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1. Introduction. Let G be the group of all Mobius transformations.
Each g € G is a conformal self-mapping of the Riemann sphere C = C U {},
where C is the complex plane, and g is of the form

g(t) = (at + b)/(ct + d),

where a, b, ¢, d € C and ad — be = 1. Hence the group G is a 3-dimensional
Lie group isomorphic to SL(2, C) modulo its center. An element g€G,
g(t) = (at + b)/(ct + d), not being identity, is called parabolic if tr*g =
(@ + d)*=4; ¢ is called elliptic if tr*g = (¢ + d)*€[0, 4); in all other
cases g is called loxodromic.

Let I" be any subgroup of G. We denote by Hom (I', G) the set of
all homomorphisms of I" into G. A homomorphism : I — G is called
parabolic, if tr*6(v) = 4 whenever veI' is parabolic. We denote by
Hom, (I", G) the set of all parabolic homomorphisms of I" into G.

Let I' be a Kleinian group and let w:€C—C be a quasi-conformal
self-mapping of the Riemann sphere. We say that w is compatible with
a Kleinian group I if wo I'cw™ ' CG. If w is compatible with I”, then
the mapping

o700 =woYow'el@

is an isomorphism of I" onto w oI o w™ and we call the isomorphism &
a quasi-conformal deformation of I". We denote by Hom, (I, G) the set
of all quasi-conformal deformations of the Kleinian group I" into G. We
have Hom,, (I", G) c Hom, (I", @) © Hom (I", G).

Let I' be a finitely generated Kleinian group with a system of
generators {7V, ---,7y}. Then an element 6€Hom (", G) is uniquely
determined by (6(7), ---, 8(75)) € G¥, where GV is the N times product
space of G. We define the set X(I";7, --+, 7y) in G¥ such as

XI5y ++v, Tw) = {(0(71): cee, 0(Ty)) e GNle € Hom (7', G)} .

Now we identify an element 6<¢Hom (I', G) with (6(7,), -+, 8(Yy) €
X(I';7, +++,7y) and we regard X(/';7, -+, 7y) a8 Hom (I", G). The cor-
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responding spaces for Hom, (I, G) and Hom,, (I, G) in G¥ are denoted by
X, (5 7y« ooy 7y) and X (7, ---, V), respectively. We define stability
of I' as follows: A finitely generated Kleinian group I" is said to be
quasi-conformally stable (or simply stable) if there exists a system of
generators {v, «--, 7y} of I' and a neighborhood U(7,, ---, 7y) ©G¥ of
(7, +++, Yy) €G¥ in G¥ such that

Xp(r; 71; ct 72\') n U('Yu ] ’YN) = qu(r; 717 °t %y 72\7) N U('Yu cy IYN) .

Although it is well-known that stability of I" in the above definition
is independent of choice of generators of I, we shall give a proof of this
fact for completeness. Namely we have the following proposition.

PROPOSITION. Let I' be a quasi-conformally stable group and let
{0, -+, 0y} be an arbditrary system of gemerators of I'. Then

Xp(r; 31: tt Yy 3M) n V(Bu Tty 5M) = qu(r; 817 M) 82!1) n V(51’ M) 83[)
for some neighborhood V(é, ---,0,) CGY of (0, +--, 0x) €G¥ in G".

PrROOF. Since I' is quasi-conformally stable, there exists a system
of generators {v, «--,7y} of I" and a neighborhood U(7v, ---, 7y) of
(7 +++, Yy) €EGY in G¥ such that

Xp(r; Ty o, ’YN) N U(’Yu tt ’YN) = qu(r; RITIRERY 7N) n U(’Yu M) 7.\') .
Let wJ(g, --+,9y) be a word in N Iletters ¢, ---, gy satisfying
WV v, Vy)=20; for 1 =1, .-, M and let @;h, ---, hy) be a word in
M letters h,, ---, hy satisfying @;(0,, +++, 0,4) = 7; for j=1,.--, N. We
define mappings w: G¥ — G and @: G¥ — G¥ as follows;

