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LEAVES WITH NON-EXACT POLYNOMIAL GROWTH
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1. Introduction. Let &~ be a codimension one foliation of class
Cr (r ^ 0) of a compact manifold M which is tangent to the boundary.
Let M = UΓ=0 Ut be a finite cover of M by regular distinguished charts.
Let F be a leaf and PQaF f]U0 a plaque contained in F. The growth
function of F at Po, /: Z+ -*• Z+ is defined by

f(n) = the number of distinct plaques which can be reached from
the initial plaque Po by a plaque chain of length at most n
(see [5], [6]).

DEFINITION. F has polynomial growth if the growth function / of
F is dominated by a polynomial. In this case we define the upper
growth and lower growth of F, denoted u.gr(F) and l.gr(F) respectively,
as follows:

u.gr(F) = inf {deR+\f is dominated by the polynomial g{n) = nd)

Lgr(F) = sup{dei? + | / dominates the polynomial g(n) = nd} .

Finally, we say F has exact polynomial growth of degree d if the
growth function of F dominates a polynomial of degree d and is domi-
nated by a polynomial of degree d.

It is easy to see that the upper and lower growth of a leaf depend
neither on the choice of regular distinguished charts nor on the choice
of the initial plaque ([5]).

In [4] Hector posed the following problem: if F has polynomial growth,
then does F have exact polynomial growth of an integer degree? In
this paper we give two partial answers to this problem. We remark
that the answer is affirmative if the foliation is transversely analytic or
it is almost without holonomy ([7]).

THEOREM A. Let J^ be a codimension one foliation of class Cr

(r ^2) of a compact manifold M which is tangent to the boundary. Let
F be a leaf of J^. Assume that the growth function of F is dominated
by a polynomial of degree 2. Then F has exact polynomial growth of
degree 0, 1 or 2.
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THEOREM B. There exists a codimension one foliation of class C°
of a closed three manifold with the following properties. For each
integer d ^ 2, there are leaves Fd and F'd such that

d < l.gr(Fd) = u.gr(Fd) <d + l

and

d < l.gr{F'd) < u.gr(F'd) < d + 1 .

In the second section we prove Theorem A. The proof depends
heavily on our preceding results ([6], [7]). In the third section we prove
Theorem B.

2. Leaves with linear or quadratic growth. We recall from [7] the
definition of the proper depth of a leaf. Let Fx and F2 be leaves of a
foliation. By Fλ > F2, we mean that F2 is contained in the limit set of
i*7! and F1 Φ F2. The proper depth of a leaf F, denoted pd(F), is defined
as follows:

pd(F) = sup {k I there exists a sequence FQ, Fl9 , Fk of leaves such
that FQ< Fλ< < Fk = F and Ft is proper for i < k} .

The following theorem follows from the proof of [6, Theorem 2].

THEOREM 2.1. Let J^~ he a codimension one foliation of class Cr

(r ^ 1 ) of a compact manifold. Then for each leaf F of ^ 7 the growth
function of F dominates a polynomial of degree pd{F).

Let U be a connected open saturated subset of a foliated manifold.
We say U is nice if the closed saturated set Ό — U consists of finitely
many proper leaves and each leaf in U has trivial holonomy group ([7]).
A nice saturated set U is minimal if U contains no non-empty proper
relatively closed saturated subset. In [1], Cantwell and Conlon proved the
following theorem.

THEOREM 2.2 (Cantwell-Conlon). Let F be a leaf with polynomial
growth in a transversely orientable codimension one foliation of class
Cr (r ^ 2) of a compact manifold. Then one of the following conditions
is satisfied.

(1) All leaves contained in the closure of F are proper.
(2) The closure of F is the closure of a minimal nice saturated

set.

After these preliminaries we are ready to prove Theorem A.

PROOF OF THEOREM A. Since the growth of a leaf is unchanged
when we pass to a finite cover of M, we may assume &~ is transversely
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orientable. If u.gr(F) ^ 1, then we have proved in [7, (7.2)] that F has
exact polynomial growth of degree 0 or 1. So we assume 1 < u.gr(F) <̂  2.
Then pd(F) = 0, 1 or 2 by Theorem 2.1.

If pd(F) = 2, then the growth function of F dominates a polynomial
of degree 2 by (2.1), and F has exact quadratic growth.

Assume pd(F) = 1. We show F is non-proper. In fact, if F is
proper, then by the Theorem of Cantwell-Conlon (2.2), the limit set of
F consists of compact leaves. Then by [7, Theorem 3], F has linear
growth. This contradiction shows that F is a non-proper leaf. Then by
(2.2), the closure of F is the closure of a minimal nice saturated set. Since
pd(F) = l, each proper leaf contained in the closure of F is compact. From
[7, (5.7)], it follows that each leaf contained in the closure of F has abelian
holonomy group on the side approached by F. So we can apply [7,
Theorem 2] and conclude that F has exact quadratic growth.

