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1. Intoduction. Let W be an oriented simply connected 4-manifold
and let xl9 x2, xz be three elements of H2(W; Z) with mutual intersection
numbers xt'Xd = 0 (iφj). In [3], by analysing Whitney's tricks for
intersections of immersed 2-spheres representing xu x2, x3 in W, Y.
Matsumoto introduced a number (xlf x2, x3) as an element of Z modulo
an ideal I = I{xu x2, x3) = {αv^i + x2 u2 + xs uΆ \ uu u2, u3 e H2{W; Z)}. The
tripling <„> will be referred to as the Matsumoto tripling and the ideal
I will be called the intersection ideal of {xlf x2, x3).

It has been shown that xu x2f x3 can be realized by mutually disjoint
immersed 2-spheres if and only if (xu x2, x3} = 0, (for the "only if" part
see [3] and for the "if" part see [7]). If W is closed, (xlf x2, x3) always
vanishes because of the Poincare duality.

Suppose that the boundary M = dW of W is non-empty. For an
integer d, a homology class x e H2{ W; Z) has a mod d boundary reduction
yeH2(M; Zd), if i*y — x mode? for the inclusion map i: M-+W.

Our aim in this paper is to prove the following;

THEOREM. Let (W, M) be a compact oriented simply connected
A-manifold with non-empty boundary d W = M. Suppose that we are
given three elements xu x2f x3 e H2( W; Z) with mutual intersection numbers
zero and with the intersection ideal I = (c£), deZ. Then each element xt

has a unique mod d boundary reduction yif i = 1, 2, 3 and the following
equality holds;

<x» »2, ^ > = - Oh * U y2 * U yt) Π [M] in Zd ,

where yt 6 H\M; Zd) is the Poincare dual of yt in M.

Thus the Matsumoto tripling <„> is completely determined by the
multiple cup product of the mod d boundary reductions in the boundary.

An implication of Theorem is

COROLLARY 1 (Invariance of Matsumoto tripling). Let (W, M)
(W',M') and xlt x2, x3 e H2(W; Z) be A-manifolds with boundary and
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homology classes as in Theorem. If f: (Wf M)->(W'y M') is a map such
that the restriction g = f\M: M-^Mr is of degree one, i.e., g*[M] = [M'],
then we have I{xu x2, x^~Dl{f^xu f*x2f /*#3} and

</*»i, Λ»2, /*&s>'Ξ<&i, x2, &s> in Z/I{xlf x2, x3} ,

where (f*xu f*x2, / * O ' is the reduction of (f*xly f*x2, /*£3> in Z/I{xlf x2, #3}.

The proof of Theorem will be divided into two cases; / = (0) (§ 2)
and Iφ(θ) (§3). In §4, we shall give some applications of Theorem as
well as the proof of Corollary 1.

2. The proof of Theorem; part 1. Since the homomorphism
j \ : H2(W; Z)-+H2(W, M; Z) induced by the inclusion map j : W->(W, M)
is represented by the intersection matrix for H2(W), it follows that a
homology class x e H2{ W; Z) has a mod d boundary reduction if and only
if the ideal (d) contains the intersection ideal I{x) = {x-u \ u e H2(W; Z)}.
Hence for an integer df each xi e H2(W; Z), i = 1, 2, 3, has a modd
boundary reduction yt if and only if (d) contains the intersection ideal
/ = I{xl9 x2, #3}. Since W is simply connected, we have a short exact
sequence:

, M; Zd) - 0 >H2(M; Zd) ^ H2(W; Zd) -^-> H2(W, M; Zd) .

Thus the reduction yt is unique. In particular, if / = (0), i.e., j\x = 0,
then each xt has a unique integral reduction yt.

In this section, we shall prove Theorem in this special case / = (0).
Represent ylf y2, yz by smoothly embedded oriented surfaces Flf F2f F3.

We may assume that those surfaces are in general position. Let j : FZ-^M
be the inclusion map. Then

(yf U yΐ U yf)[M] = c((yϊ U yΐ U yf) Π [Af ]) = S((j*y? U j*yϊ) n

where c, i are augmentations, yi = Ft f] F3, i — 1, 2, [yt] e H^F^ Z) is the
homology class represented by τ< (see the diagram below).

