THE MATSUMOTO TRIPLING FOR COMPACT SIMPLY CONNECTED 4-MANIFOLDS

Mitsuyoshi Kato, Sadayoshi Kojima, Tetsusuke Ohkawa and Masayuki Yamasaki

(Received November 18, 1978, revised February 28, 1979)

1. Intoduction. Let W be an oriented simply connected 4-manifold and let x_{1}, x_{2}, x_{3} be three elements of $H_{2}(W ; \boldsymbol{Z})$ with mutual intersection numbers $x_{i} \cdot x_{j}=0 \quad(i \neq j)$. In [3], by analysing Whitney's tricks for intersections of immersed 2 -spheres representing x_{1}, x_{2}, x_{3} in W, Y . Matsumoto introduced a number $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ as an element of \boldsymbol{Z} modulo an ideal $I=I\left\{x_{1}, x_{2}, x_{3}\right\}=\left\{x_{1} \cdot u_{1}+x_{2} \cdot u_{2}+x_{3} \cdot u_{3} \mid u_{1}, u_{2}, u_{3} \in H_{2}(W ; \boldsymbol{Z})\right\}$. The tripling $\langle,$,$\rangle will be referred to as the Matsumoto tripling and the ideal$ I will be called the intersection ideal of $\left\{x_{1}, x_{2}, x_{3}\right\}$.

It has been shown that x_{1}, x_{2}, x_{3} can be realized by mutually disjoint immersed 2 -spheres if and only if $\left\langle x_{1}, x_{2}, x_{3}\right\rangle=0$, (for the "only if" part see [3] and for the "if" part see [7]). If W is closed, $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ always vanishes because of the Poincaré duality.

Suppose that the boundary $M=\partial W$ of W is non-empty. For an integer d, a homology class $x \in H_{2}(W ; Z)$ has a mod d boundary reduction $y \in H_{2}\left(M ; \boldsymbol{Z}_{d}\right)$, if $i_{*} y=x \bmod d$ for the inclusion map $i: M \rightarrow W$.

Our aim in this paper is to prove the following;
Theorem. Let (W, M) be a compact oriented simply connected 4-manifold with non-empty boundary $\partial W=M$. Suppose that we are given three elements $x_{1}, x_{2}, x_{3} \in H_{2}(W ; \boldsymbol{Z})$ with mutual intersection numbers zero and with the intersection ideal $I=(d), d \in Z$. Then each element x_{i} has a unique mod d boundary reduction $y_{i}, i=1,2,3$ and the following equality holds;

$$
\left\langle x_{1}, x_{2}, x_{3}\right\rangle=-\left(y_{1}^{*} \cup y_{2}^{*} \cup y_{3}^{*}\right) \cap[M] \quad \text { in } \boldsymbol{Z}_{d},
$$

where $y_{i}^{*} \in H^{1}\left(M ; \boldsymbol{Z}_{d}\right)$ is the Poincaré dual of y_{i} in M.
Thus the Matsumoto tripling 〈,,〉 is completely determined by the multiple cup product of the $\bmod d$ boundary reductions in the boundary.

An implication of Theorem is
Corollary 1 (Invariance of Matsumoto tripling). Let (W, M) (W^{\prime}, M^{\prime}) and $x_{1}, x_{2}, x_{3} \in H_{2}(W ; \boldsymbol{Z})$ be 4-manifolds with boundary and
homology classes as in Theorem. If $f:(W, M) \rightarrow\left(W^{\prime}, M^{\prime}\right)$ is a map such that the restriction $g=\left.f\right|_{M}: M \rightarrow M^{\prime}$ is of degree one, i.e., $g_{*}[M]=\left[M^{\prime}\right]$, then we have $I\left\{x_{1}, x_{2}, x_{3}\right\} \supset I\left\{f_{*} x_{1}, f_{*} x_{2}, f_{*} x_{3}\right\}$ and

$$
\left\langle f_{*} x_{1}, f_{*} x_{2}, f_{*} x_{3}\right\rangle^{\prime} \equiv\left\langle x_{1}, x_{2}, x_{3}\right\rangle \quad \text { in } \boldsymbol{Z} / I\left\{x_{1}, x_{2}, x_{3}\right\},
$$

where $\left\langle f_{*} x_{1}, f_{*} x_{2}, f_{*} x_{3}\right\rangle^{\prime}$ is the reduction of $\left\langle f_{*} x_{1}, f_{*} x_{2}, f_{*} x_{3}\right\rangle$ in $\boldsymbol{Z} / I\left\{x_{1}, x_{2}, x_{3}\right\}$.
The proof of Theorem will be divided into two cases; $I=(0)(\S 2)$ and $I \neq(0)(\S 3)$. In $\S 4$, we shall give some applications of Theorem as well as the proof of Corollary 1.
2. The proof of Theorem; part 1. Since the homomorphism $j_{*}: H_{2}(W ; \boldsymbol{Z}) \rightarrow H_{2}(W, M ; \boldsymbol{Z})$ induced by the inclusion map $j: W \rightarrow(W, M)$ is represented by the intersection matrix for $H_{2}(W)$, it follows that a homology class $x \in H_{2}(W ; \boldsymbol{Z})$ has a $\bmod d$ boundary reduction if and only if the ideal (d) contains the intersection ideal $I\{x\}=\left\{x \cdot u \mid u \in H_{2}(W ; \boldsymbol{Z})\right\}$. Hence for an integer d, each $x_{i} \in H^{2}(W ; \boldsymbol{Z}), i=1,2$, 3 , has a $\bmod d$ boundary reduction y_{i} if and only if (d) contains the intersection ideal $I=I\left\{x_{1}, x_{2}, x_{3}\right\}$. Since W is simply connected, we have a short exact sequence:

