Tôhoku Math. Journ. 31 (1979), 525-535.

THE MATSUMOTO TRIPLING FOR COMPACT SIMPLY CONNECTED 4-MANIFOLDS

Mitsuyoshi Kato, Sadayoshi Kojima, Tetsusuke Ohkawa and Masayuki Yamasaki

(Received November 18, 1978, revised February 28, 1979)

1. Intoduction. Let W be an oriented simply connected 4-manifold and let x_1, x_2, x_3 be three elements of $H_2(W; Z)$ with mutual intersection numbers $x_i \cdot x_j = 0$ $(i \neq j)$. In [3], by analysing Whitney's tricks for intersections of immersed 2-spheres representing x_1, x_2, x_3 in W, Y. Matsumoto introduced a number $\langle x_1, x_2, x_3 \rangle$ as an element of Z modulo an ideal $I = I\{x_1, x_2, x_3\} = \{x_1 \cdot u_1 + x_2 \cdot u_2 + x_3 \cdot u_3 \mid u_1, u_2, u_3 \in H_2(W; Z)\}$. The tripling $\langle ,, \rangle$ will be referred to as the Matsumoto tripling and the ideal I will be called the intersection ideal of $\{x_1, x_2, x_3\}$.

It has been shown that x_1, x_2, x_3 can be realized by mutually disjoint immersed 2-spheres if and only if $\langle x_1, x_2, x_3 \rangle = 0$, (for the "only if" part see [3] and for the "if" part see [7]). If W is closed, $\langle x_1, x_2, x_3 \rangle$ always vanishes because of the Poincaré duality.

Suppose that the boundary $M = \partial W$ of W is non-empty. For an integer d, a homology class $x \in H_2(W; \mathbb{Z})$ has a mod d boundary reduction $y \in H_2(M; \mathbb{Z}_d)$, if $i_*y = x \mod d$ for the inclusion map $i: M \to W$.

Our aim in this paper is to prove the following;

THEOREM. Let (W, M) be a compact oriented simply connected 4-manifold with non-empty boundary $\partial W = M$. Suppose that we are given three elements $x_1, x_2, x_3 \in H_2(W; \mathbb{Z})$ with mutual intersection numbers zero and with the intersection ideal $I = (d), d \in \mathbb{Z}$. Then each element x_i has a unique mod d boundary reduction $y_i, i = 1, 2, 3$ and the following equality holds;

$$\langle x_{\scriptscriptstyle 1}, \, x_{\scriptscriptstyle 2}, \, x_{\scriptscriptstyle 3}
angle \!=\! - (y_{\scriptscriptstyle 1}^{\,*} \cup y_{\scriptscriptstyle 2}^{\,*} \cup y_{\scriptscriptstyle 3}^{\,*}) \cap [M] \qquad in \, \, Z_d$$
 ,

where $y_i^* \in H^1(M; \mathbb{Z}_d)$ is the Poincaré dual of y_i in M.

Thus the Matsumoto tripling $\langle ,, \rangle$ is completely determined by the multiple cup product of the mod d boundary reductions in the boundary.

An implication of Theorem is

COROLLARY 1 (Invariance of Matsumoto tripling). Let (W, M)(W', M') and $x_1, x_2, x_3 \in H_2(W; \mathbb{Z})$ be 4-manifolds with boundary and homology classes as in Theorem. If $f:(W, M) \to (W', M')$ is a map such that the restriction $g = f|_{M}$: $M \to M'$ is of degree one, i.e., $g_{*}[M] = [M']$, then we have $I\{x_{1}, x_{2}, x_{3}\} \supset I\{f_{*}x_{1}, f_{*}x_{2}, f_{*}x_{3}\}$ and

$$\langle f_*x_{\scriptscriptstyle 1}, f_*x_{\scriptscriptstyle 2}, f_*x_{\scriptscriptstyle 3}
angle'\!\equiv\!\langle x_{\scriptscriptstyle 1}, \, x_{\scriptscriptstyle 2}, \, x_{\scriptscriptstyle 3}
angle \qquad in \; Z\!/I\!\{x_{\scriptscriptstyle 1}, \, x_{\scriptscriptstyle 2}, \, x_{\scriptscriptstyle 3}\}$$
 ,

where $\langle f_*x_1, f_*x_2, f_*x_3 \rangle'$ is the reduction of $\langle f_*x_1, f_*x_2, f_*x_3 \rangle$ in $\mathbb{Z}/I\{x_1, x_2, x_3\}$.