Let

C2 - {άί\ &»; . . . &[', β'.'}
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C 3 = {alf & ; • • • ; &t, β t }

be the canonical systems of simple closed curves of Fu F2, F3, respectively,
where r (resp. s, t) is the genus of Fx (resp. F2, JP8). We can choose
systems so that two curves belonging to distinct systems Cu C3 have
no point in common. Now,

where

[Ύi] = Σ H[ak] + bk[βk]), aί, 6ί 6 Z .
fc = l

Let Afx [0, l ] c T7 be a collar neighborhood of 3TΓ = M = Λf x {0} in
TΓ. The classes i * ^ can be represented by the surface Ft —
F t x ( 4 — i)/4cint TΓ. Translating the systems Cu C2, C3 along the collar,
we obtain the canonical systems of simple closed curves of Fl9 F2f F3:

(?! = { < β[\ •• ;αr,/3;}

Cf = {αΓ,/3ί'; . ; α : ' , i 9 n

C3 = {«!,&; •••;«*,/3J

As TΓ — M x [0, 1) is simply connected, the curves a\ x 1, a" x 1, άk x 1
in M x {1} bound immersed disks d{, cZ}', dk in TΓ — Λf x [0, 1). We set

Dl = ά'tx[S/4,ΐ\\Jd't
Df; = a'5

r x [2/4, 1] U dj'

Dk = Shx [1/4, 1] U d* .

By spinning i?ί (D/', Dfc) around αί (αf, ak), if necessary, we may assume
that the normal bundle v(aΊ<=->Fύ extends to a sub-bundle of v(Dί-+W)f

etc. Using these disks D[y D", Dk, perform surgery on Fl9 F2, F3 in
int W, and we obtain immersed 2-spheres Su S2, S3 representing xu x2, x3.
The construction is as follows: using the sub-bundle of v{Ό\—>W) (resp.
v(D"-*W),v(Pir*W)) mentioned above, we obtain an immersion fί (resp.
/ ; ' , / , ) : D* x [ - 1 , 1HTF, such that /J(JD8 X {0}) = DJ (resp. /;'(2)2 x{0}) =
D?, fk(D2 x {0}) = Dk) and 2V/ = f[{dD' x [-1,1]) (resp. Λ//' = / J W x
[ - 1 , 1]), Nk =fk(dD2 x [ - 1 , 1])) is a small tubular neighborhood of a\
(resp. α' ', αfc) in F1 (resp. 2^, JP3). Then

, = fe ~ ύ w) u
2 = (F, - ύ ΛΓ/' ) u U/ 'Φ 2 x {±i})

V j=l / 3=1

s = (F, - y
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Now we shall construct Whitney disks Λ{ίJ)'s and compute (xί9 x2, x3}.
( 1 ) Whitney disks of type 1. Corresponding to an intersection

point of ak and the double curve rr1 (resp. γ2), there occur two inter-
section points, p and qy of S3 and S1 (resp. S2) with opposite signs. We
draw two arcs τl3>1), yt1] (resp. 722>3), 732>3)) connecting p and q on S1

(resp. S2), SΛ. Let the arc JI'Λ) (resp. 7l2'3)) lie in fk(D2 x [ - 1 , 1]), and if,
Dk has not been spun around ak, let the arc 733>1) (resp. y^) go straight
down to reach the height of 1/4 and run parallel with βk on F3 — int Nk

to the other component of dNk and go straight up to the end point.
Now, if Dk has not been spun, the Whitney disk is;

j(3fi> = (7(3,D x [3/4> i ])u((7ί M ) ΠF 8 ) x [1/4, l])U(an immersed 2-disk in

W- Mx[0, 1))

(̂2,3) = (7(2,3) χ (-2/4? ϊ\)u((y™r[Fι) x [1/4, 1]) U(an immersed 2-disk in

W - M x [0, 1)) .