$$
H_{3}\left(W, M ; \boldsymbol{Z}_{d}\right)=0 \longrightarrow H_{2}\left(M ; \boldsymbol{Z}_{d}\right) \xrightarrow{i_{*}} H_{2}\left(W ; \boldsymbol{Z}_{d}\right) \xrightarrow{j_{*}} H_{2}\left(W, M ; \boldsymbol{Z}_{d}\right) .
$$

Thus the reduction y_{i} is unique. In particular, if $I=(0)$, i.e., $j_{*} x=0$, then each x_{i} has a unique integral reduction y_{i}.

In this section, we shall prove Theorem in this special case $I=(0)$.
Represent y_{1}, y_{2}, y_{3} by smoothly embedded oriented surfaces $\widetilde{F}_{1}, \widetilde{F}_{2}, \widetilde{F}_{3}$. We may assume that those surfaces are in general position. Let $j: \widetilde{F}_{3} \rightarrow M$ be the inclusion map. Then

$$
\begin{aligned}
\left(y_{1}^{*} \cup y_{2}^{*} \cup y_{3}^{*}\right)[M] & =\iota\left(\left(y_{1}^{*} \cup y_{2}^{*} \cup y_{3}^{*}\right) \cap[M]\right)=\iota^{\prime}\left(\left(j^{*} y_{1}^{*} \cup j^{*} y_{2}^{*}\right) \cap\left[\widetilde{F}_{3}\right]\right) \\
& =\left[\gamma_{1}\right] \cdot\left[\gamma_{2}\right]
\end{aligned}
$$

where ι, ι^{\prime} are augmentations, $\gamma_{i}=\widetilde{F}_{i} \cap \widetilde{F}_{3}, i=1,2,\left[\gamma_{i}\right] \in H_{1}\left(\widetilde{F_{3}} ; \boldsymbol{Z}\right)$ is the homology class represented by γ_{i} (see the diagram below).

Let

$$
\begin{aligned}
& \widetilde{C}_{1}=\left\{\tilde{\alpha}_{1}^{\prime}, \widetilde{\beta}_{1}^{\prime} ; \cdots ; \widetilde{\alpha}_{r}^{\prime}, \widetilde{\beta}_{r}^{\prime}\right\} \\
& \widetilde{C}_{2}=\left\{\widetilde{\alpha}_{1}^{\prime \prime}, \widetilde{\beta}_{1}^{\prime \prime} ; \cdots ; \widetilde{\alpha}_{s}^{\prime \prime}, \widetilde{\beta}_{s}^{\prime \prime}\right\}
\end{aligned}
$$

$$
\widetilde{C}_{3}=\left\{\tilde{\alpha}_{1}, \widetilde{\beta}_{1} ; \cdots ; \widetilde{\alpha}_{t}, \widetilde{\beta}_{t}\right\}
$$

be the canonical systems of simple closed curves of $\widetilde{F}_{1}, \widetilde{F}_{2}, \widetilde{F}_{3}$, respectively, where r (resp. s, t) is the genus of \widetilde{F}_{1} (resp. $\widetilde{F}_{2}, \widetilde{F}_{3}$). We can choose systems so that two curves belonging to distinct systems $\widetilde{C}_{i}, \widetilde{C}_{j}$ have no point in common. Now,

$$
\left[\gamma_{1}\right] \cdot\left[\gamma_{2}\right]=\sum_{k=1}^{t}\left(a_{k}^{1} \cdot b_{k}^{2}-a_{k}^{2} \cdot b_{k}^{1}\right)
$$

where

$$
\left[\gamma_{i}\right]=\sum_{k=1}^{t}\left(a_{k}^{i}\left[\widetilde{\alpha}_{k}\right]+b_{k}^{i}\left[\widetilde{\beta}_{k}\right]\right), \quad a_{k}^{i}, b_{k}^{i} \in \boldsymbol{Z} .
$$

