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1. Introduction. Let G be the group of all Mobius transformations.
Each g e G is a conformal self-mapping of the Riemann sphere C=CU{°°),
where C is the complex plane, and g is of the form

g(t) = (at + b)/(ct + d) ,

where a,b,c,d£Cand ad — be = 1. Hence the group G is a 3-dimensional
Lie group isomorphic to SL(2f C) modulo its center. An element g e G,
git) = {at + b)l(ct + d)f not being identity, is called parabolic if tr2 g =
(a + df = 4; g is called elliptic if tr2 g = (a + d)2 e [0, 4); in all other
cases g is called loxodromic.

Let Γ be any subgroup of G. We denote by Horn (Γf G) the set of
all homomorphisms of Γ into G. A homomorphism θ\ Γ —*G is called
parabolic, if tr2 0(7) = 4 whenever 7 e Γ is parabolic. We denote by
Hoπip (Γ, G) the set of all parabolic homomorphisms of Γ into G.

Let f be a Kleinian group and let w:C-^C be a quasi-conformal
self-mapping of the Riemann sphere. We say that w is compatible with
a Kleinian group Γ if w ° Γ o w""1 c G . If w is compatible with Γ, then
the mapping

Γ 9 T K 0(7) = w o 7 o w"1 6 G

is an isomorphism of Γ onto w o Γ o w"1 and we call the isomorphism 0
a quasi-conformal deformation of Γ. We denote by Homffc (Γf G) the set
of all quasi-conformal deformations of the Kleinian group Γ into G. We
have Homgc (Γ, G) c Horn, (Γ, G) c Horn (Γ, G).

Let Γ be a finitely generated Kleinian group with a system of
generators {Ύlf , 7^}. Then an element θ e Horn (Γ, G) is uniquely
determined by (0(7^, , Θ{ΊN)) eGN

9 where GN is the i\Γ times product
space of G. We define the set X(Γ; ylt •••, ΎN) in G^ such as

X(Γ; % , . . . , 7,,) - {(0(7,), , 0(7*)) e G*]0 e Horn (Γ, G)} .

Now we identify an element θ e Horn (Γ,G) with (0(7t), • •, 0(7^)) 6
X(Γ; Ίu , 7^) and we regard X(Γ; Ύu , 7^) as Horn (Γ, G). The cor-
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responding spaces for Hom^ (Γ, G) and Hom?c (Γ, G) in G* are denoted by
XP(Γ; 7 l f - , 7*) and XSC(Γ; 7 l f , 7*), respectively. We define stability
of Γ as follows: A finitely generated Kleinian group Γ is said to be
quasi-conformally stable (or simply stable) if there exists a system of
generators {ylt •• ,7ΛΓ} of Γ and a neighborhood U(Ύιt ---,ΎN)czGN of
OΊ, , 7*) e GN in G* such that

XP(Γ; yl9 - , 7*) Π EΓ(7lf • , 7*) - Xgc(Γ; Ύί9 - , 7*) Π ϋ(Ύl9 , ΎN) .

Although it is well-known that stability of Γ in the above definition
is independent of choice of generators of Γ9 we shall give a proof of this
fact for completeness. Namely we have the following proposition.

PROPOSITION. Let Γ be a quasi-conformally stable group and let
R, •••, 8M] be an arbitrary system of generators of Γ. Then

XP(Γ; δi9 , δM) n V(8U . . , δM) - XQΰ(Γ; δlf . . , δM) n V(δu . . . , δx)

for some neighborhood V(δlf -' ,δM)c:GM of (β19 - ,δM)e GM in GM.

PROOF. Since Γ is quasi-conformally stable, there exists a system
of generators {Ύlf , 7 }̂ of Γ and a neighborhood U(Ύlf , ΎN) of
(7i, , 7lV) 6 GN in G^ such that

XP(Γ; 7 l f , 7^) ΓΊ I7(7lf , 7,v) = X ί β(Γ; 7 l f , 7,,) n ^7(7,, , ΎN) .

Let ω^gr,, • , gN) be a word in N letters glf , gN satisfying
ΦίOΊi , 7jy) = δί for i = 1, , M and let ώy(felf , Λjf) be a word in
ikf letters hif • , Λjf satisfying ώ^^, , 5^) = Ύd for j = 1, , N. We
define mappings ω\GN~+GM and ώ\GM~*GN as follows;

, hM) = ( ώ ^ , , ^ ) , • , ώ^fci, , Λ*)) .

