) A? = {UtfY for any integer i ^ 1;
( 2) xΩ — x for any x e Ak

ι).

Any element of Ak

ι) can be expressed in the following normal form
of an infinite product.

PROPOSITION 1. Let notations and assumptions be as above. Put
eί — ordfc/(ζ — 1) and let πk and πk, be prime elements of k and k',
respectively. Let N be the ramification index of k'\k. For any λ e ^
and any jeZ with e,p + jN^ 1, put X, (λ) = (1 + λ(ζ - l)*πζf. Then
the following are valid:

( 1 ) JΓy(λ) e A£*+Ni) and Xά(X) = 1 + λ(ζ - Ifπi (mod πe

kΫ
+Nj+ί);

( 2) For any x e A{

k\ there exist λ, e Uk U{0} such that x— ΠΓ=ίo Xi(\)9

where ioeZ is such that eγp + Ni0 ^ 1.

PROOF. ( 1 ) That Xs(\)eApp+Ni) follows from (1) of Lemma 1.
The second assertion follows easily from the definition and that

( 2 ) Let kur/k be the maximum unramified extension of k in k' and
let of be a generator of G{k'jkur). Then N= [kf: kur\. Put a =
(x — l)/(ζ — l) p , then by the definition of x we have easily a0'1 e Uk\\ so
aσ'-ιeUk

ι). By Serre [10], Chap. IV, §2, Proposition 7 this implies
ordfc/ (a) ΞΞ 0(mod N), so x = 1 + λ(ζ — 1)^° with λ e Z/*/ and %eZ such
that β^ + i0N ^ 1. Then a*'1 e Uk

ι) implies λσ = λ(mod πk), so λ = λίo with
someλ ί o e Uk. Hence by (1), x/Xίo(Xio)eAk

eiP+i°N+1). Using this procedure
successively, we see that for any j ^ i09 there exist Xt 6 Uk U {0} such
that α;/Π?= ί o^(λ i)eAl ;

e i 3 ) + ί W + 1 ). Taking the limit, we obtain the assertion
(2), since k is complete.

COROLLARY. Notations and assumptions being as in Proposition 1,

the following are valid:

( i ) Ak°i
p+jN) ^ Akw

+jN+1) =_ Ak

eιp+jN+N) for jeZ such that eγp + jN^ 1.

(ii) A ^ + ^ / A ^ + ^ + 1 ) = k by Xfa) mod A ^ + ^ + 1 ) κ> λ
/or i 6 Z sucfe ίfcαί e^ + jN ^ 1.
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(iii) A^p-jN)(k'xyiAleip-jN+1)(k'xy = k by X_, (λ) mod Ak

eip~3'N+l)(k'xy H> λ
with X e ^k9 /or i 6 Z swcft £ftα£ j" ί 0(mod p) αwώ 1 ^ i < ekp/(p — 1).

PROOF. The assertions (i) and (ii) follow directly from Proposition
1. The assertion (iii) follows from Proposition 1 and the following
Lemma 2.

For the connection of Ak

1] and (fc'x)p, we have the following

LEMMA 2. Let notations and assumptions be as above. Let x e Ak

v

be such that 1 ^ ordfc, (a; — 1) < eγp. Then the following are valid:

( 1 ) Ifxe (k'Y, then oτάk, (x-l) = 0(mod p) and x/Xjfp(Xp) e A{

k^
p+jfp+1)

with some f e Z and some X 6 Uk.
(2 ) If x = 1 + λp(ζ - iyπi'*(moά π

e

k)
p+3"pN+1) with some X e Uk, then

xyp e Ak

eip+jfpN+N) with some yeAk

υ.