Let $M \times[0,1] \subset W$ be a collar neighborhood of $\partial W=M=M \times\{0\}$ in W. The classes $i_{*} y_{i}$ can be represented by the surface $F_{i}=$ $\widetilde{F}_{i} \times(4-i) / 4 \subset$ int W. Translating the systems $\widetilde{C}_{1}, \widetilde{C}_{2}, \widetilde{C}_{3}$ along the collar, we obtain the canonical systems of simple closed curves of F_{1}, F_{2}, F_{3} :

$$
\begin{aligned}
& C_{1}=\left\{\alpha_{1}^{\prime}, \beta_{1}^{\prime} ; \cdots ; \alpha_{r}^{\prime}, \beta_{r}^{\prime}\right\} \\
& C_{2}=\left\{\alpha_{1}^{\prime \prime}, \beta_{1}^{\prime \prime} ; \cdots ; \alpha_{s}^{\prime \prime}, \beta_{s}^{\prime \prime}\right\} \\
& C_{3}=\left\{\alpha_{1}, \beta_{1} ; \cdots ; \alpha_{t}, \beta_{t}\right\} .
\end{aligned}
$$

As $W-M \times[0,1)$ is simply connected, the curves $\widetilde{\alpha}_{i}^{\prime} \times 1, \tilde{\alpha}_{j}^{\prime \prime} \times 1, \tilde{\alpha}_{k} \times 1$ in $M \times\{1\}$ bound immersed disks d_{i}^{\prime}, $d_{j}^{\prime \prime}$, d_{k} in $W-M \times[0,1)$. We set

$$
\begin{aligned}
D_{i}^{\prime} & =\tilde{\alpha}_{i}^{\prime} \times[3 / 4,1] \cup d_{i}^{\prime} \\
D_{j}^{\prime \prime} & =\tilde{\alpha}_{j}^{\prime \prime} \times[2 / 4,1] \cup d_{j}^{\prime \prime} \\
D_{k} & =\widetilde{\alpha}_{k} \times[1 / 4,1] \cup d_{k} .
\end{aligned}
$$

By spinning $D_{i}^{\prime}\left(D_{j}^{\prime \prime}, D_{k}\right)$ around $\alpha_{i}^{\prime}\left(\alpha_{j}^{\prime \prime}, \alpha_{k}\right)$, if necessary, we may assume that the normal bundle $\nu\left(\alpha_{i}^{\prime} \hookrightarrow F_{1}\right)$ extends to a sub-bundle of $\nu\left(D_{i}^{\prime} \rightarrow W\right)$, etc. Using these disks $D_{i}^{\prime}, D_{j}^{\prime \prime}, D_{k}$, perform surgery on F_{1}, F_{2}, F_{3} in int W, and we obtain immersed 2 -spheres S_{1}, S_{2}, S_{3} representing x_{1}, x_{2}, x_{3}. The construction is as follows: using the sub-bundle of $\nu\left(D_{i}^{\prime} \rightarrow W\right)$ (resp. $\left.\nu\left(D_{j}^{\prime \prime} \rightarrow W\right), \nu\left(D_{k} \rightarrow W\right)\right)$ mentioned above, we obtain an immersion f_{i}^{\prime} (resp. $\left.f_{j}^{\prime \prime}, f_{k}\right): D^{2} \times[-1,1] \rightarrow W$, such that $f_{i}^{\prime}\left(D^{2} \times\{0\}\right)=D_{i}^{\prime}\left(\right.$ resp. $f_{j}^{\prime \prime}\left(D^{2} \times\{0\}\right)=$ $\left.D_{j}^{\prime \prime}, f_{k}\left(D^{2} \times\{0\}\right)=D_{k}\right)$ and $N_{i}^{\prime}=f_{i}^{\prime}\left(\partial D^{2} \times[-1,1]\right)$ (resp. $N_{j}^{\prime \prime}=f_{j}^{\prime \prime}\left(\partial D^{2} \times\right.$ $\left.[-1,1]), N_{k}=f_{k}\left(\partial D^{2} \times[-1,1]\right)\right)$ is a small tubular neighborhood of α_{i}^{\prime} $\left(\right.$ resp. $\left.\alpha_{j}^{\prime \prime}, \alpha_{k}\right)$ in $F_{1}\left(\right.$ resp. $\left.F_{2}, F_{3}\right)$. Then

$$
\begin{aligned}
& S_{1}=\left(F_{1}-\bigcup_{i=1}^{r} N_{i}^{\prime}\right) \cup \bigcup_{i=1}^{r} f_{i}^{\prime}\left(D^{2} \times\{ \pm 1\}\right) \\
& S_{2}=\left(F_{2}-\bigcup_{j=1}^{s} N_{j}^{\prime \prime}\right) \cup \bigcup_{j=1}^{s} f_{j}^{\prime \prime}\left(D^{2} \times\{ \pm 1\}\right) \\
& S_{3}=\left(F_{3}-\bigcup_{k=1}^{t} N_{k}\right) \cup \bigcup_{k=1}^{t} f_{k}\left(D^{2} \times\{ \pm 1\}\right) .
\end{aligned}
$$