(g, ***y gy) = (@91~ Gu)y * v+ Oylgyy * -+, gx)
(I)(hu M) hM) = ((Bl(hu tty h’M)9 ct (I)N(hu Tty hM)) .
We shall show @ow=1id on X,(I';V, ++-, Vy). Let (g, -+, gy) be an
arbitrary element of X,(I;7v, --+,7y). Then g, = 0(7;) for an element
6 € Hom, (I", G) determined uniquely. Therefore we have
@ o g, +++, gy) = O(@y(gs, 5 Gx)y =+ *s OulGsy * <5 Gw))
= (D(wl(e('yl)y “t 6(7N))’ *t wM(0(71), ) 0(72\')))
= @(0(0)1(7&) M) ’YN))) MR (9((0}1(71, *t Yy ’YN)))
= @(0(31)’ M) 0(5M))
= (@1(0(31)! tt Ty 6(611))’ ) CDN(a(al)’ Tty 0(3}1)))
= (0((61(31’ ct 511{)): “tty H(G)N(Bn ct BM)))
= (0(71)’ Tty 0(71\7)) = (gu cty gN) .
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Hence @ ow=1id on X, (I';7, -++,7y). By the same manner we have
wod=1d on X,(I";0, +++,0y). Since w and & are continuous, we see
that w is a homeomorphism between X, (I"; 7, ---, Vy)and X,(I"; 0y, +++, 0x).
Therefore it holds that .

CI)(XP(F, Yty 71\7) N U(71y %y 7N)) = XP(F; 31; "ty BM) n V(au ] aM)

for some neighborhood V{4, :--, 0,x)CG¥ of (0, +-+,0,)€G¥ in GY.
Hence, for an arbitrary element (h, <+, hy) of X, (I";0, =+, 0x) N
V(d,, -, 04), there exists a unique element (g,, - -+, gx) € X,(I; Vs, =+, Vi) N
U(v, -+, 7y) such that w(g, -+, gy) = (hy, <+, hy). Since g; = wo ¥; o w™*
for some quasi-conformal mapping w, we have

(hu ttty hM) = w(gu 0ty gN)
= (wl(gv Ty gN)y cr wM(gu cr Yy gN))
= (@ (woYow™, cor, WoTyow™), e oe, Wy(WoV,0oW™, eoe, WoYVyow™))
= (w°w1(717 °t %y 'YN)ow—I’ ct Ty ’MJOCI)M('Y“ *t 7N) ° w_])
= (Wod,ow™, coe, Wodow™) .,
Hence we see (hy, -+, hy) € X,.(["; 0,, ++-, 0y), that is,
XP(F; 617 tr BM) n V(au Y 5M) C-qu(r; 31; tt BM) N V(au *t aM) .
The converse inclusion relation is evident and we have our proposition.

A Kleinian group I” is called a function group if I has an invariant
component. In this paper we shall give a necessary and sufficient condi-
tion for finitely generated function groups to be quasi-conformally stable.

2. Notations and definitions. In our following discussions we need
the cohomology theory and, in this section, we recall some notations and
definitions of cohomology of Kleinian groups following Gardiner and Kra

[3].

A representation p of a Kleinian group I” on a finite dimensional
vector space F is an anti-homomorphism of I into the automorphism
group Aut E of E. For a representation p of a Kleinian group I" on E,
we define an action of I" on E by

ExTIs@M—aY=p")x)e E.

A cocycle is a mapping z: I’ — E satisfying 2(7,07,) = 2(7,)-7, + 2(7,) for
(7, Y)el' x I'. We denote by ZYI', E) the space of all cocycles. A
coboundary is a cocycle such that z(v) = z-¥ — x for some xc E. We
denote by BYI', E) the space of all coboundaries. The cohomology space
HYI', E) is the space of cocycles factored by the space of coboundaries.
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Throughout this paper we denote by ¢ the identity of the group G.
Let & be the Lie algebra of G. Then the Lie algebra @ is identified with
the tangent space T,(G) of G at e. The adjoint representation Ad (A):
G — @ of G in @ is the differential at ¢ of the map

GoBr— A7'«BoAeG.

Since Ad: I" — Aut @ yields a representation of I' on &, we have a well
defined cohomology space H'I, ®). A cocycle ze¢ ZY(I", ®) is called
parabolic if 2|, € B'(I', ®) for any parabolic cyclic subgroup I, of I'.
We denote by PZ'[I, ®) the space of all parabolic cocycles. The space
of parabolic cohomology PHYI', ®) is the space of parabolic cocycles
factored by the space of coboundaries.