The proof of Theorem will be divided into two cases; I = (0) (§ 2) and $I \neq (0)$ (§ 3). In §4, we shall give some applications of Theorem as well as the proof of Corollary 1.

2. The proof of Theorem; part 1. Since the homomorphism $j_*: H_2(W; \mathbb{Z}) \rightarrow H_2(W, M; \mathbb{Z})$ induced by the inclusion map $j: W \rightarrow (W, M)$ is represented by the intersection matrix for $H_2(W)$, it follows that a homology class $x \in H_2(W; \mathbb{Z})$ has a mod d boundary reduction if and only if the ideal (d) contains the intersection ideal $I\{x\} = \{x \cdot u \mid u \in H_2(W; \mathbb{Z})\}$. Hence for an integer d, each $x_i \in H^2(W; \mathbb{Z})$, i = 1, 2, 3, has a mod d boundary reduction y_i if and only if (d) contains the intersection ideal $I = I\{x_1, x_2, x_3\}$. Since W is simply connected, we have a short exact sequence:

$$H_3(\mathit{W}, \mathit{M}; \mathbf{Z}_d) = 0 {\longrightarrow} H_2(\mathit{M}; \mathbf{Z}_d) \stackrel{i_*}{\longrightarrow} H_2(\mathit{W}; \mathbf{Z}_d) \stackrel{j_*}{\longrightarrow} H_2(\mathit{W}, \mathit{M}; \mathbf{Z}_d) \;.$$

Thus the reduction y_i is unique. In particular, if I = (0), i.e., $j_*x = 0$, then each x_i has a unique integral reduction y_i .

In this section, we shall prove Theorem in this special case I = (0).

Represent y_1, y_2, y_3 by smoothly embedded oriented surfaces $\tilde{F}_1, \tilde{F}_2, \tilde{F}_3$. We may assume that those surfaces are in general position. Let $j: \tilde{F}_3 \rightarrow M$ be the inclusion map. Then

$$egin{aligned} & (y_1^*\cup y_2^*\cup y_3^*)[M] = \iota((y_1^*\cup y_2^*\cup y_3^*)\cap [M]) = \iota'((j^*y_1^*\cup j^*y_2^*)\cap [F_3]) \ &= & [\gamma_1]\cdot [\gamma_2] \end{aligned}$$

where ι, ι' are augmentations, $\gamma_i = \tilde{F}_i \cap \tilde{F}_i$, $i = 1, 2, [\gamma_i] \in H_1(\tilde{F}_i; \mathbb{Z})$ is the homology class represented by γ_i (see the diagram below).

Let

$$\widetilde{C}_1 = \{ \widetilde{\alpha}'_1, \, \widetilde{\beta}'_1; \, \cdots; \, \widetilde{\alpha}'_r, \, \widetilde{\beta}'_r \} \\ \widetilde{C}_2 = \{ \widetilde{\alpha}''_1, \, \widetilde{\beta}''_1; \, \cdots; \, \widetilde{\alpha}''_s, \, \widetilde{\beta}''_s \}$$

$$\widetilde{C}_3 = \{\widetilde{lpha}_1, \widetilde{eta}_1; \cdots; \widetilde{lpha}_t, \widetilde{eta}_t\}$$

be the canonical systems of simple closed curves of \tilde{F}_1 , \tilde{F}_2 , \tilde{F}_3 , respectively, where r (resp. s, t) is the genus of \tilde{F}_1 (resp. \tilde{F}_2, \tilde{F}_3). We can choose systems so that two curves belonging to distinct systems \tilde{C}_i, \tilde{C}_j have no point in common. Now,

$$[\gamma_1] \cdot [\gamma_2] = \sum_{k=1}^{\circ} (a_k^{\scriptscriptstyle 1} \cdot b_k^{\scriptscriptstyle 2} - a_k^{\scriptscriptstyle 2} \cdot b_k^{\scriptscriptstyle 1})$$

where

$$[\gamma_i] = \sum\limits_{k=1}^t (a_k^i [ilde{lpha}_k] + b_k^i [ilde{eta}_k]), \hspace{0.3cm} a_k^i, \hspace{0.3cm} b_k^i \in oldsymbol{Z} \;.$$