Now we shall construct Whitney disks $\Delta^{(i, j)}$'s and compute $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$.
(1) Whitney disks of type 1 . Corresponding to an intersection point of α_{k} and the double curve $\gamma_{1}\left(\right.$ resp. γ_{2}), there occur two intersection points, p and q, of S_{3} and S_{1} (resp. S_{2}) with opposite signs. We draw two arcs $\gamma_{1}^{(3,1)}, \gamma_{3}^{(3,1)}$ (resp. $\left.\gamma_{2}^{(2,3)}, \gamma_{3}^{(2,3)}\right)$ connecting p and q on S_{1} (resp. S_{2}), S_{3}. Let the arc $\gamma_{1}^{(3,1)}$ (resp. $\gamma_{2}^{(2,3)}$) lie in $f_{k}\left(D^{2} \times[-1,1]\right)$, and if, D_{k} has not been spun around α_{k}, let the arc $\gamma_{3}^{(3,1)}$ (resp. $\gamma_{3}^{(2,3)}$) go straight down to reach the height of $1 / 4$ and run parallel with β_{k} on $F_{3}-\operatorname{int} N_{k}$ to the other component of ∂N_{k} and go straight up to the end point.

Now, if D_{k} has not been spun, the Whitney disk is;

$$
\begin{aligned}
\Delta^{(3,1)}= & \left(\gamma_{1}^{(3,1)} \times[3 / 4,1]\right) \cup\left(\left(\gamma_{3}^{(3,1)} \cap F_{3}\right) \times[1 / 4,1]\right) \cup(\text { an immersed } 2 \text {-disk in } \\
& W-M \times[0,1)) \\
\Delta^{(2,3)}= & \left(\gamma_{2}^{(2,3)} \times[2 / 4,1]\right) \cup\left(\left(\gamma_{3}^{(0,3)} \cap F_{3}\right) \times[1 / 4,1]\right) \cup(\text { an immersed } 2 \text {-disk in } \\
& W-M \times[0,1)) .
\end{aligned}
$$

If D_{k} has been spun around α_{k}, change this disk by homotopy to obtain the desired Whitney disk, keeping the part of level higher than $3 / 8$ unchanged. Similarly there exists a Whitney disk $\Delta^{(1,2)}$ corresponding to an intersection point of $\tilde{\alpha}_{j}^{\prime \prime}$ and $\tilde{\gamma}$, where $\tilde{\gamma}=\widetilde{F}_{1} \cap \widetilde{F}_{2}$ is the double curve on F_{2}. We shall call these disks Whitney disks of type 1.

We orient W as follows:

$$
[W]=[M] \times[n],
$$

where n is the outward normal vector and [] is the orientation. Let the sign of the intersection point of α_{k} and γ_{1} be $\varepsilon(= \pm 1)$, i.e., $\left[\alpha_{k}\right] \times\left[\gamma_{1}\right]=$ $\varepsilon\left[F_{3}\right]$. This is equivalent to saying that $\left[\gamma_{1}\right]=\varepsilon\left[\beta_{k}\right]$ near the intersection point. The curves γ_{1}, γ_{2} are oriented as follows (see Figure 1):

$$
\begin{aligned}
& {\left[S_{1}\right]=\left[\gamma_{1}\right] \times[v]} \\
& {\left[S_{2}\right]=\left[\gamma_{2}\right] \times[v],}
\end{aligned}
$$

where v is a normal vector field on F_{3} in M such that $\left[F_{3}\right] \times[v]=[M]$. Let p be the intersection point of S_{1} and S_{3} on the side where $\left[\beta_{k}\right]$ is the inward vector of $F_{3}-N_{k}$, and let q be the other point. Then near $p,\left[S_{3}\right]=\left[\alpha_{k}\right] \times[n]$ and near $q,\left[S_{3}\right]=\left[\alpha_{k}\right] \times(-[n])$. Therefore, at p,

$$
\begin{aligned}
{\left[S_{1}\right] \times\left[S_{3}\right] } & =\left[\gamma_{1}\right] \times[v] \times\left[\alpha_{k}\right] \times[n]=\varepsilon\left[\beta_{k}\right] \times[v] \times\left[\alpha_{k}\right] \times[n] \\
& =\varepsilon\left[\alpha_{k}\right] \times\left[\beta_{k}\right] \times[v] \times[n]=\varepsilon\left[F_{3}\right] \times[v] \times[n]=\varepsilon[W]
\end{aligned}
$$

and the sign of p is ε. So the orientation of $\gamma^{(3,1)}$ is chosen in such a way that

$$
\left[\gamma_{3}^{(3,1)} \cap F_{3}\right]=\varepsilon\left[\beta_{k}\right]
$$