Let IT be the vector space of quadratic polynomials with complex
coefficients. We define a representation p of a Kleinian group I" on I7
by

(M) = v(vO)/7'(¢)

for vell, vel', and teC. We can thus define the cohomology space
H'(I', II). A cocycle ze Z'(I', Il) is called parabolic if z|, € B(I', II) for
any parabolic cyclic subgroup I, of I'. We denote by PZYI', II) the
space of all parabolic cocycles. The space of the parabolic cohomology
is denoted by PHY[", II). The following is due to Gardiner and Kra [3]
and will be used later.

IsoMORPHISM THEOREM (Gardiner and Kra [3]). Let I' be a Kleinian
group. Then PHYI, ®) is isomorphic to PHYI, IT).

3. For a non-elementary Kleinian group I" we denote by Q2(I") the
region of discontinuity of I' and by A(I") the limit set of I'. Let
A((I"), I') be the Banach space of bounded quadratic holomorphic forms
on Q(I') with respect to I and let A,(2(I"), I') be the open unit ball in
A, I'). If the Kleinian group I is finitely generated, then we have
the anti-linear injective mapping

B*: A(I'), I'y+— PHYI", Il) ,

which is the so-called Bers map.

Now we shall prove the following theorem. The essential part of
our proof of the theorem is due to [8]. However, for the sake of com-
pleteness, we shall restate the proof of it.

THEOREM 1. Let I be a non-elementary finitely generated Kleinian
group. If PH\I', IT) = B*(A(XI), I')), then I' is quasi-conformally stable.
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PrOOF. Let )\ be the Poincaré denmsity on 2(I"). For (g,¢)eG X
A D), I), we set =22} on ') and ¢ = 0 on A(I") and observe that
p is a Beltrami coefficient for I. Let w = gow”, where w” is the p-
conformal self-mapping of C that fixes 0,1, . For each element v,
there is an element 7% € G such that

WoY = YPow ,
We set
SWg, ¢)) = (Vi#?, <=, 7)€ GV,

where {7, ---, 7y} is a system of generators of I'. The mapping f is
analytic and f(G x A(Q("), I')) is contained in X, (I";7, ---, 7y). Now,
by the isomorphism theorem stated in Section 2, the image of the tangent
space & x A, I') of G x A(Q(I"), I') at (e, 0) under the tangent linear
map (df)e, 0) at (¢, 0) is canonically isomorphic to the linear space of

cocycles that correspond to the Bers cohomology space B8*(A((I), IN)).
Let A be a set of suffices @ such that w.(g,, -+, gy) is the word in

N letters g, ---, gy satisfying w,(7,, ---, Yy) = ¢ and let B be a set of
suffices B such that w(g, ---, g5) is the word in N letters g, ---, g»
satisfying tr*w,(v, ---, 7x) =4 and @y (7, ---,7y) # e. Consider two
mappings F,: G¥ — G and F,;: G¥ — C such as

Fd(gl’ Tty gN) = wn(Qn “t %y gN) ’ Fﬁ(gl’ "t gN) = tr* wﬂ(gv R} gN) — 4.
Then

(N FZ@) 0 (O FO) = X5 % =0, %)

and we see that

(a) AG x A, IN) < {,DA Fiiel n {ﬁg F310)} .
For the tangent linear mappings (dF,)(7,, -+, ¥y) and (dFp)(V,, -+, Vy) We

have the isomorphism
() ker (dFo)(7,, -+, "IN {,Q; ker (@FG )7y, «++, YW} = P2, ®),

where ker (dF,)(7,, -+, 7y) and ker (dF,)7, ---, ¥y) are the kernels of
the linear mappings (dF,)7, -+, 7y) and (dFs)(7, -+, 7y), respectively
(see [3] and [T7]).

We assume that PH'Y([, II) = B*(A((I"), I')). Since (df)(e, 0)(S x
A(SXI), I')) is isomorphic to the linear space of cocycles that correspond
to the Bers cohomology, we see from our assumption that (df)(e, 0)(S x
A(Q(I'), I')) is isomorphic to PZYI', IT). Hence we see that (df)(e, 0(G x
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A(D), I')) is isomorphic to PZYI', ®). Therefore we have
(b) (@f)e, 0XS x AWRAD), IM) = { QAker (AE)(Yy <o+, Tx)}
N (Y ker (@F)(Y, -+, 7)) -

Thus using (a) and (b), we see, as in the same manner as in the proof
of Theorem 8.4 in [3] that /" is quasi-conformally stable (see also the key
lemma, in proving Theorem 8.4, in [7]).