Let $M \times [0, 1] \subset W$ be a collar neighborhood of $\partial W = M = M \times \{0\}$ in W. The classes i_*y_i can be represented by the surface $F_i = \widetilde{F}_i \times (4 - i)/4 \subset \operatorname{int} W$. Translating the systems \widetilde{C}_1 , \widetilde{C}_2 , \widetilde{C}_3 along the collar, we obtain the canonical systems of simple closed curves of F_1 , F_2 , F_3 :

$$egin{aligned} & C_1 = \{ lpha'_1, \, eta'_1; \, \cdots; \, lpha'_r, \, eta'_r \} \ & C_2 = \{ lpha''_1, \, eta''_1; \, \cdots; \, lpha''_s, \, eta''_s \} \ & C_3 = \{ lpha_1, \, eta_1; \, \cdots; \, lpha_t, \, eta_t \} \;. \end{aligned}$$

As $W - M \times [0, 1)$ is simply connected, the curves $\tilde{\alpha}'_i \times 1$, $\tilde{\alpha}''_i \times 1$, $\tilde{\alpha}_k \times 1$ in $M \times \{1\}$ bound immersed disks d'_i , d''_j , d_k in $W - M \times [0, 1)$. We set

$$egin{aligned} D_i' &= \widetilde{lpha}_i' imes [3/4,\,1] \cup d_i' \ D_j'' &= \widetilde{lpha}_j'' imes [2/4,\,1] \cup d_j'' \ D_k &= \widetilde{lpha}_k imes [1/4,\,1] \cup d_k \;. \end{aligned}$$

By spinning $D'_i(D''_j, D_k)$ around $\alpha'_i(\alpha''_j, \alpha_k)$, if necessary, we may assume that the normal bundle $\nu(\alpha'_i \hookrightarrow F_1)$ extends to a sub-bundle of $\nu(D'_i \to W)$, etc. Using these disks D'_i, D''_j, D_k , perform surgery on F_1, F_2, F_3 in int W, and we obtain immersed 2-spheres S_1, S_2, S_3 representing x_1, x_2, x_3 . The construction is as follows: using the sub-bundle of $\nu(D'_i \to W)$ (resp. $\nu(D''_j \to W), \nu(D_k \to W)$) mentioned above, we obtain an immersion f'_i (resp. f''_j, f_k): $D^2 \times [-1, 1] \to W$, such that $f'_i(D^2 \times \{0\}) = D'_i$ (resp. $f''_j(D^2 \times \{0\}) =$ $D''_j, f_k(D^2 \times \{0\}) = D_k)$ and $N'_i = f'_i(\partial D^2 \times [-1, 1])$ (resp. $N''_j = f''_j(\partial D^2 \times [-1, 1])$, $N_k = f_k(\partial D^2 \times [-1, 1])$) is a small tubular neighborhood of α'_i (resp. α''_j, α_k) in F_1 (resp. F_2, F_3). Then

$$egin{aligned} S_1 &= \left(F_1 - igcup_{i=1}^r N_i'
ight) \cup igcup_{i=1}^r f_i'(D^2 imes \{\pm 1\}) \ S_2 &= \left(F_2 - igcup_{j=1}^s N_j''
ight) \cup igcup_{j=1}^s f_j''(D^2 imes \{\pm 1\}) \ S_3 &= \left(F_3 - igcup_{k=1}^t N_k
ight) \cup igcup_{k=1}^t f_k(D^2 imes \{\pm 1\}) \;. \end{aligned}$$