PROOF. ( 1 ) Write x = zp with zek'. Since xeW, zeUfi. If
ordfc, (z — 1) ^ el9 then ordfc, (zp — 1) ^ e^ . Since ordfc, (a; — 1) < e^, this
implies that 1 <; y < βw where v = ord^, (2; — 1). Write 2; = 1 + CITΓ̂

(modTΓ^1) with ae Uh,. Since v < elf zp = 1 + αp7rί? (mod 7Γ^+1), so by (2)
of Proposition 1, x = 1 + λp(ζ - l ) ^ ' 3 ' (mod τφ p " w ' 3 ) + 1 ) with some λ e Uk,
so by (1) of Proposition 1, x = Xjfp(Xp)(moάπe

k\
p+jfpN+1)f hence x/Xjfp(Xp)e

( 2 ) Put y = (1 - λ(ζ - l)τtf)*. Then by (1) of Lemma l,ye A
Since (ζ - l) σ = η(ζ - l)(mod ττ^+1), » = 1 - λ(ζ - l)πζ(mod π β + ^ / + ι ) .
Since β! + W < e^ ^ p = 1 - Xp(ζ - iyπj

k

p(moάπe

k

ίP+jfpN+ί). Hence xyp e

AieίP+j>PN+vf s o b y (2) of Proposition 1, xyp e Ak

e^p+jfpN+N). q.e.d.

2. Proof of Maus' Lemma 2.7 and Satz 2.8 when k is perfect. In
this section, we prove Maus' Lemma 2.7 and Satz 2.8 when k is perfect,
using §1.

PROOF OF MAUS' LEMMA 2.7 AND SATZ 2.8 WHEN k is PERFECT. If

Lemma 2.7 is proved when k is perfect, then Maus' proof of Satz 2.8 is
still valid when k is perfect; so it is enough to prove Lemma 2.7. Let
Ί{σ')eZϊ be a unique (p - l)-th root of unity such that ζσ' = ζn°'] for
σ' G GHΈT/k), where E' = E{ζ). Then 7 e Rom(G(E'lk), Zx). Regard A$ as a
G(£y&)-module by xτ = ar'^'*"1 for a? G A^Ί and τ G G ( ^ ) , where r' e G(E'/k)
is such that τ ' | -S= τ. This is well defined. In fact, let τ"eG(E'/k) be
such that τ"\E=τ, then r'r""1 = σe G(E'/E), and by the definition of Aff,

= Xf go ajr'rtr')-! = ^"rίr")-^ Regard A{£{E'xyi{E'x)p as a G(E/k)-
module, by (x mod (£"X)P)Γ = xτ mod (£" x ) p with x e A{j? and r 6 G(E/k).
Put F t = A&p-Nt)(E'xy/(E'xy, where AT is the ramification index of E'\E
and ex — ord^, (ζ — 1). Since Ft is a completely reducible G(i£yfc)-module
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containing Ft_± as a G(i?/A;)-submodule, there exists a G(Elk)-siϊbmoάu\e
DI(E'X)P of_ Ft such that Ft = D/(E'X)P x ί7

ί_1 (direct product). Put
K' = E'{% x\xeD). Then by [5], Corollary to Proposition 2, there exists
a unique abelian extension K/E whose Galois group is an elementary
abelian p-group such that K(ζ) = K'. We see that K/k is a Galois ex-
tension. In fact, since Dτ — D for all τ e G(E'/k), we see by Kummer
theory that K'/k is a Galois extension; for any σeG(K'/k), E(zKdc:K'
and K°{Q — K', so by the uniqueness of such K, K? = K, hence K/k is a
Galois extension. Identify G(K'/E') and G(K/E) by the restriction from
K' to K. By Kummer theory, D/(E'X)P is isomorphic to the character
group X{G{K'IE')) of G{Kr/E') in the canonical way. As usual, regard
G(K/E) as a G(£y/c)-module by τoξ = τζτ~ι for τeG(E/k) and ξeG(K/E),
where f e G(K/k) is such that f | £7 = τ, and regard X(G(K/E)) as a
G(#/fc)-module by (τoχ)(^) = χiτ^og) with τeG(E/k), χeX(G(K/E)) and
geG(K/E). Then it is easily verified that the canonical isomorphism
D/(E'xy = X(G(K'/E')) is a G(£yfc)-isomorphism. Thus X(G(E/k)) =
M_t,θQ(G(E/k), ϊc) as a G(£?/fc)-module, where M_t)θQ(G(Elk), k) is as in
Maus [3], §1.2. In fact, it is easily verified that the isomorphism from
A&p-Nt)(E'x)p/A&p-Nt+ι)(E'xy( = FJF^) onto k ( = E) defined in (iii) of
Corollary to Proposition 1 is a G(JSr/fc)-isomorphism from Ft\Ft_γ onto
M_t,θo(G(E/k), k), so Dj{E'xy = M_t,θ,{G{Elk\ k), hence X(G(E/k)) =
M_t)θo(G(E/k), k) as a G(i?//iO-module. Hence by the duality theorem of
Pontrjagin, G(K/E) ^ Mt,θo(G(E/k),k) as a G(jS7/fc)-module. In general, it
is easily verified that E\ Vx)IEr has the ramification number {eλp — v) if
x e IΠ), ί U^ι) with 1 ̂  v < e,p, v^0(modp). Since Dn A^^-^ + 1 ) (£" x ) p =
(E'x)p, by this remark and [5], Lemma 10, we see that any sub-extension
of K/E of degree p has the ramification number t; so by Serre [10],
Chap. IV, §1, Proposition 3, we see easily that K/E has the only one
ramification number t.