4, In the following two sections we shall show the converse of
Theorem 1 for non-elementary finitely generated function groups.

We call the group consisting of only the identity e to be trivial.
For our purpose, we use the Maskit’s Combination Theorems I and II in
|5], where the amalgamated subgroups and the conjugated subgroups are
cyelic or trivial.

First we shall prove

LEMMA 1. Let I' be the non-elementary Kleinian group which is
comstructed from I', and I', by application of Combination Theorem I,
where the amalgamated subgroup H = I, N1, be parabolic cyclic or
elliptic cyclic or trivial. Let 0, be an element of Hom, (I";,, G) for i = 1, 2.
Then there exists an element 6 € Hom, (I, G) such that 8 = 6, on I, for
+=1,2 2f and only +f 6, = 0, on H.

Proor. It is sufficient to prove the if part. Let [, = H + >, Ha,
and I, = H + >,. Hb. be the right coset representations of /', and I,
respectively., By Combination Theorem I we see that I' is the free
product of I, and I', with the amalgamated subgroup H. Therefore, for
any Y€/, we have a unique representation

Y =hoYo+er0%,,

where k€ H and 7v; is some of a, or b, and 7v; and 7,,, are not contained
simultaneously in the same (i =1 or 2). We set 6 = 0,|, = 6,, and
define the mapping 0: ' — G by

0(7) = G(h)o8, (7)o -+ 20,(7.),

where ¥ = ho?v,0---07, is a unique representation of v and ¢, = 1 if
Y. €I, and 7, = 2 if v,el,. It is easily shown that ¢ = 6, on I'; by the
definition of . We can prove by using induction on » as in the proof
of Theorem 1 in [6] that ¢ is a homomorphism of I" into G. Moreover,
for any parabolic element v e I', there exists a parabolic element ¥e /I,
(t =1 or 2) and an element d € I" such that ¥ = 00567 (see [5]). There-
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fore we have 4(7) = 0(6)6(¥)-6(6)"'. Since 6§ = §,¢ Hom,(I",, G) on I,
we have tr*d(v) =tr*0(¥) = tr*d,(7) = 4. Hence 6 is an element of
Hom, (I", @) and we have proved our lemma. ‘

Next we shall show that, for a parabolic cyclic or an elliptic cyclic
group H, the parabolic homomorphism 6 < Hom, (H, G) sufficiently close
to the identity is the conjugation by an element x € G which is sufficiently
close to the identity element e, that is, we can prove

LEMMA 2. Let H be a parabolic or an elliptic cyclic group with o
generator h. Then there exists a meighborhood U(h) of h in G and a
neighborhood V(e) of ¢ im G such that g = xohox™ for an arbitrary
element g of X,(H; h) N Uh) and for some x € V(e).

ProoOF. First we assume that H is a parabolic cyclic group with a
generator h. Let F:G— G and F,: G — C be the mappings such as

F(g) = gohog™ and Fyg) =tr'g—4,
respectively. The kernel of the tangent linear map (dF,)(h) of F, at h

is identified with the space of coboundaries B'(H, ®) for H (see Lemma
8.3 in [3]) so that

dim (dF,) (W T,(®)) = dim T,(G) — dim B'(H, ®)
=dim® — dim B'(H, ©),
where T,(G) is the tangent space of G at h. Since G = I/ and
B'(H, ®) = B'(H, II) and since dim /7 > dim B'(H, IT) (for instance, see
[6]), we see that dim (dF,)(h)(T,(G)) = 0. Hence we have (dF,)(h) +# 0.
Therefore, there exists a neighborhood U’'(h) of A in G such that
U'(h) N F7'(0) is a complex submanifold of U’(h) with