We shall show ώ o α> = id on Xp(Γ;Ύίf •••,7Jff). Let (flr̂  •• ,flrΛr) be an
arbitrary element of Xp(Γ;Ύlf •• ,7Λ r). Then gi^θ{Ίτ) for an element
5 e Homp (Γ, G) determined uniquely. Therefore we have

ώ o ω(glt ...fgN) = ω{ωx(g19 , ^ ) , , ft)^^, , ^ ) )

- ώ{ωx(θ{Ί,\ , 0(7*)), , 0^(0(70, , 0(7*)))

= ω(θ{ω£ΐ» , 7*)), , θ(ωM(Ύlf , 7*)))

• , δM)), , 0(ώ*(δlf • , δx)))

-,0(7*)) - (ft, •• ,flf*) .
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Hence ώ o ω = id on XP(Γ; ylf , 7^). By the same manner we have
ω o ώ = id on XP(Γ; Sw , δ*). Since ω and ώ are continuous, we see
that ω is a homeomorphism between -3ΓP(Γ; 71? , ΎN) and XP(Γ; δlf , 5*).
Therefore it holds that

Ύ*) Π tf(7w , 7*)) - X,(Γ; δlf . . . , S J n

for some neighborhood V(δif ---, δx)cGx of (Sx, , δM) eGM in GM.
Hence, for an arbitrary element (hlf * *,hx) of XP(Γ; δif , δM) Π
^(^i, , δx)f there exists a unique element (g19 , gr̂ ) e X^CΓ; 7 t, , 7^) n
U(Ύlr , 7^) such that ω(glf , ^ ) = (Λu , hM). Since g3- — w o rγj o w"1

for some quasi-conformal mapping w, we have

••-, gN)

Hence we see (hlf , hM) e X9C(Γ; Slf , δ^), that is,

-Σ,(Γ; *i, , »x) n F ( δ x , . . . , δM) c x g c (Γ; a l f . . . , δM) n 7(« l f - , δM).

The converse inclusion relation is evident and we have our proposition.

A Kleinian group Γ is called a function group if Γ has an invariant
component. In this paper we shall give a necessary and sufficient condi-
tion for finitely generated function groups to be quasi-conformally stable.

2. Notations and definitions. In our following discussions we need
the cohomology theory and, in this section, we recall some notations and
definitions of cohomology of Kleinian groups following Gardiner and Kra
[8].

A representation p of a Kleinian group Γ on a finite dimensional
vector space E is an anti-homomorphism of Γ into the automorphism
group Aut E of E. For a representation p of a Kleinian group Γ on E,
we define an action of Γ on E by

E x Γ B (x, 7) i-> x Ύ = |0(7)(a;) e E .

A cocycle is a mapping z:Γ-+E satisfying zC^c^) = z(Ύ1)-72 + z(7s) for
(7W 72) 6 Γ x Γ. We denote by Z\Γf E) the space of all cocycles. A
coboundary is a cocycle such that z(Ύ) = α?-7 — x for some xeE. We
denote by B\Γ, E) the space of all coboundaries. The cohomology space
Hι(Γ, E) is the space of cocycles factored by the space of coboundaries.
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Throughout this paper we denote by e the identity of the group G.
Let © be the Lie algebra of G. Then the Lie algebra © is identified with
the tangent space Te(G) of G at e. The adjoint representation Ad (A):
© —-> © of G in @ is the differential at e of the map

Since Ad:Γ—>Aut© yields a representation of Γ on @, we have a well
defined cohomology space H\Γ, @). A cocycle % e iΓCT"1, @) is called
parabolic if z\Γ^B\Γ^%) for any parabolic cyclic subgroup ΓQ of Γ.
We denote by PZ\Γ, ©) the space of all parabolic eocycles. The space
of parabolic cohomology PH\Γ, ©) is the space of parabolic eocycles
factored by the space of coboundaries.

Let 77 be the vector space of quadratic polynomials with complex
coefficients. We define a representation p of a Kleinian group Γ on Π
by

(rt7)(t>)χt) = v(y(t))/Ύ'(t)

for v e 77, Ύ eΓ, and έ € C. We can thus define the cohomology space
H\Γ, 77). A cocycle zeZ\Γ, 77) is called parabolic if z\Γ^B\Γ^f Π) for
any parabolic cyclic subgroup Γo of Γ. We denote by PZι(Γ, Π) the
space of all parabolic eocycles. The space of the parabolic cohomology
is denoted by PH\Γf 77). The following is due to Gardiner and Kra [3]
and will be used later.