Figure 1
and that the orientation of the Whitney disk is

$$
\left[\Delta^{(3,1)}\right]=[n] \times \varepsilon\left[\beta_{k}\right] .
$$

If there is an intersection point of γ_{2} and $\gamma_{3}^{(3,1)}$ on F_{3}, there is a corresponding intersection point of $\Delta^{(3,1)}$ and S_{2}. Let the orientation of γ_{2} be $\varepsilon^{\prime}\left[\alpha_{k}\right]\left(\varepsilon^{\prime}= \pm 1\right)$ near the point. Then the sign of the resulting intersection of $\Delta^{(3,1)}$ and S_{2} can be computed as follows:

$$
\begin{aligned}
{\left[4^{(3,1)}\right] \times\left[S_{2}\right] } & =[n] \times \varepsilon\left[\beta_{k}\right] \times\left[\gamma_{2}\right] \times[v]=[n] \times \varepsilon\left[\beta_{k}\right] \times \varepsilon^{\prime}\left[\alpha_{k}\right] \times[v] \\
& =\varepsilon \varepsilon^{\prime}\left[\alpha_{k}\right] \times\left[\beta_{k}\right] \times[v] \times[n]=\varepsilon \varepsilon^{\prime}[W] .
\end{aligned}
$$

This Whitney disk $\Delta^{(3,1)}$ of type 1 may intersect S_{2} outside the collar neighborhood of M, but the intersection occurs in pair and the algebraic sum is zero. Therefore

$$
\sum_{\text {type } 1} d^{(3,1)} \cdot S_{2}=\sum \varepsilon \cdot \varepsilon^{\prime}=\sum_{k=1}^{t} a_{k}^{2} \cdot b_{k}^{1}
$$

Similarly

$$
\sum_{\text {type }} \Delta^{(2,3)} \cdot S_{1}=-\sum_{k=1}^{t} a_{k}^{1} \cdot b_{k}^{2}
$$

and

$$
\sum_{t y p e} \Delta^{(1,2)} \cdot S_{3}=0 .
$$

(2) Whitney disks of type 2 . In $W-M \times[0,1)$, the intersection of S_{i} and S_{j} occurs as in Figure 2, corresponding to the intersection of the immersed disks d_{i} and d_{j}. We call the Whitney disks obtained from this intersection as the Whitney disks of type 2. Clearly, Whitney disks of type 2 occur in pairs and

$$
\sum_{t y \operatorname{peq} 2} \Delta^{(i, j)} \cdot S_{k}=0 .
$$

Figure 2
Combining (1) and (2), we obtain

$$
\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\sum_{k=1}^{t}\left(a_{k}^{2} \cdot b_{k}^{1}-a_{k}^{1} \cdot b_{k}^{2}\right)
$$

by the definition of the Matsumoto tripling and Theorem is proved in case $I=(0)$.
3. The proof of Therem; part 2. Our plan of the proof is entirely the same as in the case $I=(0)$. However, an element of $H_{2}\left(M ; \boldsymbol{Z}_{d}\right)$ cannot be realized by an embedded surface in general. This is the only point to study.

Now, we shall show how to construct a nice complex representing y_{i}. The Bockstein homomorphism $\Delta: H_{2}\left(M ; \boldsymbol{Z}_{d}\right) \rightarrow H_{1}(M ; \boldsymbol{Z})$ maps y_{i} to τ_{i}. Assume τ_{i} is non-trivial. For, otherwise, y_{i} can be realized by an embedded surface. Let l_{i} be a closed curve representing τ_{i}, and N be a tubular neighborhood of l_{i}. Then $H_{1}(\partial N ; \boldsymbol{Z}) \approx \boldsymbol{Z} \oplus \boldsymbol{Z}$ is generated by a longitude ξ and a meridian η. Since $d \tau_{i}=0$, the element $d \cdot \xi+e \cdot \eta$ is null-homologous in $M-\stackrel{\circ}{N}$ for some integer e. Here, this number e is related to the linking number in the sense of Seifert [5] by $V\left(\tau_{i}, \tau_{i}\right)=$ $e / d(\bmod 1)$. Then the element $d \cdot \xi+e \cdot \eta$ is represented by a torus link of type (d, e) on ∂N. By the Pontrjagin-Thom construction, L_{i} bounds a properly embedded punctured surface T_{i} in ($M-\dot{N}, \partial N$) (which is possibly non-connected). Let L_{i}^{*} be the fiberwise join of L_{i} and l_{i}. Then $T_{i} \cup L_{i}^{*}$ represents an element $y_{i}^{\prime} \in H_{2}\left(M ; Z_{d}\right)$ and $\Delta\left(y_{i}^{\prime}\right)=\tau_{i}$. This implies that $y_{i}-y_{i}^{\prime}=z_{i}$ can be considered as an element of $H_{2}(M ; \boldsymbol{Z})$. Moreover, the Mayer-Vietoris exact sequence shows that z_{i} is also an element of $H_{2}(M-N ; Z)$. Thus we can represent the homology class $y_{i}=y_{i}^{\prime}+z_{i} \in H_{2}\left(M ; \boldsymbol{Z}_{d}\right)$ again by the union of a properly embedded surface T_{i}^{\prime} with $\partial T_{i}^{\prime}=L_{i}$ and L_{i}^{*}.

The next lemma plays a key role in the proof.
Lemma. $\quad V\left(\tau_{i}, \tau_{j}\right)=0$ for $i \neq j$.
Proof. We shall consider the following diagram.