If Dk has been spun around ak, change this disk by homotopy to obtain
the desired Whitney disk, keeping the part of level higher than 3/8
unchanged. Similarly there exists a Whitney disk z/(1>2) corresponding to
an intersection point of a" and 7, where 7 = Fλ Π F2 is the double curve
on F2. We shall call these disks Whitney disks of type 1.

We orient W as follows:

[W] - [M] x[n],

where n is the outward normal vector and [ ] is the orientation. Let
the sign of the intersection point of ak and ιyι be ε ( = ± l ) , i.e., [αA.]x[71] =
e[F^\. This is equivalent to saying that [7J = ε[/3fc] near the intersection
point. The curves ylf 72 are oriented as follows (see Figure 1):

[SJ = [Tj x [v]

[S2] = [72] x [υ] ,

where v is a normal vector field on F3 in M such that [F5] x [v] = [M].
Let p be the intersection point of Sλ and S3 on the side where [βk] is
the inward vector of F 3 — Nk9 and let q be the other point. Then near
Pf [̂ 3] = [ α j ' x W and near g, [S3] = [αfc] x (—[n]). Therefore, at p,

[SJ x [S3] = [7J x [v] x [ α j x [^] = ε[βk] x [v] x [ak] x [n]

- ε[αj x [βk] x [v] x [n] = ε[F8] x [v] x [n] = ε[FΓ]

and the sign of p is ε. So the orientation of 7 ( 3 1 ) is chosen in such a
way that

[7f'1} Π F3] = ε[/3fc]
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level

ak

FIGURE 1

and that the orientation of the Whitney disk is

[z/<31>] = [n] x e[βk] .

If there is an intersection point of γ2 and 733>1) on Fs, there is a corre-
sponding intersection point of zf(M) and S2. Let the orientation of τ 2 be
s'[«/c] (s' = ±1) near the point. Then the sign of the resulting inter-
section of J{3Λ) and S2 can be computed as follows:

[zP »] x [S2] = [n] x e[βh] x [72] x [v] = [n] x e[βh] x ε'[αj x [v]

= eε'[αj x [/9j x [v] x W = sε'[W] -

This Whitney disk J(3>1) of type 1 may intersect S2 outside the collar
neighborhood of M, but the intersection occurs in pair and the algebraic
sum is zero. Therefore

type 1
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Similarly

Σ
type 1

and

Σ ^(1'2) s 3 = o .
1

type 1

(2) Whitney disks of type 2. In W - M x [0, 1), the intersection
of Si and S, occurs as in Figure 2, corresponding to the intersection of
the immersed disks d% and ds. We call the Whitney disks obtained from
this intersection as the Whitney disks of type 2. Clearly, Whitney
disks of type 2 occur in pairs and

Σ A^-Sk = 0.
type 2

FIGURE 2

Combining (1) and (2), we obtain
t

(xίf x2, x3) = Σ (ai'bl - αί δfc)
fc = l

by the definition of the Matsumoto tripling and Theorem is proved in
case I = (0).

3. The proof of Therem; part 2. Our plan of the proof is entirely
the same as in the case I — (0). However, an element of H2(M; Zd)
cannot be realized by an embedded surface in general. This is the only
point to study.
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Now, we shall show how to construct a nice complex representing
yt. The Bockstein homomorphism Δ\ H2(M; Zd)-+ Hλ(M\ Z) maps yt to
τt. Assume τi is non-trivial. For, otherwise, yt can be realized by an
embedded surface. Let lt be a closed curve representing τif and N be
a tubular neighborhood of lt. Then 11,(3N; Z) ̂ Z φ Z i s generated by
a longitude ξ and a meridian η. Since dτ% = 0, the element d f + β ̂  is
null-homologous in M — N for some integer e. Here, this number e is
related to the linking number in the sense of Seifert [5] by V(τif τt) =
e/d (modi). Then the element d-ξ + e η is represented by a torus link
of type (d, e) on dN. By the Pontrjagin-Thom construction, Lέ bounds
a properly embedded punctured surface Tt in (M — iV, 3JV) (which is
possibly non-connected). Let Lf be the fiber wise join of Lt and U.
Then TiΌLf represents an element y[ 6 H2(M; Zd) and z/(^ ) = τt. This
implies that ^ — y\ = ̂ Ϊ can be considered as an element of H2(M;Z).
Moreover, the Mayer-Vietoris exact sequence shows that zt is also an
element of H2(M — N Z). Thus we can represent the homology class
2/ί = y\ + ̂ 6H2(M; Zd) again by the union of a properly embedded sur-
face Tl with dT\ = L, and Lf.