ISOMORPHISM THEOREM (Gardiner and Kra [3]). Let Γ be a Kleinian
group. Then PH\Γ, ©) is isomorphic to PH\Γf 77).

3. For a non-elementary Kleinian group Γ we denote by Ω(Γ) the
region of discontinuity of Γ and by A(Γ) the limit set of 7\ Let
A(Ω(Γ), Γ) be the Banach space of bounded quadratic holomorphic forms
on Ω(Γ) with respect to Γ and let ASβ{Γ), Γ) be the open unit ball in
A(Ω(Γ), Γ). If the Kleinian group Γ is finitely generated, then we have
the anti-linear injective mapping

β*:Aψ(Γ),Γ)i-+PHι(Γ,II),

which is the so-called Bers map.
Now we shall prove the following theorem. The essential part of

our proof of the theorem is due to [3]. However, for the sake of com-
pleteness, we shall restate the proof of it.

THEOREM 1. Let Γ be a non-elementary finitely generated Kleinian
group. If PH\Γ, 77) = β*(A(Ω(Γ)f Γ)), then Γ is quasi-conformally stable.
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PROOF. Let λ be the Poincare density on Ω(Γ). For (gtφ)eG x
AX(Ω(Γ), Γ), we set μ = X~2φ on Ω(Γ) and μ = 0 on Λ(Γ) and observe that
μ is a Beltrami coefficient for Γ. Let «? = g o wμ, where wμ is the μ-
conf ormal self-mapping of C that fixes 0,1, oo. For each element 7 e Γ,
there is an element 7 ι M ) e G such that

We set

where {7lf •••, 7 }̂ is a system of generators of Γ. The mapping / is
analytic and f(G x Aγ{Ω(Γ), Γ)) is contained in Xqc(Γ;Ύlf - ,7N). Now,
by the isomorphism theorem stated in Section 2, the image of the tangent
space © x A{Ω{Γ), Γ) of G x AX(Ω(Γ), Γ) at (β, 0) under the tangent linear
map (df)(e, 0) at (e, 0) is canonically isomorphic to the linear space of
cocycles that correspond to the Bers cohomology space β*(A(Ω(Γ)f Γ)).

Let A be a set of suffices a such that ωa(gί9 , gN) is the word in
N letters glf , gN satisfying ωa(7lt , 7^) = e and let B be a set of
suffices β such that o)β(glr —-,gN) is the word in N letters glf — ,gN

satisfying tr 2 ωβ(Ύ19 , ΎN) = 4 and α> (̂7lf , 7^) ^ e. Consider two
mappings Fa: GN -^G and Fβ: GN-+C such as

Faiΰif •-, QN) = <oa(glf -- , g N ) , F β ( g l f •• , g N ) = t r 2 ω β ( g ί f , gN) - 4 .

Then

( Π *V(e)} Π {Π ^X0)} = XP(Γ; 7 l f • -f 7iY)

and we see that

( a ) /(G x UΩiΠ, Γ ) ) c { f | ^ ( β ) } Π {Π Fj\0)} .
A β B

{Π
βe B

For the tangent linear mappings (dFa)(7lf , ΎN) and (dFβ)(Ύlf , 7^) we
have the isomorphism

{Π ker (dFa)(Ύlf ••, ΎN)} n {Π ker (dίVX^, , 7,,)} ^ PZ\Γf ®) ,

where ker(dFα)(7 l f •• ,7 i f ) and ker(dFβ)(Ύlf •• ,7JΓ) are the kernels of
the linear mappings (dFa)(Ύlf •• ,7JΓ) and (dFβ)(Ύx, •• ,7ΛΓ), respectively
(see [3] and [7]).

We assume that PHι(Γ, Π) = β*(A(Ω(Γ), Γ)). Since (d/)(β, 0)(® x
A(.ί2(Γ), Γ)) is isomorphic to the linear space of cocycles that correspond
to the Bers cohomology, we see from our assumption that (df)(e, 0)(© x
A{Ω{Γ\ Γ)) is isomorphic to PZ\Γ, 77). Hence we see that (df)(e, 0)(© x
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A(Ω(Γ), Γ)) is isomorphic to PZ\Γ, @). Therefore we have

( b ) (df)(e, 0)(© x A(Ω(Γ), Γ)) = {Π ker (dFa)(7lf • , 7*)}
aeΛ

. . . , 7 , ) } .