Now we shall construct Whitney disks $\Delta^{(i,j)}$'s and compute $\langle x_1, x_2, x_3 \rangle$. (1) Whitney disks of type 1. Corresponding to an intersection point of α_k and the double curve γ_1 (resp. γ_2), there occur two intersection points, p and q, of S_3 and S_1 (resp. S_2) with opposite signs. We draw two arcs $\gamma_1^{(3,1)}, \gamma_3^{(3,1)}$ (resp. $\gamma_2^{(2,3)}, \gamma_3^{(2,3)}$) connecting p and q on S_1 (resp. S_2), S_3 . Let the arc $\gamma_1^{(3,1)}$ (resp. $\gamma_2^{(2,3)}$) lie in $f_k(D^2 \times [-1, 1])$, and if, D_k has not been spun around α_k , let the arc $\gamma_3^{(3,1)}$ (resp. $\gamma_3^{(2,3)}$) go straight down to reach the height of 1/4 and run parallel with β_k on F_3 – int N_k to the other component of ∂N_k and go straight up to the end point.

Now, if D_k has not been spun, the Whitney disk is;

$$egin{aligned} &\mathcal{A}^{(3,1)} &= (\gamma_1^{(3,1)} imes [3/4,\,1]) \cup ((\gamma_3^{(3,1)} \cap F_3) imes [1/4,\,1]) \cup (ext{an immersed 2-disk in} \ &W - M imes [0,\,1)) \ &\mathcal{A}^{(2,3)} &= (\gamma_2^{(2,3)} imes [2/4,\,1]) \cup ((\gamma_3^{(?,3)} \cap F_3) imes [1/4,\,1]) \cup (ext{an immersed 2-disk in} \ &W - M imes [0,\,1)) \ . \end{aligned}$$

If D_k has been spun around α_k , change this disk by homotopy to obtain the desired Whitney disk, keeping the part of level higher than 3/8unchanged. Similarly there exists a Whitney disk $\Delta^{(1,2)}$ corresponding to an intersection point of $\tilde{\alpha}_j''$ and $\tilde{\gamma}$, where $\tilde{\gamma} = \tilde{F}_1 \cap \tilde{F}_2$ is the double curve on F_2 . We shall call these disks Whitney disks of type 1.

We orient W as follows:

$$[W] = [M] \times [n],$$

where *n* is the outward normal vector and [] is the orientation. Let the sign of the intersection point of α_k and γ_1 be $\varepsilon(=\pm 1)$, i.e., $[\alpha_k] \times [\gamma_1] = \varepsilon[F_3]$. This is equivalent to saying that $[\gamma_1] = \varepsilon[\beta_k]$ near the intersection point. The curves γ_1, γ_2 are oriented as follows (see Figure 1):

$$egin{aligned} [S_1] &= [\gamma_1] imes [v] \ [S_2] &= [\gamma_2] imes [v] \ , \end{aligned}$$

where v is a normal vector field on F_3 in M such that $[F_3] \times [v] = [M]$. Let p be the intersection point of S_1 and S_3 on the side where $[\beta_k]$ is the inward vector of $F_3 - N_k$, and let q be the other point. Then near $p, [S_3] = [\alpha_k] \times [n]$ and near $q, [S_3] = [\alpha_k] \times (-[n])$. Therefore, at p,

$$egin{aligned} & [S_1] imes [S_3] = [\gamma_1] imes [v] imes [lpha_k] imes [n] = arepsilon [eta_k] imes [n] imes [lpha_k] imes [n] = arepsilon [eta_k] imes [n] = arepsilon [F_3] imes [v] imes [n] = arepsilon [W] \end{aligned}$$

and the sign of p is ε . So the orientation of $\gamma^{\scriptscriptstyle (3,1)}$ is chosen in such a way that

$$[\gamma_3^{\scriptscriptstyle (3,1)}\cap F_3]=arepsilon[eta_k]$$

528

FIGURE 1

and that the orientation of the Whitney disk is

$$[\varDelta^{\scriptscriptstyle (3,1)}] = [n] \times \varepsilon[\beta_k].$$

If there is an intersection point of γ_2 and $\gamma_3^{(3,1)}$ on F_3 , there is a corresponding intersection point of $\Delta^{(3,1)}$ and S_2 . Let the orientation of γ_2 be $\varepsilon'[\alpha_k]$ ($\varepsilon' = \pm 1$) near the point. Then the sign of the resulting intersection of $\Delta^{(3,1)}$ and S_2 can be computed as follows:

$$egin{aligned} & [arDelta^{\scriptscriptstyle(3,1)}] imes [S_2] = [n] imes arepsilon [eta_k] imes [eta_k] imes [eta_k] imes [eta_k] imes [eta_k] imes [eta] \ & = arepsilon arepsilon' [eta_k] imes [eta_k] imes [eta_k] imes [eta] \ & = arepsilon arepsilon' [eta_k] imes [eta_k] imes [eta] \ & = arepsilon arepsilon' [eta_k] imes [eta_k] imes [eta] \ & = arepsilon arepsilon' [eta_k] \ & = arepsilon arepsilon' [eta_k] imes arepsilon \ & = arepsilon arepsilon' [eta_k] \ & = arepsilon arepsilon \ & = arepsilon arepsilon' [eta_k] \ & = arepsilon arepsilon \ & = arepsilon arepsilon' [eta_k] \ & = arepsilon arepsilon \ & = arepsilon arepsilon' arepsilon \ & = arepsilon arepsilon' arepsilon \ & = arepsilon \ & = arepsilon arepsilon \ &$$

This Whitney disk $\Delta^{(3,1)}$ of type 1 may intersect S_2 outside the collar neighborhood of M, but the intersection occurs in pair and the algebraic sum is zero. Therefore

$$\sum_{ ext{type }1} \varDelta^{\scriptscriptstyle (3,1)} \cdot S_2 = \sum arepsilon \cdot arepsilon' = \sum_{k=1}^t a_k^2 \cdot b_k^1 \; .$$

Similarly

$$\sum_{\text{type }1} \mathcal{A}^{(2,3)} \cdot S_1 \!=\! -\! \sum_{k=1}^t a_k^1 \!\cdot\! b_k^2$$

and

$$\sum_{ ext{type 1}} \varDelta^{\scriptscriptstyle (1,2)} \cdot S_3 = 0$$

(2) Whitney disks of type 2. In $W - M \times [0, 1)$, the intersection of S_i and S_j occurs as in Figure 2, corresponding to the intersection of the immersed disks d_i and d_j . We call the Whitney disks obtained from this intersection as the Whitney disks of type 2. Clearly, Whitney disks of type 2 occur in pairs and

FIGURE 2

Combining (1) and (2), we obtain

$$\langle x_1, x_2, x_3
angle = \sum\limits_{k=1}^t \left(a_k^2 \cdot b_k^1 - a_k^1 \cdot b_k^2
ight)$$

by the definition of the Matsumoto tripling and Theorem is proved in case I = (0).

3. The proof of Therem; part 2. Our plan of the proof is entirely the same as in the case I = (0). However, an element of $H_2(M; \mathbb{Z}_d)$ cannot be realized by an embedded surface in general. This is the only point to study.

530

Now, we shall show how to construct a nice complex representing The Bockstein homomorphism Δ : $H_2(M; \mathbb{Z}_d) \rightarrow H_1(M; \mathbb{Z})$ maps y_i to y_i . τ_i . Assume τ_i is non-trivial. For, otherwise, y_i can be realized by an embedded surface. Let l_i be a closed curve representing τ_i , and N be a tubular neighborhood of l_i . Then $H_1(\partial N; Z) \approx Z \bigoplus Z$ is generated by a longitude ξ and a meridian η . Since $d\tau_i = 0$, the element $d \cdot \xi + e \cdot \eta$ is null-homologous in M - N for some integer e. Here, this number e is related to the linking number in the sense of Seifert [5] by $V(\tau_i, \tau_i) =$ $e/d \pmod{1}$. Then the element $d \cdot \xi + e \cdot \eta$ is represented by a torus link of type (d, e) on ∂N . By the Pontrjagin-Thom construction, L_i bounds a properly embedded punctured surface T_i in $(M - N, \partial N)$ (which is possibly non-connected). Let L_i^* be the fiberwise join of L_i and l_i . Then $T_i \cup L_i^*$ represents an element $y_i \in H_2(M; Z_i)$ and $\Delta(y_i) = \tau_i$. This implies that $y_i - y'_i = z_i$ can be considered as an element of $H_2(M; \mathbb{Z})$. Moreover, the Mayer-Vietoris exact sequence shows that z_i is also an element of $H_{2}(M - \mathring{N}; Z)$. Thus we can represent the homology class $y_i = y'_i + z_i \in H_2(M; Z_d)$ again by the union of a properly embedded surface T'_i with $\partial T'_i = L_i$ and L^*_i .