The next lemma plays a key role in the proof.

LEMMA. V(τif τ3) = 0 for i Φ j .

PROOF. We shall consider the following diagram.

Hz{M;Zd) *'* *HlW',Zd)

i*Vi

I !

HIW,M',Z) d

H2(W;Z)

H2( W; Zd) —J H2( W, M; Zd)

The element vt e H2{ W, M; Z) is mapped to j^xt by the homomorphism
xd, the multiplication by the number d. Then d{v%) — τt by definition.
Now, the linking number can be calculated in terms of an intersection
number in the 4-manifold W. Namely,

V(τt, Tj) = Xi-Vj/d (mod 1) .

Our assumption xt'Xa = 0 is valid with rational coefficients. Thus
V(τif Tj) — 0 for ί Φ j , completing the proof.
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REMARK. This lemma states that for some 2-chain Ct such that
dCi == dτi9 the intersection number G^Zj = 0 (modd). However, we can
choose a nice loop 13 representing τd in such a way that C^lj = 0. Then
for a 2-chain C3- with dC0 = d lj, the intersection number Cj lt = 0,
where lt is a closed curve defined by C*.

FlGUKE 3

PROOF OF THEOREM IN CASE !=£ (0). Take a complex ^ which re-
presents yx and contains a loop Zlf representing r l f as a singularity.
Then there is a loop i2, representing τ2, with ί\ i2 = 0 by the remark
above. By performing surgery on F± as in Figure 3, if necessary, we
may assume that Fι ΓΊ l2 = 0 The complex F2 represents y2 and contains
a loop Z2 as a singularity. For the same reason as above, it may be
assumed that F2 Π h = 0. The loop lz and the complex F3 are similarly
defined.

Now, we shall count the algebraic sum of the triple points Fu F2, Fz.
By the construction of Fu we see that FXC[FZ and jP2n^3 represent
cycles on Fz — lB in the sense of integral coefficients. Set them as

Σ (αϊ[α*l + 6i[
k

3 J) + Σ

—l^ Z)where [ak], [βk[, [73] is the canonical system of generators of
as in Figure 4. Then by the definition of the cup product,

((Vi* U y} U yt) Π [M]) = Σ iβl δί - αj δi) .

The next step of the proof is to perform surgery on Ft in W so
that it is realized by an immersed 2-sphere. Take a properly immersed
2-disk Dt which represents ViβH2(Wf M Z) and satisfies dDt = Z€. Then

Di is regarded as the image from a closed surface. And by
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FIGURE 4

assumption, A Ά — 0 for ί Φ j . The rest of the proof is entirely the
same as before. Because in the computation of the Matsumoto tripling,
the intersection number of Sk and Whitney disks z/(ΐ>i)'s, which lie in the
complement of the collar of M in W, is zero modulo d for the same
reason as in the case d = 0. This completes the proof of Theorem.

4. Some applications of Theorem. First of all we give

PROOF OF COROLLARY 1. Since W and W are simply connected,
g*[M] = [Mf] implies that / is of degree one, i.e., f*[W] = [W]. Hence
/*: H2(W)—>H2(W) is an epimorphism and the intersection ideal of
{f*%i, /*B2, /*B8} is contained in I = I{xu x2, x3}. Thus we have the re-
duction </*&!, f*x2, Λ&8>' of </*&i, Λ»2, /*#3> as an element of Z/I. We
put K\M\Zd) = Coker(</*: ff'ίJlf; Zd)-*H\M\ Zd)) and i^ikf; Zd) -
Ker(g*:Hi(M;Zd)-*Hi(M';Zd)). Since the map #: Λf—>Af' is of degree
one, we have direct sum decompositions H%M; Zd) = H*(M'; Zd)φ K*(M; Zd)
and fl8_<(Λf; Zd) = Jff8_4(Λf'; Zd) 0 K^M; Zd), which are compatible with
the Poincare duality isomorphism Π [M] and orthogonal with respect to
the pairing <,>: H\M; Zd) (g) H*-\M\ Zd) -> Zd given by <f, )?> = (fU^)n
[ikf], see [1, pp. 9-12].