TW(U'(h) N Fy(0)) = ker (dF,)(R)

for the tangent space T,(U'(k) N F;0)) of U'(h) N F;*(0) at h. The image
of @ under the tangent linear mapping (dF))(e) is identified with the
space of coboundaries BYH, ®) for H (see [7]). Since the kernel of
(dF,)(h) is also the space of coboundaries, we see that the linear mapping
(dF)e): @ — T(U'(h) N F*(0))
is surjective. Therefore, by the implicit function theorem, we have a
neighborhood V(e) of ¢ in G such that F,(V(e)) is the neighborhood of &
in U'(h) N F;Y0), that is,

F\(V(e)) = Uh) N F7'(0)
for some neighborhood U(k) of h in G. Since F;¥0) = X,(H; h), we see
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that F(V(e)) = X,(H; h) N U(h). Hence, for any ge X,(H; k)N Uh), it
holds that g = Fi(x) for some z < V(e¢). Therefore, we have our lemma
in the case of a parabolic cyclic group H.

Next we assume that H is an elliptic cyclic group of order v with a
generator . We define mappings F,: G — G and F,: G— G such as

F(g) =gohog™ and Fyg) =y,

respectively. The kernel of (dF,)(h) is identified with the space of co-
cycles ZY(H, ®) for H, and for an elliptic cyelic group H we have
Z'(H, ) = B'(H, ®) (see [7]). Let V, be a neighborhood of 2 in G and
Y, be a complex submanifold of V, satisfying T.(Y,) = ker (dF,)(h) and
FiY{e)nV,CY, (see [3]). Since the image of & under the tangent linear
mapping (dF,)e) is identified with the space of coboundaries B'(H, ®) for
H and since the kernel of (dF.,)(h) is also the space of coboundaries, we
see that the linear mapping

(dF)e): @ — T(Y,)
is surjective. Hence, we have a neighborhood V{e¢) of ¢ in G such that
Fi(V(e)) = Y, N Uh)
for some neighborhood U(h) of & in V,. Since F\(G)CF;e) = X,(H; h) =
X(H; k), we have X(H; h) NUh) Y, N Uh) = F(V(e)) c X(H; h) N U(k).
So it holds that F(V(e)) = X(H;h)N U(h). Therefore, for any

g€ X(H; h) N Uh), we have g = F,(x) for some x ¢ V(e). Thus we have
also proved our lemma for the case of an elliptic eyelic group H.

The contents in general situation of the above lemma is seen in [7].

LEMMA 3. Let I' be a non-elementary Kleinian group which is con-
structed from finitely generated Kleinian groups I', and I'; by applica-
tion of Combination Theorem I, where the amalgamated subgroup H =
', N I, be parabolic cyclic or elliptic cyclic or trivial. Let {7, <<+, Vy_,, b}
and {0, +++, Oy, b} be systems of generators for I', and I',, respectively,
where h 1s a generator for H. Then there exist neighborhoods
Uy coey Yy, b) of (Vi ooy Yy, W) EGY imn G* and V(0, «++, Oy_y, h) of
(0, +++, 0y_1, ) EGY in G¥ such that

(f;y Yy f:m gy * ‘gN) € Xp(r; Yis 0y Vo h, 517 tt 6N—1; h)
n {U('yu crey Vi h) X V(au A} 51\7—-1; h)}
Jor an arbitrary element (f,, ««+, fur) of Xo(I'y; Yy =0y Ve, BYNU(Y, <+ -,
Yu-1» B) and for some element (g, +--, gy) of X, (['y 0y +++, Oy, B)N
V(au % 61\7—1, h)
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Proor. We assume that H is a parabolic cyclic group. We choose
a neighborhood U(7,, «--, Vy_, h) sufficiently small so that fi, = xohox™
for each element (f,, + -+, fu) € X,(I';; 7y, + ooy Yu—ry YN Uy, + v 2y Y-y, b) and
for some x € G which is sufficiently close to the identity element e. This
is possible by Lemma 2. Now we define a parabolic homomorphism
(gu *t gN) € X,,(Fz; 31; %y 81\’-1’ h) by

g; = Xod;oxt, (t=1.--,N—-1), gy = Tohox™.
Since zx is sufficiently close to the identity element ¢, we see
(gu MY gzv) € Xp(rz; 31) Tty 51\1—1’ h) n V(au ct 31\'—1’ h)

for some small neighborhood V(é, -+, 0y_,, h). Let 6, and 6, be the
corresponding parabolic homomorphisms to (f;, -+, fu) and (g, ***, gx)s
respectively. Then 6, and 6, satisfy 6,; = 6,];. Therefore, we see by
Lemma 1 that (f}, «-+, fu, 91, -, 9v) is an element of X, (I'; 7, +* <, Yu_, Ry
Oy ***y Ox_y, B). Clearly (f, *+*, fu» gy, "+, gy) is also contained in
U,y <+, Yy B) X V(b,, +++, 0y_,, B). Thus we have proved our lemma
for a parabolic cyclic group H. In the other cases, we can obtain the
desired by the same manner as above.