Thus using (a) and (b), we see, as in the same manner as in the proof
of Theorem 8.4 in [3] that Γ is quasi-conformally stable (see also the key
lemma, in proving Theorem 8.4, in [7]).

4. In the following two sections we shall show the converse of
Theorem 1 for non-elementary finitely generated function groups.

We call the group consisting of only the identity e to be trivial.
For our purpose, we use the Maskit's Combination Theorems I and II in
[5], where the amalgamated subgroups and the conjugated subgroups are
cyclic or trivial-

First we shall prove

LEMMA 1. Let Γ be the non-elementary Kleinian group which is
constructed from Γ1 and Γ2 by application of Combination Theorem /,
where the amalgamated subgroup H = Γ1 Π Γ2 be parabolic cyclic or
elliptic cyclic or trivial. Let θ% be an element of ΐίomp (Γif G) for i — 1, 2.
Then there exists an element θ eΐlomp(Γf G) such that θ = di on Γi for
i = 1, 2 if and only if θ1 = θ? on H.

PROOF. It is sufficient to prove the if part. Let Γ1 = H + Σσ Haσ

and Γ2 — H + X Γ i ϊ6 r be the right coset representations of Γx and Γ2,
respectively. By Combination Theorem I we see that Γ is the free
product of Γx and Γ2 with the amalgamated subgroup H. Therefore, for
any ΎβΓ, we have a unique representation

7 = h o % o - . . o yn f

where heHand Ύj is some of aσ or bτ, and 7̂  and 7J+1 are not contained
simultaneously in the same Γ^i = 1 or 2). We set θ = ΘX\H = Θ2\π and
define the mapping θ\ Γ —̂  G by

where Ί — h°y1o . . . oyn is a unique representation of 7 and ik = 1 if
rϊkeΓί and ik ~ 2 if ΎkeΓ2. It is easily shown that θ = θt on Γt by the
definition of θ. We can prove by using induction on n as in the proof
of Theorem 1 in [6] that θ is a homomorphism of Γ into G. Moreover,
for any parabolic element 7 eΓ, there exists a parabolic element 7 e / ^
(i = 1 or 2) and an element deΓ such that 7 — Soγog-1 (see [5]). There-
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fore we have Θ{Ί) = θ(δ) 0^(7)0 θ(δ)~ι. Since θ = θt e Horn,, (Γi9 G) on Γif

we have tr2 Θ{Ί) = tr2 0(7) = tr2 ^(7) = 4. Hence θ is an element of
Hom^ (Γ, G) and we have proved our lemma.

Next we shall show that, for a parabolic cyclic or an elliptic cyclic
group H, the parabolic homomorphism θ e Horn,, (H, G) sufficiently close
to the identity is the conjugation by an element x eG which is sufficiently
close to the identity element e, that is, we can prove

LEMMA 2. Let H be a parabolic or an elliptic cyclic group with a
generator ft. Then there exists a neighborhood U(h) of h in G and a
neighborhood V(e) of e in G such that g = x o h ° aΓL for an arbitrary
element g of XP(H; h) n U(h) and for some x e V(e).

PROOF. First we assume that H is a parabolic cyclic group with a
generator h. Let FX:G-^G and F2:G~-+C be the mappings such as

Fi(g) = 9 ° h ° ΰ~ι and F2(g) = tr 2 g - 4 ,

respectively. The kernel of the tangent linear map (dF2)(h) of F2 at h
is identified with the space of coboundaries B\H, (3) for H (see Lemma
8.3 in [3]) so that

dim (dF2)(h)(Th(G)) - dim Th(G) - dim B\H, ©)

- dim© -

where ΓA(G) is the tangent space of G at ft. Since % = 77 and
^^iϊ, ©) = ^ ( i ϊ , 77) and since dim 77 > dim B\H, 77) (for instance, see
[6]), we see that dim (dF2)(h)(Th(G)) Φ 0. Hence we have (dF2)(h) Φ 0.
Therefore, there exists a neighborhood EΓ(A) of ft in G such that
Z7'(ft) Π FϊXQ) is a complex submanifold of U'(h) with

Π FΪKO)) = ker

for the tangent space Th{U\h) n Ff'CO)) of Ϊ7'(Λ) n *V(0) at ft. The image
of © under the tangent linear mapping (dFx)(e) is identified with the
space of coboundaries Bι(H, ©) for H (see [7]). Since the kernel of
(dF2)(h) is also the space of coboundaries, we see that the linear mapping

is surjective. Therefore, by the implicit function theorem, we have a
neighborhood V(e) of e in G such that Fx{V{e)) is the neighborhood of ft
in U'{h) Π JFΪXO), that is,

for some neighborhood U(h) of ft in G. Since Fϊ\Q) = XP(H; ft), we see
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that F£V(β)) - XP(H; ft) n U(h). Hence, for any geXp(H; ft) n TO, it
holds that g = ^(α?) for some α? € F(e). Therefore, we have our lemma
in the case of a parabolic cyclic group H.