The element $\nu_{i} \in H_{2}(W, M ; \boldsymbol{Z})$ is mapped to $j_{*} x_{i}$ by the homomorphism $\times d$, the multiplication by the number d. Then $\partial\left(\nu_{i}\right)=\tau_{i}$ by definition. Now, the linking number can be calculated in terms of an intersection number in the 4 -manifold W. Namely,

$$
V\left(\tau_{i}, \tau_{j}\right)=x_{i} \cdot \nu_{j} / d \quad(\bmod 1) .
$$

Our assumption $x_{i} \cdot x_{j}=0$ is valid with rational coefficients. Thus $V\left(\tau_{i}, \tau_{j}\right)=0$ for $i \neq j$, completing the proof.

Remark. This lemma states that for some 2 -chain C_{i} such that $\partial C_{i}=d \tau_{i}$, the intersection number $C_{i} \cdot \tau_{j}=0(\bmod d)$. However, we can choose a nice loop l_{j} representing τ_{j} in such a way that $C_{i} \cdot l_{j}=0$. Then for a 2-chain C_{j} with $\partial C_{j}=d \cdot l_{j}$, the intersection number $C_{j} \cdot l_{i}=0$, where l_{i} is a closed curve defined by C_{i}.

Figure 3
Proof of Theorem in case $I \neq(0)$. Take a complex \widetilde{F}_{1} which represents y_{1} and contains a loop l_{1}, representing τ_{1}, as a singularity. Then there is a loop l_{2}, representing τ_{2}, with $\widetilde{F}_{1} \cdot l_{2}=0$ by the remark above. By performing surgery on \widetilde{F}_{1} as in Figure 3, if necessary, we may assume that $\widetilde{F}_{1} \cap l_{2}=\varnothing$. The complex \widetilde{F}_{2} represents y_{2} and contains a loop l_{2} as a singularity. For the same reason as above, it may be assumed that $\widetilde{F}_{2} \cap l_{1}=\varnothing$. The loop l_{3} and the complex \widetilde{F}_{3} are similarly defined.

Now, we shall count the algebraic sum of the triple points $\widetilde{F}_{1}, \widetilde{F}_{2}, \widetilde{F}_{3}$. By the construction of \widetilde{F}_{i}, we see that $\widetilde{F}_{1} \cap \widetilde{F}_{3}$ and $\widetilde{F}_{2} \cap \widetilde{F}_{3}$ represent cycles on $\widetilde{F}_{3}-l_{3}$ in the sense of integral coefficients. Set them as

$$
\begin{aligned}
& \sum_{k}\left(a_{1}^{k}\left[\alpha_{k}\right]+b_{k}^{1}\left[\beta_{k}\right]\right)+\sum_{j} c_{j}^{1}\left[\gamma_{j}\right] \\
& \sum_{k}\left(a_{k}^{2}\left[\alpha_{k}\right]+b_{k}^{2}\left[\beta_{k}\right]\right)+\sum_{j} c_{j}^{2}\left[\gamma_{j}\right]
\end{aligned}
$$

where $\left[\alpha_{k}\right],\left[\beta_{k}\left[,\left[\gamma_{j}\right]\right.\right.$ is the canonical system of generators of $H_{1}\left(\widetilde{F}_{3}-l_{3} ; \boldsymbol{Z}\right)$ as in Figure 4. Then by the definition of the cup product,

$$
\left(\left(y_{1}^{*} \cup y_{2}^{*} \cup y_{3}^{*}\right) \cap[M]\right)=\sum\left(a_{k}^{1} \cdot b_{k}^{2}-a_{k}^{2} \cdot b_{k}^{1}\right)
$$

The next step of the proof is to perform surgery on \tilde{F}_{i} in W so that it is realized by an immersed 2 -sphere. Take a properly immersed 2-disk D_{i} which represents $\nu_{i} \in H_{2}(W, M ; Z)$ and satisfies $\partial D_{i}=l_{i}$. Then $F_{i}=\widetilde{F}_{i} \cup d \cdot D_{i}$ is regarded as the image from a closed surface. And by

assumption, $D_{i} \cdot D_{j}=0$ for $i \neq j$. The rest of the proof is entirely the same as before. Because in the computation of the Matsumoto tripling, the intersection number of S_{k} and Whitney disks $\Delta^{(i, j)}$'s, which lie in the complement of the collar of M in W, is zero modulo d for the same reason as in the case $d=0$. This completes the proof of Theorem.
4. Some applications of Theorem. First of all we give