Lemma 3 implies that a parabolic homomorphism 6, € Hom, (I',, G)
sufficiently close to the identity homomorphism is restriction of some
parabolic homomorphism 6 € Hom, (I", G) on I, which is sufficiently close
to the identity homomorphism. We ecan also prove that any 4,¢
Hom, (I",, @) sufficiently close to the identity homomorphism is restriction
of some ¢ € Hom, (I', G) on I', which is sufficiently close to the identity

homomorphism.

LEMMA 4. Let I' be a mon-elementary Kleinian group which s
constructed from finitely generated Kleinian group I', and an element
fe@ by application of Combination Theorem II, where the conjugated
subgroups H, and H, are parabolic cyclic or elliptic cyclic or trivial.
Let {7, +++, 75, by, by} be a system of generators of I',, where h; is a genera-
tor of H, (1 =1,2) with foh,of™ = h,. Let I', be the group generated
by f. Then there exists a neighborhood U(7,, +++, Vi, by, By) 0f (V4 ¢+ +, Vi,
hy, h) € GEY? in GFTE and o meighborhood V(f) of f in G such that

(G * =+, G140 9) € XI5 Moy oo vy Ty oy By, I NA{UM, »+, Vi, by k) X V())}

Jor an arbitrary element (g, +«+, 9r.2) € X,(I'y; Yy ooy Yoy By Ry) NU(7yy =2+,
V1s hiy he) and for some ge X,(I'y; 1) 0 V().

Proor. We assume that H is a parabolic eyclic group. We choose a
sufficiently small neighborhood U(7,, ---, 7y, h,, h,) so that g,,, = x,oh, o 2"
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and g,.,=x,ch,ox;" for each element (g,,- -+, 9...) € X, (I';; Viy+ v+, Y1, by Bo)
u(, «--, 7, h, h,) and for some z,€G and z,€G which are sufficiently
close to the identity element e. Let 0, be the parabolic homomorphism
corresponding to (g, ---, g:.,). Now we define a mapping 6: {7, -+, 7,
h17 hzy f}'_’G by

6(71) = 01(71)(,& = 17 ) L) ’ 0(h3) - al(hJ)(j = 11 2) ’ 0(f) = xzofoxl_l .
Then we have

O(f) o O(hy) o 6(f) " 0 O(hy)™
= (:’:2"f°xfl)"(:‘ﬁOhl"-'4'714)"(-772"f"x;l)ﬂ"(5172"]712"972—1)71
=@zo fohyof ohyoxy .

Since foh,of toh;' =¢, we see O(f)oO(h)0(f)* o0(h,) ' =e. For any
relation @w(7,,«+,Y.,h,h;)=¢ in I',, it holds that w(6(7,),- - -,0(7.),0(h,),0(h,))=
60(51('71), D) 01(7L)r 01(h1)’ 01(hz)) = 01((0(’71; ceey Yo hu hz)) = 01(6) =e¢. From
Combination Theorem II, we see that relations in I" are consequences of
the relations in I, and the relation foh,of 'oh;! = e. Therefore, we can
extend the mapping ¢ to I" such that 6 to be an element of Hom (I, G).
Hence (g, **+, gri2 %0 f ox?) corresponding to the homomorphism é is an
element of X(I";7, -+, 7, b, hy, ). Since x, and =z, are sufficiently close
to e, we see

(gu G xz°f°$T1)GX(F; RETIRR RPN S0 hu hz; f)
N {U(71; ceey Vi hu hz) X V(f)}

for some small neighborhood V(f). Moreover, for any parabolic element
vel', there exist a parabolic element 7€', and an element 6 €I’ such
that ¥ = 00900 ! (see [5]). Therefore, we see that 6(7) = 6(6) 0 (7)o 6(6)7*.
Since ¢ = 0, on I', by the definition of # and since 6, € Hom, (I, G), we
have tr* 6(v) = tr* (7) = tr* 6,(¥) = 4. Hence 6 is an element of Hom, (I, G),
which shows (g, « -, gris X0 foxr?) € X,([5 7y, + v+, Vi, by By, f). Thus we
have our lemma in the case of a parabolic cyclic group H. We can also
prove lemma in the remainder cases by the same argument as above.