Next we assume that H is an elliptic cyclic group of order v with a
generator ft. We define mappings FX\G-+G and F2:G—+G such as

F,{g) = gohog^ and Ft(g) = gv,

respectively. The kernel of (dF2)(h) is identified with the space of co-
cycles Z\H9 ©) for H, and for an elliptic cyclic group H we have
Z\H, ®) = JB^fl, ©) (see [7]). Let Fo be a neighborhood of ft in G and
Yo be a complex submanifold of Fo satisfying Th(Y0) = ker (dFz)(h) and
-PΪ'Wn FQCΓQ (see [3]). Since the image of ® under the tangent linear
mapping (dFγ)(e) is identified with the space of coboundaries B\H, ©) for
H and since the kernel of (dFt)(h) is also the space of coboundaries, we
see that the linear mapping

is surjective. Hence, we have a neighborhood V(e) of e in G such that

for some neighborhood U{h) of h in Fo. Since Fγ{G)c:F2\e) = XP(H; h) =
X(H; h), we have X(H; h) n EΓ(Λ) c Γ o n I7(ft) - 1^(7(6)) c X(fΓ; ft) n ?7(ft).
So it holds that F^Vie)) - X(H h) n I7(λ). Therefore, for any
βr 6 X(JΪ; ft) Π Z7(ft), we have gr = ^(α?) for some x e F(e). Thus we have
also proved our lemma for the case of an elliptic cyclic group H.

The contents in general situation of the above lemma is seen in [7],

LEMMA 3. Let Γ be a non-elementary Kleinian group which is con-
structed from finitely generated Kleinian groups Γt and Γ2 by applica-
tion of Combination Theorem I, where the amalgamated subgroup H —
Γγ ΓΊ Γ2 be parabolic cyclic or elliptic cyclic or trivial. Let {Ύίt , ΎM^lf ft}
and {δ19 , δN_lf ft} be systems of generators for Γ1 and Γ2, respectively,
where ft is a generator for H. Then there exist neighborhoods
U(Ίl} , yM_u ft) of (Ύlf - -, ΎM_ιt ft) e GM in GM and V(8U , δN_19 ft) of
(̂ 1? '} dN_lf ft) e GN in GN such that

(fit *> fχ> Qu QN) 6 XP(Γ; Ύ19 , yx_lf hfδίf , δN_lf ft)

n {U(Ύlf , ΊM-» ft) x V(δlf..., δN_19 ft)}

for an arbitrary element (f, 9fu) of Xp(Γt) yu , ΊM-ι> ft) Π U(Ύlf ,
7Λf„1, ft) and for some element (glf , griV) o/ ZP(Γ2; 5lf , δ^_ι? ft) Π
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PROOF. We assume that H is a parabolic cyclic group. We choose
a neighborhood J7(γlf •••, ΎM-u h) sufficiently small so that fM — x°hoχ~ι

for each element (/„ , /„) e X9(Γ19 Ύlt , Ύx_lf h) n I7(7lf , 7M-ι, h) and
for some xeG which is sufficiently close to the identity element e. This
is possible by Lemma 2. Now we define a parabolic homomorphism
(9u •> QN) e XXΓ2; δw , δff-i, ft) by

j ^ a o^oa - 1 , (i = 1, •••, iV— 1) , g ^ ^ ^ x " 1 .

Since # is sufficiently close to the identity element e, we see

(ft, , ΛΛ e ZP(Λ; £„ ..., δN_lt h) n m , , ̂ _ w Λ)

for some small neighborhood V(δ19 , dN_lt h). Let θx and <92 be the
corresponding parabolic homomorphisms to (f19 •••,/*) and ( ^ ***fgN)f

respectively. Then θx and ̂ 2 satisfy θγ\H — <92U Therefore, we see by
Lemma 1 that (/„ , fMf g19 , gN) is an element of XP(Γ; Ύlt • , 7 ^ , Λ,
δi, f ^ - i , h). Clearly (flf ** ,fMtg19 , ̂ ) is also contained in
U(Ύlt , 7jf_!, Λ) x V(δί9 , δ^.,, λ). Thus we have proved our lemma
for a parabolic cyclic group H. In the other cases, we can obtain the
desired by the same manner as above.