The next lemma plays a key role in the proof.

LEMMA. $V(\tau_i, \tau_j) = 0$ for $i \neq j$.

PROOF. We shall consider the following diagram.

The element $\nu_i \in H_2(W, M; Z)$ is mapped to j_*x_i by the homomorphism $\times d$, the multiplication by the number d. Then $\partial(\nu_i) = \tau_i$ by definition. Now, the linking number can be calculated in terms of an intersection number in the 4-manifold W. Namely,

$$V(\tau_i, \tau_j) = x_i \cdot \nu_j / d \pmod{1}$$
.

Our assumption $x_i \cdot x_j = 0$ is valid with rational coefficients. Thus $V(\tau_i, \tau_j) = 0$ for $i \neq j$, completing the proof.

531

REMARK. This lemma states that for some 2-chain C_i such that $\partial C_i = d\tau_i$, the intersection number $C_i \cdot \tau_j = 0 \pmod{d}$. However, we can choose a nice loop l_j representing τ_j in such a way that $C_i \cdot l_j = 0$. Then for a 2-chain C_j with $\partial C_j = d \cdot l_j$, the intersection number $C_j \cdot l_i = 0$, where l_i is a closed curve defined by C_i .

FIGURE 3

PROOF OF THEOREM IN CASE $I \neq (0)$. Take a complex \tilde{F}_1 which represents y_1 and contains a loop l_1 , representing τ_1 , as a singularity. Then there is a loop l_2 , representing τ_2 , with $\tilde{F}_1 \cdot l_2 = 0$ by the remark above. By performing surgery on \tilde{F}_1 as in Figure 3, if necessary, we may assume that $\tilde{F}_1 \cap l_2 = \emptyset$. The complex \tilde{F}_2 represents y_2 and contains a loop l_2 as a singularity. For the same reason as above, it may be assumed that $\tilde{F}_2 \cap l_1 = \emptyset$. The loop l_3 and the complex \tilde{F}_3 are similarly defined.

Now, we shall count the algebraic sum of the triple points \tilde{F}_1 , \tilde{F}_2 , \tilde{F}_3 . By the construction of \tilde{F}_i , we see that $\tilde{F}_1 \cap \tilde{F}_3$ and $\tilde{F}_2 \cap \tilde{F}_3$ represent cycles on $\tilde{F}_3 - l_3$ in the sense of integral coefficients. Set them as

$$egin{aligned} &\sum\limits_k \left(a_1^k[lpha_k]+b_k^1[eta_k]
ight)+\sum\limits_j c_j^1[\gamma_j]\ &\sum\limits_k \left(a_k^2[lpha_k]+b_k^2[eta_k]
ight)+\sum\limits_j c_j^2[\gamma_j]$$
 ,

where $[\alpha_k]$, $[\beta_k[, [\gamma_j]]$ is the canonical system of generators of $H_1(\widetilde{F}_3 - l_3; Z)$ as in Figure 4. Then by the definition of the cup product,

$$((y_1^* \cup y_2^* \cup y_3^*) \cap [M]) = \sum (a_k^1 \! \cdot \! b_k^2 - a_k^2 \! \cdot \! b_k^1)$$
 .

The next step of the proof is to perform surgery on \widetilde{F}_i in W so that it is realized by an immersed 2-sphere. Take a properly immersed 2-disk D_i which represents $\nu_i \in H_2(W, M; \mathbb{Z})$ and satisfies $\partial D_i = l_i$. Then $F_i = \widetilde{F}_i \cup d \cdot D_i$ is regarded as the image from a closed surface. And by

FIGURE 4

assumption, $D_i \cdot D_j = 0$ for $i \neq j$. The rest of the proof is entirely the same as before. Because in the computation of the Matsumoto tripling, the intersection number of S_k and Whitney disks $\Delta^{(i,j)}$'s, which lie in the complement of the collar of M in W, is zero modulo d for the same reason as in the case d = 0. This completes the proof of Theorem.