Lemma 4 implies that a parabolic homomorphism 6, € Hom, (I", G)
sufficiently close to the identity homomorphism is restriction of some
parabolic homomorphism 6 € Hom, (I", G) on I', which is sufficiently close
to the identity homomorphism.

5. A finitely generated Kleinian group I" is called a basic group if
I" has a simply connected invariant component and contains no accidental
parabolic transformations. Hence a basic group is either elementary or
quasi-Fuchsian or degenerate (see [5]). Let /" be a non-elementary finitely
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generated function group. Then Maskit [5] proved that I' can be
constructed from basic groups I',, ---, I', by using Combination Theorems
I and II, where in each step of applying Combination Theorems, the
amalgamated subgroups and the conjugated subgroups are parabolic
cyclic or elliptic eyelic or trivial.

Now the converse of Theorem 1 for non-elementary finitely generated
function groups is obtained by using the following two lemmas.

LEMMA 5. Let I' be a mon-elementary Kleinian group comstructed
Jrom finitely generated Kleimian groups I', and I', by application of
Combination Theorem I, where the amalgamated subgroup H =TI, NT, is
parabolic cyclic or elliptic cyclic or trivial. If I' is quasi-conformally
stable, then I', and I', are also quasi-conformally stable.

ProOOF. Let 6, be an arbitrary element of Hom,(/',, G) which is
sufficiently close to the identity homomorphism. Then, by Lemma 3,
there exists an element #eHom,(I',G) with 6 =6, on I, and 6 is
sufficiently close to the identity homomorphism. Since I" is quasi-con-
formally stable, we see 6(7) = wovYow * for some quasi-conformal
mapping w: C— C. Since 6 = 6, on I', we have 0,(7) = wovow™ for all
veI',. This shows the quasi-conformal stability of /°,. In the same way
we can see the quasi-conformal stability of I,.

LEMMA 6. Let a non-elementary Kleinian group I’ be constructed
from a finitely generated Kleintan group I', and an element fe€G by
application of Combination Theorem II, where the conjugated subgroups
H, and H, be parabolic cyclic or elliptic cyclic or trivial. If I is quasi-
conformally stable, then I', is also quasi-conformally stable.

PrOOF. Let 6, be an arbitrary element of Hom, (", G) which is
sufficiently close to the identity homomorphism. Then, by Lemma 4,
there exists an element e Hom,(I",G) with 6 =64, on I, and @ is
sufficiently close to the identity homomorphism. Since I' is quasi-con-
formally stable, we see 8(Y) = w7 ow™ for some quasi-conformal mapping
w:C—C. Since 6 = 0, on I',, we have 6,(Y) = wovow™ for all verl.
This shows the quasi-conformal stability of I,.

" REMARK. Above two lemmas are converse of Abikoff’s theorems
under the assumption that the amalgamated subgroups and the conjugated
subgroups are parabolic cyclie or elliptic cyclic or trivial (see W. Abikoff’s
papers “Constructability and Bers stability of Kleinian groups” in Dis-
continuous groups and Riemann surfaces, Ann. of Math. Studies, 79 (1974)
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and “On the decomposition and deformation of Kleinian groups” in Con-
tributions to analysis, Academic Press, 1974).
Now we can prove the following.

THEOREM 2. Let I' be a non-elementary finitely generated function
group. If I' is quasi-conformally stable, then

PH\I', IT) = B*(A((I), I)) .

Proor. As stated already, the non-elementary finitely generated
function group I" is decomposed into basic groups I, ---, I',, where, in
each step of applying Combination Theorems, the amalgamated subgroups
and the conjugated subgroups are parabolic cyclic or elliptic cyclic or
trivial. Now we assume that I” is quasi-conformally stable. Then we
see by Lemma 5 and Lemma 6 that I',, ---, I", are all quasi-conformally
stable. On the other hand, the degenerate basic groups are not quasi-
conformally stable (for instance, see corollary of Theorem 11.2 in [3]).
Hence I, ---, I', are elementary or quasi-Fuchsian. Therefore, we have
PHYT, IT) = B*(A((I"), I')) by Theorem 5 in [6].