Lemma 3 implies that a parabolic homomorphism θx 6 Homp (Γί9 G)
sufficiently close to the identity homomorphism is restriction of some
parabolic homomorphism θ e Homp (Γ, G) on Γx which is sufficiently close
to the identity homomorphism. We can also prove that any θ2e
Hoπij, (Γ2, G) sufficiently close to the identity homomorphism is restriction
of some θ e Honij, (Γ, G) on Γ% which is sufficiently close to the identity
homomorphism.

LEMMA 4. Let Γ be a non-elementary Kleίnίan group which is
constructed from finitely generated Kleinian group Γt and an element
/ e G by application of Combination Theorem II, where the conjugated
subgroups H^ and H% are parabolic cyclic or elliptic cyclic or trivial.
Let {7i, , ΎLf h19 h2} be a system of generators of Γ19 where hi is a genera-
tor of Hi (i = 1, 2) with f o hx o f~x = h2. Let Γ2 be the group generated
by f Then there exists a neighborhood U(ΎU , ΊLf hl9 h2) of (7 l f , ΊL9

h19 h2) 6 GL+Z in GL+2 and a neighborhood V(f) of f in G such that

(ft, , ΰL+if g)'e XP(Γ; % , . . - , ΎL, hιt h%, f) n {U(Ύ19 , ΎL9 K Λ.) X V(f)}

for an arbitrary element (gί9 , gL+2) e XJ^Γ^ 7 l f , Ίu hlf h2) (Ί U(Ύl9 ,
ΊLJ hl9 h2) and for some g e XP(Γ2; f) n V(f).

PROOF. We assume that H is a parabolic cyclic group. We choose a
sufficiently small neighborhood Z7(7X, , ΎL, h19 h2) so that gL+1 = x1ohιo xϊ1
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and gL+z=x2°h2ox~
ι for each element (gίf ,gL + 2) e Xp(Γt\ 7L, , Ί u hlf h2)Π

U(Ύίf '",yLfhifh2) and for some xxeG and x2eG which are sufficiently-
close to the identity element e. Let Θx be the parabolic homomorphism
corresponding to (glf " fgL+2). Now we define a mapping θ\{7u * , 7 L ,
KKf}-*G by

= 1, , D , W = ^ Xi = 1, 2)

Then we have

= (x2

of°xVι)°(ίCi°^i ° a s f 1 ) o ( x 2 ° f ° X V 1 ) " 1 °(%z ° h 2

o x ϊ 1 ) ' 1

= x2

of°hιo f~ι o /i,-1 o x"1 .

Since fohίof-1oh^ι = et we see θ(f)°θ(hί)°θ(f)-1oθ(hi)-'1 = e. For any
relation α>(7u "tyLAA) = e in Γ l f it holds that ω(θ(ΎL), - fθ(yL)fθ(hι),θ(h2)) =
a<0i(Vi), , ^ ( ^ ) , ^I(ΛI), *i(Λι)) - ^i(^(%, , ^ , Λlf λ.)) = ΘSfi) - β. From
Combination Theorem II, we see that relations in Γ are consequences of
the relations in Γλ and the relation f oh^ f~ι°hϊι — e. Therefore, we can
extend the mapping θ to Γ such that θ to be an element of Horn (Γ, G).
Hence (glf , gL+2, x2

of°xvί) corresponding to the homomorphism θ is an
element of X(Γ; Ύlf , ΎL, hίf h2, / ) . Since xt and x2 are sufficiently close
to e, we see

/ ) X ( ; Ύlf

for some small neighborhood F(/). Moreover, for any parabolic element
Ύ eΓ, there exist a parabolic element j e Γλ and an element S e Γ such
that y = δoyoδ'1 (see [5]). Therefore, we see that 0(7) = θ(d)oθ(y)oθ(δ)~K
Since (9 = θx on /\ by the definition of 0 and since θγ e Homp (/*„ G), we
have tr 2 Θ(Ύ) = tr 2 θ(y) = tr 2 ^(7) - 4. Hence 0 is an element of Homp (Γ, G),
which shows (&, , gL+if x2ofoX^) e XP(Γ; Ύlf , 7L, hu h2, / ) . Thus we
have our lemma in the case of a parabolic cyclic group H. We can also
prove lemma in the remainder cases by the same argument as above.