For an element xeH2(W;Z), let yeH2(M;Zd) be a modd boundary
reduction of x and let T/* be the Poincare dual of y. If yf is a modcί
boundary reduction of xf = f+x, then we have g*y = #', since i^: H2(M';
Zd)->H2(W';Zd) is monic. In order to prove Corollary 1, it suffices to
show that

g*(vl* u yί* u »ί*) = (»f u »? u yf) n [AT],
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where yt e H\M; Zd) and y't* e H\M'; Zd) are the Poincare duals of yt e
H2(M; Zd) and y[ e H2{M'\ Zd) such that 0*^ = y\. Since the direct sum
decompositions of Ht(M) above are compatible with the Poincare duality,
we may write g*y'* — y* + ut for some uteK\M). Moreover, they are
orthogonal with respect to the pairing <(,). It follows that

= ((V? + nd U {yt + u2) U (yt + us)) Π [AT]

- (»? U yt U 1/3*) Π [M] .

This completes the proof of Corollary 1.

Kaplan9s number and Milnor's higher linking number. Let L —
Ui=i k{ be a link in S3 of three components klf k2, kz with the mutual
linking numbers zero. Regard S3 as the boundary of a 4-ball B4 and
attach a 2-handle to S3 by a 0-framing of each &*. This gives us a
compact simply connected 4-manifold WL with boundary ikfL = dWL. Let
«!, α2, «86 JΪ2(WL;Z) be the homology classes of WL corresponding to the
cores of the attached 2-handles. Then there exist unique integral boun-
dary reductions yi e H2(ML; Z) of xif i = 1, 2, 3. Matsumoto [3] observed
that — (xlf x2, x3) in WL coincides with Milnor's higher linking number
μ(L) of L, [4]. Meanwhile, Kaplan [2] has defined an invariant T(L) and
proved that T(L) = (y* U yϊUyϊ) Γ\[ML]. Thus we have

COROLLARY 2. Let L = U<=i&t ^e a link as above. Then we have
T{L) - μ(L).

Normal singularity of complex algebraic surfaces. Let V be a
complex algebraic surface in an open neighborhood of the origin O in a
complex iV-space CN. Suppose that V contains O as a normal singularity.
For sufficiently small ε > 0, a closed oriented 3-manifold Kε(O) — {ze V\
\z\ = s} is called a link of O in V. Sullivan [6] has proved that {yf U
yϊUyΐ)Γ)[Kε(O)] = 0 for any elements yu y2, y5eH2(Kε(0;)Z). Hence we
have

COROLLARY 3. Let K be a link of a normal singularity in a com-
plex algebraic surface. Then in a compact simply connected Δ-manifold
W with dW = K, three homology classes xlf x2, xΆ e H2( W; Z) can be real-
ized as mutually disjoint immersed 2-spheres in W if j\Xi = 0 for i =
1, 2, 3, where j * is induced by the inclusion map j : W—>(W, M). In
particular, if W is the so-called Milnor fiber of an isolated hypersurface
singularity in C3 with the monodromy h*: H2(W, Z)^>H2(W; Z), then
three invariant homology classes xlf x2, xseH2(W; Z) of h* (i.e., h*{x%) =
xt) can be realized by mutually disjoint immersed 2-spheres.
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REMARK. We cannot expect the JZ^-analogue of Sullivan's result. In
fact, consider the isolated hypersurface singularity; zf + z\ + z% = 0,
(d ̂  3), whose link Kε(O) is an S^bundle of degree d over a surface of
genus (d — ΐ)(d — 2)/2. Then there exist three elements yl9 y2, yz e
H2(Kε(0); Zd) such that y* U yt U yf Φ 0.
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