4. Some applications of Theorem. First of all we give

PROOF OF COROLLARY 1. Since W and W' are simply connected, $g_*[M] = [M']$ implies that f is of degree one, i.e., $f_*[W] = [W']$. Hence $f_*: H_2(W) \rightarrow H_2(W')$ is an epimorphism and the intersection ideal of $\{f_*x_1, f_*x_2, f_*x_3\}$ is contained in $I = I\{x_1, x_2, x_3\}$. Thus we have the reduction $\langle f_*x_1, f_*x_2, f_*x_3 \rangle'$ of $\langle f_*x_1, f_*x_2, f_*x_3 \rangle$ as an element of Z/I. We put $K^i(M; Z_d) = \operatorname{Coker}(g^*: H^i(M'; Z_d) \rightarrow H^i(M; Z_d))$ and $K_i(M; Z_d) =$ $\operatorname{Ker}(g_*: H_i(M; Z_d) \rightarrow H_i(M'; Z_d))$. Since the map $g: M \rightarrow M'$ is of degree one, we have direct sum decompositions $H^i(M; Z_d) = H^i(M'; Z_d) \oplus K^i(M; Z_d)$ and $H_{3-i}(M; Z_d) = H_{3-i}(M'; Z_d) \oplus K_{3-i}(M; Z_d)$, which are compatible with the Poincaré duality isomorphism $\cap [M]$ and orthogonal with respect to the pairing $\langle_i \rangle: H^i(M; Z_d) \otimes H^{3-i}(M; Z_d) \rightarrow Z_d$ given by $\langle \xi, \eta \rangle = (\xi \cup \eta) \cap$ [M], see [1, pp. 9-12].

For an element $x \in H_2(W; \mathbb{Z})$, let $y \in H_2(M; \mathbb{Z}_d)$ be a mod d boundary reduction of x and let y^* be the Poincaré dual of y. If y' is a mod dboundary reduction of $x' = f_*x$, then we have $g_*y = y'$, since $i'_*: H_2(M'; \mathbb{Z}_d) \rightarrow H_2(W'; \mathbb{Z}_d)$ is monic. In order to prove Corollary 1, it suffices to show that

$$g^*(y_1'^* \cup y_2'^* \cup y_3'^*) \cap [M] = (y_1^* \cup y_2^* \cup y_3^*) \cap [M]$$
 ,

where $y_i^* \in H^1(M; \mathbb{Z}_d)$ and $y_i'^* \in H^1(M'; \mathbb{Z}_d)$ are the Poincaré duals of $y_i \in H_2(M; \mathbb{Z}_d)$ and $y_i' \in H_2(M'; \mathbb{Z}_d)$ such that $g_* y_i = y_i'$. Since the direct sum decompositions of $H_i(M)$ above are compatible with the Poincaré duality, we may write $g^* y_i'^* = y_i^* + u_i$ for some $u_i \in K^1(M)$. Moreover, they are orthogonal with respect to the pairing \langle , \rangle . It follows that

$$egin{aligned} g^*(y_1'^* \cup y_2'^* \cup y_3'^*) &\cap [M] \ &= ((y_1^* + u_1) \cup (y_2^* + u_2) \cup (y_3^* + u_3)) \cap [M] \ &= (y_1^* \cup y_2^* \cup y_3^*) \cap [M] \ . \end{aligned}$$

This completes the proof of Corollary 1.

Kaplan's number and Milnor's higher linking number. Let $L = \bigcup_{i=1}^{3} k_i$ be a link in S^3 of three components k_1, k_2, k_3 with the mutual linking numbers zero. Regard S^3 as the boundary of a 4-ball B^4 and attach a 2-handle to S^3 by a 0-framing of each k_i . This gives us a compact simply connected 4-manifold W_L with boundary $M_L = \partial W_L$. Let $x_1, x_2, x_3 \in H_2(W_L; \mathbb{Z})$ be the homology classes of W_L corresponding to the cores of the attached 2-handles. Then there exist unique integral boundary reductions $y_i \in H_2(M_L; \mathbb{Z})$ of $x_i, i = 1, 2, 3$. Matsumoto [3] observed that $-\langle x_1, x_2, x_3 \rangle$ in W_L coincides with Milnor's higher linking number $\mu(L)$ of L, [4]. Meanwhile, Kaplan [2] has defined an invariant T(L) and proved that $T(L) = (y_1^* \cup y_2^* \cup y_3^*) \cap [M_L]$. Thus we have

COROLLARY 2. Let $L = \bigcup_{i=1}^{3} k_i$ be a link as above. Then we have $T(L) = \mu(L)$.