Lemma 4 implies that a parabolic homomorphism θx e Hom^ (Γίf G)
sufficiently close to the identity homomorphism is restriction of some
parabolic homomorphism θ e Homp (Γ, G) on Γx which is sufficiently close
to the identity homomorphism.

5. A finitely generated Kleinian group Γ is called a basic group if
Γ has a simply connected invariant component and contains no accidental
parabolic transformations. Hence a basic group is either elementary or
quasi-Fuchsian or degenerate (see [5]). Let Γ be a non-elementary finitely
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generated function group. Then Maskit [5] proved that Γ can be
constructed from basic groups Γu , Γs by using Combination Theorems
I and II, where in each step of applying Combination Theorems, the
amalgamated subgroups and the conjugated subgroups are parabolic
cyclic or elliptic cyclic or trivial.

Now the converse of Theorem 1 for non-elementary finitely generated
function groups is obtained by using the following two lemmas.

LEMMA 5. Let Γ be a non-elementary Kleinίan group constructed
from finitely generated Kleinian groups Γx and Γ2 by application of
Combination Theorem I, where the amalgamated subgroup H = Γxf\Γ2 is
parabolic cyclic or elliptic cyclic or trivial. If Γ is quasi-conformally
stable, then Γ1 and Γ2 are also quasi-conformally stable.

PROOF. Let θt be an arbitrary element of Hom^ (Γlf G) which is
sufficiently close to the identity homomorphism. Then, by Lemma 3,
there exists an element θ e Homp (Γ, G) with θ = θ1 on /\ and θ is
sufficiently close to the identity homomorphism. Since Γ is quasi-con-
formally stable, we see 0(7) = w°Ί°w~γ for some quasi-conformal
mapping w:C—*C. Since θ = θ1 on /\ we have 0X(7) = w<>7°'MΓ1 for all
7 e /\. This shows the quasi-conformal stability of Γλ. In the same way
we can see the quasi-conformal stability of Γ2.

LEMMA 6. Let a non-elementary Kleinian group Γ be constructed
from a finitely generated Kleinian group Γλ and an element f GG by
application of Combination Theorem II, where the conjugated subgroups
Hx and H2 be parabolic cyclic or elliptic cyclic or trivial. If Γ is quasi-
conformally stable, then Γλ is also quasi-conformally stable.

PROOF. Let θx be an arbitrary element of Homp (Γl9 G) which is
sufficiently close to the identity homomorphism. Then, by Lemma 4,
there exists an element θ e Hom^ (Γ, G) with θ = θ1 on Γ1 and θ is
sufficiently close to the identity homomorphism. Since Γ is quasi-con-
formally stable, we see 0(7) = w°Ί°w~ι for some quasi-conformal mapping
w:C->C. Since θ = θx on Γlf we have 0^7) = w°7°w"L for all 7 e / \ .
This shows the quasi-conformal stability of Γ t.

REMARK. Above two lemmas are converse of AbikofΓs theorems
under the assumption that the amalgamated subgroups and the conjugated
subgroups are parabolic cyclic or elliptic cyclic or trivial (see W. Abikoff's
papers "Constructability and Bers stability of Kleinian groups" in Dis-
continuous groups and Riemann surfaces, Ann. of Math. Studies, 79 (1974)



56 M. NAKADA

and "On the decomposition and deformation of Kleinian groups" in Con-
tributions to analysis, Academic Press, 1974).

Now we can prove the following.

THEOREM 2. Let Γ be a non-elementary finitely generated function
group. If Γ is quasi-conformally stable, then

PH\Γ, 77) = β*(A{Ω(Γ), Γ))

PROOF. AS stated already, the non-elementary finitely generated
function group Γ is decomposed into basic groups Γu ** ,Γ8) where, in
each step of applying Combination Theorems, the amalgamated subgroups
and the conjugated subgroups are parabolic cyclic or elliptic cyclic or
trivial. Now we assume that Γ is quasi-conformally stable. Then we
see by Lemma 5 and Lemma 6 that Γιt , Γs are all quasi-conformally
stable. On the other hand, the degenerate basic groups are not quasi-
conformally stable (for instance, see corollary of Theorem 11.2 in [3]).
Hence Γu •• ,iΓT, are elementary or quasi-Fuchsian. Therefore, we have
PH\Γ, 77) = β*(A(Ω(Γ), Γ)) by Theorem 5 in [6].