Proof of Corollary 1. Since W and W^{\prime} are simply connected, $g_{*}[M]=\left[M^{\prime}\right]$ implies that f is of degree one, i.e., $f_{*}[W]=\left[W^{\prime}\right]$. Hence $f_{*}: H_{2}(W) \rightarrow H_{2}\left(\mathrm{~W}^{\prime}\right)$ is an epimorphism and the intersection ideal of $\left\{f_{*} x_{1}, f_{*} x_{2}, f_{*} x_{3}\right\}$ is contained in $I=I\left\{x_{1}, x_{2}, x_{3}\right\}$. Thus we have the reduction $\left\langle f_{*} x_{1}, f_{*} x_{2}, f_{*} x_{3}\right\rangle^{\prime}$ of $\left\langle f_{*} x_{1}, f_{*} x_{2}, f_{*} x_{3}\right\rangle$ as an element of \boldsymbol{Z} / I. We put $K^{i}\left(M ; \boldsymbol{Z}_{d}\right)=\operatorname{Coker}\left(g^{*}: H^{i}\left(M^{\prime} ; \boldsymbol{Z}_{d}\right) \rightarrow H^{i}\left(M ; \boldsymbol{Z}_{d}\right)\right)$ and $K_{i}\left(M ; \boldsymbol{Z}_{d}\right)=$ $\operatorname{Ker}\left(g_{*}: H_{i}\left(M ; \boldsymbol{Z}_{d}\right) \rightarrow H_{i}\left(M^{\prime} ; \boldsymbol{Z}_{d}\right)\right)$. Since the map $g: M \rightarrow M^{\prime}$ is of degree one, we have direct sum decompositions $H^{i}\left(M ; \boldsymbol{Z}_{d}\right)=H^{i}\left(M^{\prime} ; \boldsymbol{Z}_{d}\right) \oplus K^{i}\left(M ; \boldsymbol{Z}_{d}\right)$ and $H_{3-i}\left(M ; \boldsymbol{Z}_{d}\right)=H_{3-i}\left(M^{\prime} ; \boldsymbol{Z}_{d}\right) \oplus K_{3-i}\left(M ; \boldsymbol{Z}_{d}\right)$, which are compatible with the Poincaré duality isomorphism $\cap[M]$ and orthogonal with respect to the pairing $\langle\rangle:, H^{i}\left(M ; \boldsymbol{Z}_{d}\right) \otimes H^{3-i}\left(M ; \boldsymbol{Z}_{d}\right) \rightarrow \boldsymbol{Z}_{d}$ given by $\langle\xi, \eta\rangle=(\xi \cup \eta) \cap$ [M], see [1, pp. 9-12].

For an element $x \in H_{2}(W ; \boldsymbol{Z})$, let $y \in H_{2}\left(M ; \boldsymbol{Z}_{d}\right)$ be a $\bmod d$ boundary reduction of x and let y^{*} be the Poincaré dual of y. If y^{\prime} is a $\bmod d$ boundary reduction of $x^{\prime}=f_{*} x$, then we have $g_{*} y=y^{\prime}$, since $i_{*}^{\prime}: H_{2}\left(M^{\prime}\right.$; $\left.\boldsymbol{Z}_{d}\right) \rightarrow H_{2}\left(W^{\prime} ; \boldsymbol{Z}_{d}\right)$ is monic. In order to prove Corollary 1, it suffices to show that

$$
g^{*}\left(y_{1}^{\prime *} \cup y_{2}^{\prime *} \cup y_{3}^{\prime *}\right) \cap[M]=\left(y_{1}^{*} \cup y_{2}^{*} \cup y_{3}^{*}\right) \cap[M],
$$

where $y_{i}^{*} \in H^{1}\left(M ; Z_{d}\right)$ and $y_{i}^{\prime *} \in H^{1}\left(M^{\prime} ; \boldsymbol{Z}_{d}\right)$ are the Poincaré duals of $y_{i} \in$ $H_{2}\left(M ; \boldsymbol{Z}_{d}\right)$ and $y_{i}^{\prime} \in H_{2}\left(M^{\prime} ; \boldsymbol{Z}_{d}\right)$ such that $g_{*} y_{i}=y_{i}^{\prime}$. Since the direct sum decompositions of $H_{i}(M)$ above are compatible with the Poincaré duality, we may write $g^{*} y_{i}^{\prime *}=y_{i}^{*}+u_{i}$ for some $u_{i} \in K^{1}(M)$. Moreover, they are orthogonal with respect to the pairing \langle,$\rangle . It follows that$

$$
\begin{aligned}
& g^{*}\left(y_{1}^{\prime *} \cup y_{2}^{\prime *} \cup y_{3}^{\prime *}\right) \cap[M] \\
& \quad=\left(\left(y_{1}^{*}+u_{1}\right) \cup\left(y_{2}^{*}+u_{2}\right) \cup\left(y_{3}^{*}+u_{3}\right)\right) \cap[M] \\
& \quad=\left(y_{1}^{*} \cup y_{2}^{*} \cup y_{3}^{*}\right) \cap[M] .
\end{aligned}
$$