Normal singularity of complex algebraic surfaces. Let V be a complex algebraic surface in an open neighborhood of the origin O in a complex N-space \mathbb{C}^N . Suppose that V contains O as a normal singularity. For sufficiently small $\varepsilon > 0$, a closed oriented 3-manifold $K_{\varepsilon}(O) = \{z \in V | |z| = \varepsilon\}$ is called a link of O in V. Sullivan [6] has proved that $(y_1^* \cup y_2^* \cup y_3^*) \cap [K_{\varepsilon}(O)] = 0$ for any elements $y_1, y_2, y_3 \in H_2(K_{\varepsilon}(O;)Z)$. Hence we have

COROLLARY 3. Let K be a link of a normal singularity in a complex algebraic surface. Then in a compact simply connected 4-manifold W with $\partial W = K$, three homology classes $x_1, x_2, x_3 \in H_2(W; \mathbb{Z})$ can be realized as mutually disjoint immersed 2-spheres in W if $j_*x_i = 0$ for i =1, 2, 3, where j_* is induced by the inclusion map $j: W \to (W, M)$. In particular, if W is the so-called Milnor fiber of an isolated hypersurface singularity in \mathbb{C}^3 with the monodromy $h_*: H_2(W, \mathbb{Z}) \to H_2(W; \mathbb{Z})$, then three invariant homology classes $x_1, x_2, x_3 \in H_2(W; \mathbb{Z})$ of h_* (i.e., $h_*(x_i) =$ x_i) can be realized by mutually disjoint immersed 2-spheres. REMARK. We cannot expect the Z_d -analogue of Sullivan's result. In fact, consider the isolated hypersurface singularity; $z_1^d + z_2^d + z_3^d = 0$, $(d \ge 3)$, whose link $K_{\epsilon}(O)$ is an S¹-bundle of degree d over a surface of genus (d-1)(d-2)/2. Then there exist three elements $y_1, y_2, y_3 \in$ $H_2(K_{\epsilon}(O); Z_d)$ such that $y_1^* \cup y_2^* \cup y_3^* \neq 0$.

References

- W. BROWDER, Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 65, Springer-Verlag, 1972.
- [2] S. J. KAPLAN, Constructing framed 4-manifolds with given almost framed boundary, (to appear).
- [3] Y. MATSUMOTO, Secondary intersectional properties of 4-manifolds and Whitney's trick, Algebraic and Geometric Topology, Proc. Symp. Pure Math. 32 (2) (1978), 99-107.
- [4] J. W. MILNOR, Link groups, Ann. of Math. 53 (1954), 177-195.
- [5] H. SEIFERT and W. THRELFALL, Lehrbuch der Topologie, Teubner, Leibzig, 1934.
- [6] D. SULLIVAN, On the intersection ring of compact three manifolds, Topology 14 (1975), 275-277.
- [7] M. YAMASAKI, Whitney's trick for three 2-dimensional homology classes of 4-manifolds, (to appear in the Proc. Amer. Math. Soc.).

M. KATO DEPARTMENT OF MATHEMATICS College of General Education University of Tokyo Komaba, Tokyo 153 Japan

T. Ohkawa Department of Mathematics Faculty of Science Hiroshima University Hiroshima 730 Japan S. KOJIMA DEPARTMENT OF MATHEMATICS TOKYO METROPOLITAN UNIVERSITY FUKAZAWA, SETAGAYA TOKYO 158 JAPAN

CURRENT ADRESS DEPARTMENT OF MATHEMATICS COLUMBIA UNIVERSITY NEW YORK, NEW YORK 10027 U.S.A.

M. YAMASAKI DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE UNIVERSITY OF TOKYO HONGO, TOKYO 113 JAPAN

CURRENT ADRESS DEPARTMENT OF MATHEMATICS VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG, VIRGINIA 24061 U.S.A.