The above Theorem 1 and Theorem 2 together with Theorem 5 in
[6] yield the following.

THEOREM 3, Let Γ be a non-elementary finitely generated function
group. Then the following three conditions are equivalent to each other:

(1) PH\Γ, 77) - β*(A(Ω(Γ), Γ)),
(2 ) Γ is quasi-conformally stable, and
(3) Γ is decomposed into elementary or quasi-Fuchsian basic

groups.

REMARK. We denote by ^ the class of all non-elementary Kleinian
groups which can be built up in a finite number of steps from the basic
groups by using Combination Theorems I and II, where, in each step of
applying Combination Theorems, the amalgamated subgroups and the
conjugated subgroups are parabolic cyclic or elliptic cyclic or trivial.
The non-elementary finitely generated function groups are contained in
the class ^ . Further, it is not so difficult to show that the class ^
introduced by Maskit [5] is a proper subclass of our class W. It is
proved in [6] that, for a non-elementary finitely generated function group
Γ, the condition PH\Γ, 77) = β*(A(Ω(Γ), Γ)) is equivalent to the condition
that Γ is decomposed into elementary or quasi-Fuchsian basic groups.
However, the equivalency of these two conditions also holds for groups
contained in the class <W (the proof of this fact is already given in the
proof of Theorem 5 in [6]). Hence we have the following.
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THEOREM 3'. Let Γ be a Kleinian group in the class &. Then the
following three conditions are equivalent to each other:

(1) PH\Γ9 Π) = β*{A{Ω{Γ), Γ))f

( 2 ) Γ is quasi-conformally stable, and
(3) Γ is decomposed into elementary or quasi-Fuchsίan basic

groups.

PROOF. It is sufficient to prove only the equivalency of statements
(1) and (2) and the proof of this fact is essentially given in the proof of
Theorem 2.

6. Finally we state an application of Theorem 3'. Let Γ be a
Kleinian group and let w be a quasi-conformal self-mapping of the
Riemann sphere which is compatible with Γ. If Γ is constructed from
Kleinian groups Γ1 and Γ2 by application of Combination Theorem I,
where the amalgamated subgroup H = /\ n Γ2 is parabolic cyclic or
elliptic cyclic or trivial, then we see that the Kleinian group woΓow'1

is constructed from Kleinian groups woΓ1o w"1 and w°Γ2° w~ι by applica-
tion of Combination Theorem I, where the amalgamated subgroup
w°How~ι = (w o Γx o w'1) Π (w o Γ2 o w"1) is parabolic cyclic or elliptic cyclic
or trivial (see [5]). On the other hand, if Γ is constucted from Γ1 and
an element / e G by application of Combination Theorem II, where the
conjugated subgroups Ht and H2 are parabolic cyclic or elliptic cyclic or
trivial, then we see that the Kleinian group woΓow'1 is constructed
from the Kleinian group woΓ1ow~1 and an element w<>fow~ιeG by
application of Combination Theorem II, where the conjugated subgroups
woHx°w"1 and w°H2°w"1 are parabolic cyclic or elliptic cyclic or trivial
(see also [5]). Therefore, if a Kleinian group Γ is in the class ^ , then
the quasi-conformal deformation woΓow~ι of Γ is also in the class <£*.
Hence we have the following.

THEOREM 4. Let Γ be a Kleinian group in the class ^ and assume
that Γ is quasi-conformally stable. Then the quasi-conformal deforma-
tion of Γ is also quasi-conformally stable. In particular, the quasi-
conformal deformation of a non-elementary finitely generated quasi-
conformally stable function group is also quasi-conformally stable.

PROOF. Let w be a quasi-conformal self-mapping of C which satisfies
woΓow"1 cG. Since Γ is in W and since Γ is quasi-conformally stable,
we see by Theorem 3' that Γ is decomposed into elementary or quasi-
Fuchsian basic groups Γlf , Γs. Hence the groups w © J\ o w~\ ,
woΓ^w'1 are elementary or quasi-Fuchsian. Since w^Γow'1 is in W
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and since wofow'1 is decomposed into woΓ1°w~1

) , woΓs°w~\ we
see again by Theorem 3' that wofow'1 is also quasi-conformally stable.
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