This completes the proof of Corollary 1.
Kaplan's number and Milnor's higher linking number. Let $L=$ $\bigcup_{i=1}^{i} k_{i}$ be a link in S^{3} of three components k_{1}, k_{2}, k_{3} with the mutual linking numbers zero. Regard S^{3} as the boundary of a 4 -ball B^{4} and attach a 2 -handle to S^{3} by a 0 -framing of each k_{i}. This gives us a compact simply connected 4-manifold W_{L} with boundary $M_{L}=\partial W_{L}$. Let $x_{1}, x_{2}, x_{3} \in H_{2}\left(W_{L} ; \boldsymbol{Z}\right)$ be the homology classes of W_{L} corresponding to the cores of the attached 2 -handles. Then there exist unique integral boundary reductions $y_{i} \in H_{2}\left(M_{L} ; \boldsymbol{Z}\right)$ of $x_{i}, i=1,2,3$. Matsumoto [3] observed that $-\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ in W_{L} coincides with Milnor's higher linking number $\mu(L)$ of L, [4]. Meanwhile, Kaplan [2] has defined an invariant $T(L)$ and proved that $T(L)=\left(y_{i}^{*} \cup y_{2}^{*} \cup y_{3}^{*}\right) \cap\left[M_{L}\right]$. Thus we have

Corollary 2. Let $L=\bigcup_{i=1}^{3} k_{i}$ be a link as above. Then we have $T(L)=\mu(L)$.

Normal singularity of complex algebraic surfaces. Let V be a complex algebraic surface in an open neighborhood of the origin O in a complex N-space C^{N}. Suppose that V contains \boldsymbol{O} as a normal singularity. For sufficiently small $\varepsilon>0$, a closed oriented 3-manifold $K_{\varepsilon}(\boldsymbol{O})=\{z \in V \mid$ $|z|=\varepsilon\}$ is called a link of O in V. Sullivan [6] has proved that ($y_{1}^{*} \cup$ $\left.y_{2}^{*} \cup y_{3}^{*}\right) \cap\left[K_{s}(\boldsymbol{O})\right]=0$ for any elements $y_{1}, y_{2}, y_{3} \in H_{2}\left(K_{s}(\boldsymbol{O} ;) \boldsymbol{Z}\right)$. Hence we have

Corollary 3. Let K be a link of a normal singularity in a complex algebraic surface. Then in a compact simply connected 4-manifold W with $\partial W=K$, three homology classes $x_{1}, x_{2}, x_{3} \in H_{2}(W ; \boldsymbol{Z})$ can be realized as mutually disjoint immersed 2-spheres in W if $j_{*} x_{i}=0$ for $i=$ $1,2,3$, where j_{*} is induced by the inclusion map $j: W \rightarrow(W, M)$. In particular, if W is the so-called Milnor fiber of an isolated hypersurface singularity in \boldsymbol{C}^{3} with the monodromy $h_{*}: H_{2}(W, \boldsymbol{Z}) \rightarrow H_{2}(W ; \boldsymbol{Z})$, then three invariant homology classes $x_{1}, x_{2}, x_{3} \in H_{2}(W ; \boldsymbol{Z})$ of $h_{*}\left(\right.$ i.e., $h_{*}\left(x_{i}\right)=$ x_{i}) can be realized by mutually disjoint immersed 2-spheres.

Remark. We cannot expect the Z_{d}-analogue of Sullivan's result. In fact, consider the isolated hypersurface singularity; $z_{1}^{d}+z_{2}^{d}+z_{3}^{d}=0$, ($d \geqq 3$), whose link $K_{\varepsilon}(\boldsymbol{O})$ is an S^{1}-bundle of degree d over a surface of genus $(d-1)(d-2) / 2$. Then there exist three elements $y_{1}, y_{2}, y_{3} \in$ $H_{2}\left(K_{t}(\boldsymbol{O}) ; \boldsymbol{Z}_{d}\right)$ such that $y_{1}^{*} \cup y_{2}^{*} \cup y_{3}^{*} \neq 0$.

References

[1] W. Browder, Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 65, Springer-Verlag, 1972.
[2] S. J. Kaplan, Constructing framed 4-manifolds with given almost framed boundary, (to appear).
[3] Y. Matsumoto, Secondary intersectional properties of 4-manifolds and Whitney's trick, Algebraic and Geometric Topology, Proc. Symp. Pure Math. 32 (2) (1978), 99-107.
[4] J. W. Milnor, Link groups, Ann. of Math. 53 (1954), 177-195.
[5] H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner, Leibzig, 1934.
[6] D. Sullivan, On the intersection ring of compact three manifolds, Topology 14 (1975), 275-277.
[7] M. Yamasaki, Whitney's trick for three 2-dimensional homology classes of 4-manifolds, (to appear in the Proc. Amer. Math. Soc.).
M. Kato

Department of Mathematics
College of General Education
University of Tokyo
Komaba, Tokyo 153
Japan
T. Ohkawa

Department of Mathematics
Faculty of Science
Hiroshima University
Hiroshima 730
Japan
S. Kojima

Department of Mathematics
Tokyo Metropolitan University
Fukazawa, Setagaya
Tokyo 158
Japan
Current Adress
Department of Mathematics
Columbia University
New York, New York 10027
U.S.A.
M. Yamasaki

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo 113
Japan
Current Adress
Department of Mathematics
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia 24061
U.S.A.