The above Theorem 1 and Theorem 2 together with Theorem 5 in
[6] yield the following.

THEOREM 3. Let I' be a non-elementary finitely generated function
group. Then the following three conditions are equivalent to each other:

(1) PH\I, II) = B*(A(XI), IN)),

(2) I 18 quasi-conformally stable, and

(8) I' 1s decomposed imto elementary or quasi-Fuchsian basic
groups.

REMARK. We denote by & the class of all non-elementary Kleinian
groups which can be built up in a finite number of steps from the basic
groups by using Combination Theorems I and II, where, in each step of
applying Combination Theorems, the amalgamated subgroups and the
conjugated subgroups are parabolic cyclic or elliptic cyclic or trivial.
The non-elementary finitely generated function groups are contained in
the class &. Further, it is not so difficult to show that the class &}
introduced by Maskit [5] is a proper subclass of our class & It is
proved in [6] that, for a non-elementary finitely generated function group
I, the condition PHYI", IT) = R*(A((I"), I')) is equivalent to the condition
that I" is decomposed into elementary or quasi-Fuchsian basic groups.
However, the equivalency of these two conditions also holds for groups
contained in the class & (the proof of this fact is already given in the
proof of Theorem 5 in [6]). Hence we have the following.
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THEOREM 38'. Let I' be a Kleinian group in the class &. Then the
Jollowing three conditions are equivalent to each other:

(1) PHYI, I) = B*(ALI"), I)),

(2) I s quasi-conformally stable, and

(38) I' is decomposed into elementary or quasi-Fuchsian basic
groups.

ProoOF. 1t is sufficient to prove only the equivalency of statements
(1) and (2) and the proof of this fact is essentially given in the proof of
Theorem 2.

6. Finally we state an application of Theorem 3. Let I' be a
Kleinian group and let w be a quasi-conformal self-mapping of the
Riemann sphere which is compatible with I'. If I is constructed from
Kleinian groups I, and I, by application of Combination Theorem I,
where the amalgamated subgroup H = I',N I, is parabolic cyclic or
elliptic cyclic or trivial, then we see that the Kleinian group woel ow™
is constructed from Kleinian groups wel',ow™ and wol,ow™ by applica-
tion of Combination Theorem I, where the amalgamated subgroup
woHow™ = (welow )N (wol,ow™) is parabolic cyclic or elliptic cyclic
or trivial (see [56]). On the other hand, if I" is constucted from I”, and
an element feG by application of Combination Theorem II, where the
conjugated subgroups H, and H, are parabolic cyclic or elliptic cyclic or
trivial, then we see that the Kleinian group weol ow™ is constructed
from the Kleinian group wol,ow™ and an element wofow™eG by
application of Combination Theorem II, where the conjugated subgroups
wo H,ow™ and we H,ow™ are parabolic cyclic or elliptic cyclic or trivial
(see also [5]). Therefore, if a Kleinian group I” is in the class &, then
the quasi-conformal deformation wol'ow™ of I' is also in the class &.
Hence we have the following.

THEOREM 4. Let I’ be a Kleinian group in the class & and assume
that I' is quasi-conformally stable. Then the quasi-conformal deforma-
tion of I' is also quasi-conformally stable. In particular, the quasi-
conformal deformation of a mnon-elementary finitely generated quasi-
conformally stable function group is also quasi-conformally stable.

ProOOF. Let w be a quasi-conformal self-mapping of C which satisfies
wol ow™C@G. Since I' is in & and since I" is quasi-conformally stable,
we see by Theorem 3’ that I' is decomposed into elementary or quasi-

1

Fuchsian basic groups I, --.,I',. Hence the groups wol,ow™ «--,
wol';ow™ are elementary or quasi-Fuchsian. Since wol ow™ is in &
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and since wol ow™ ' is decomposed into wol ,ow™, «--, wol ,ow ™, we
see again by Theorem 3’ that wol ow™ is also quasi-conformally stable.
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