REMARK. When k is algebraically closed, Maus' proof of Lemma 2.7
is still valid if we replace local class field theory by local class field
theory of Serre [9]. However, we adopt the elementary method, not
using class field theory.

3. Proof of Maus' Korollar 5.10 when k is perfect. In this section,
we prove Theorem which corresponds to Maus [3], Korollar 5.10, and for
its proof we use Wyman [11], Corollary 29, Maus [2], (3.3), (3.7), (3.9)
and the following Lemmas 3 and 4.

LEMMA 3. Let p, k and ek be as in Notations. Assume moreover
that k is algebraically closed. Let teN be such that 1 <Ξ t < ekp/(p — 1)
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and t & O(mod p). Then for any integer n there exists a fully ramified
cyclic extension kn of k of degree p% whose first ramification number
is t.

PROOF. By MacKenzie-Whaples [12], there exists a cyclic extension
&! of k of degree p whose ramification number is t. It is well known
that the Galois group of the maximal ^-extension of k is free pro-p-
group. Hence there exists a cyclic extension kn of k of degree pn

containing klm By Serre [10], Chap. IV, §1, Proposition 3, the first rami-
fication number of kjk is t.

REMARK. It is verified by using [5], Corollary to Proposition 3 and
Serre [10], Chap. V that Lemma 3 is also valid when k is perfect.

LEMMA 4. Let pbe a prime number. Put M(e) = {tf eN\t' ^ 0(mod p),
e/(p - 1) ̂  t' < ep/(p - 1)} and M{t, e, m) = {t, t + e, , t + (m - l)e) for
eeN, meN and teN. Let neN be such that n < e(p — 1)1 p and let
Vι < r2 < '' < r* be a sequence of non-negative rational numbers. Fix e.
Then there exists t e M(e) such that r, g M(t, e, m) for i = 1, 2, , n and
for all meN.

PROOF. Put M = M(e) and Mt = (Jm=i M(t, e, m). It is easily verified
t h a t Mt f]Mt, = 0 w i t h t φ t \ teM a n d t'eM. S ince n < e(p - 1)1 p <

#(i@), t h e r e e x i s t s teM s u c h t h a t Mt Π {rlf , rn} = 0 . q .e .d .

For a Galois extension K/k, we call s an upper ramification number
of Kjk when ψK/h(s) is a ramification number of K/k.

THEOREM. Let p, k and ek be as in Notations and let K/k be a
finite fully ramified Galois extension. Moreover suppose that k is perfect.
Then there exists a finite algebraic extension k'\k satisfying the following
properties (1) and (2):

(1) The sequence of the ramification groups of K/k can be identi-
fied with that of K'/kf by the restriction homomorphism of G{K'/kf) onto
G(K/k), where K' = k'K.

(2) All the upper ramification numbers of K'/kf are smaller than
ek>/(p - 1).
Moreover, if ek ^ 0(mod p — 1), then we can take kr such that ek> φ. 0
(mod p — 1).

PROOF. Serre [10], Chap. V, §4, Lemma 7, we may suppose that
k is algebraically closed. Let \rx < r2 < < rn be the sequence of all
the upper ramification numbers of K/k. By taking a suitable tamely
ramified extension of k of degree prime to [K: k] and (p — 1), we may
suppose that n < ek(p — l)/p. By Lemma 4, there exists t e M(ek) such that



MAUS' THEOREM ON RAMIFICATION GROUPS 67

rt ί M(t, ek, m) for i = 1, 2, , n and for all meN. Put sm = £ + (m — 1)^
and fix m e JV such that rn<sm. By Lemma 3, there exists a fully ramified
cyclic extension k'/k of degree pm whose first ramification number is t.
By Wyman [11], Corollary 29, the set of all the upper ramification numbers
of kf\k is M(t, ek, m). Since r t g M(£, βfc, m) for i = 1, , m, by Maus [2],
(3.3) (3.7) (3.9), the sequence of the ramification groups of K/k is isomorphic
to that of K'lk', and r'n = ψv/fc(rn), where r'n is the maximum of the upper
ramification numbers of K'/k!'. Since rn<sm, we have irk'/k(rm)<ψk'/k(sm) =
t + (ekp/(p - lJXp"-1 - 1)< βfc,/(p - 1), hence < < efc,/(p - 1).

4. Proof of Maus' theorem quoted in the introduction when k is
perfect. Using §2 and 3, Maus [3], Satz 3.4 and Lemma 4.3, we can
prove Maus' theorem when k is perfect. Note that Satz 3.4(1) is valid
when k is algebraically closed without the assumption that E is regular
and that Maus9 Lemma 4.3 is valid when k is perfect. In fact, since
the Galois group of the maximal p-extension of E is free pro-p-group
and since Maus' Lemma 2.7 is valid when k is perfect by §2 of this
paper, Maus' proof of Satz 3.4 is also valid; since Maus' Lemma 2.7 is
valid when k is perfect by §2, Maus' proof of Lemma 4.3 is still valid.

PROOF OF MAUS' THEOREM WHEN k is PERFECT. By Serre [10], Chap.
V, § 4, Lemma 7, we may suppose from the beginning that k is algebrai-
cally closed. We shall prove the theorem by induction on r. If r = 1,
then the assertion follows from §2. Suppose r > 1. We shall prove this
case in the following four steps (I) ~ (IV).

( I ) By the induction hypothesis, there exist a finite algebraic ex-
tension kjk and a finite fully ramified Galois extension Kλ\kx whose sequence
of ramification groups is G(0)/G(r) 2 Ga)/G{r) 3 3 G(r"1)/G(r) 3 1.

(II) By Maus' Satz 3.4 (see the above remark), there exists a
finite Galois extension K\kγ containing Kλ such that G{Kjk^ = G(0) and

(III) By §3, there exists a finite algebraic extension k'\kγ satisfying
the following (i) and (ii):

( i ) The sequence of the ramification groups of Kkfjkf is isomorphic
to that of K/ki in the natural way.

(ii) All the upper ramification numbers of Kk'jk' are smaller than

<W(P - 1).
(IV) Let E'jk' be the maximum tamely ramified extension of k' in

KJtf. Let t e N be such that ek,j(p — 1) < t and t e Vp(ek,, eQ, t), where
Vp(ek,, e0, t) is as in Maus' Lemma 4.3 for Kk' z> Kxk' ZD E' ID k\ Then by

(1) This theorem is generalized in [8], Theorems 7 and 8.



68 H. MIKI

Maus' Lemma 4.3, there exists a finite fully ramified Galois extension
K'lk' satisfying the following (iii) and (iv):

(iii) K'z>Ktf, G{K'lk') = G(0) and GiK'/Kfi) = G(r).
(iv) K'lKJc' has the only one ramification number ψκ>/E>{t)<

The conditions (ii) and (iv) imply that the only one ramification number
Ψκ>/E'(t) of K'jKJί,' is greater than all ramification numbers of KJc'/k'.
Hence by Maus [3], Lemma 4.2, the sequence of the ramification groups
of K'/k' is G{0) 2 G(1) 3 S G(r) 3 G(r+1) = 1. The last assertion is
verified in each step in the above.
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