Finally assume pd(F) = 0. Then J^ is without holonomy again by
the Theorem of Cantwell-Conlon. By [7, Theorem 2], every leaf of &~
has exact quadratic growth. This completes the proof of Theorem A.

3. Leaves with non-exact polynomial growth. Let S denote the
closed orientable surface of genus 2 and let d ^ 2 be an integer. We
shall construct a foliation of S x [ — 1, 1] which contains a leaf F such
that d < l.gr(F) ^ u.gr{F) < d + 1.

If / and g are two order preserving homeomorphisms of [—1,1],
there exists a representation of the fundamental group of S into the
group of homeomorphisms of [—1, 1] whose image is the group generated
by / and g. Using the construction of [2, (1.8)], we get a C° foliation
of the trivial bundle S x [~1, 1] transverse to the fibres.

Let / be a diffeomorphism of [ —1, 1] such that f(x) > x for each
xe( — 1, 1). Let α0 = 0 and an — /w(0), for each neZ. Let h be a
diffeomorphism of [ — 1, 1] whose support is [α0, αj, h(x) > x for x e (α0, αx)
and h is embedded in a one-parameter subgroup of diffeomorphisms of
[ — 1,1]. So we have ha for each aeR. Choose real numbers au a2, , ad_2

such that 1, al9 •• ,α d _ 2 are linearly independent over the rationale.
Finally choose an increasing sequence 2 <; N(l) < JV(2) < j\T(3) < of
positive integers.

Using these data, we define a homeomorphism g of [—1,1] as follows:

//-* o ha* o f\χ) for x e [α_,, α_ ί + 1], i = 1, , d - 2

j h(x) for x 6 [α0, αj

\fNίk)oh2 of N(> >(#) f o r x 6 [aN(k), OFΠAO+IL & ̂  1

[x otherwise .
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It is easy to see that g is a homeomorphism of [ — 1, 1] and is smooth
on (-1,1).

Let ^ denote the resulting foliation of S x [-1, 1}. We identify
[ — 1, 1] with a fibre over a base point of S. Note that the saturation
of (α0, αx) is a minimal nice saturated set.

Let x e (α0, αj and let F be the leaf through x. We shall study the
growth type of F (see Figure). Let T denote the set Fπ [ — 1, 1] and

Vy Ό^

σ

α

FIGURE

G the subgroup of the group of homeomorphisms of [ — 1, 1] generated
by / and g. The length of elements of G with respect to the generating
set {/, g) induces a natural metric δ on T. Let x' e T. Following Hector
[3], we say an element c of G is a short-cut from x to xf if xf = c(x)
and length(c) = δ(x, x').

For a given x' e Γ, we shall see that there exists a canonical form
of short-cuts from x to x'. First, there exists uniquely an integer r
such that f~r(xf) is contained in (a0, a^. Secondly, since f~r(x')eG x,
there exist uniquely an integer q with 0 ^ q ^ d — 2, sequence of integers
(A, A, , A) w i t h 1 ^ A < A < A ^ d - 2, (rx, r2, - - , rff) € Z* and
a rational number s such that for r ' = r1 α/Jl + r2 α^H hr g α^ + s we
have /"r(ίc') = hr'(x).

Let [s] denote the integer part of s. Then there exist uniquely a
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positive integer p and a sequence of positive integers (iu ί2, , ip),
ii < i2 < < ip, such that

8 = [s] + sign («) {2"'1 + 2' i 2 + + 2"**} .

We call the sequence {r; (ft, , ft), (r2, , rq); s, p, (ίl9 , ip)} the G-
coordinate of the point a?'.

LEMMA 3.1. Let x' e T. If the G-coordinate of x' is

{r; (ft, , ft), (rl9 , r,); s, p, (ix, , ίp)} ,

then the element cx> of G defined by the following formula is a short-cut
from x to xf\

Cχf = fr o gε o fN«t>)-xUp-ι) o gε o fMp-i)-NUp-2) o gε o . . . o gε o fNW

° 9W ° fh ° ^ r i ° f~βl + β2 o gr2 o o f-βq-l + βq o grd o f~βq f

where ε = sign (s).

The proof is easy but the details are long and tedious so we omit
it.

A short-cut in the form of (3.1) will be called a canonical short-cut,
and the number p in (3.1) will be called the rank of a canonical short-cut.

Let τ(m) (resp. Ύp(m)) denote the number of distinct points in T that
can be reached from x by the application of canonical short-cuts (resp.
canonical short-cuts of rank p) of length at most m. If N(p) ^ m <
N(p + 1), then τ(m) = τo(m) + 7i(m) + + Ύp(m). It is well-known
that the growth type of F can be calculated in terms of the growth
function y(m) of T (see e.g., [7, (2.1)]).

Let a(m) denote the growth function of the free abelian group of
rank d with respect to the canonical generators. It is easy to see that
there exist positive numbers C, C" and m0 such that C md ^ a{m) <*C -md

for m ^ mQ (see e.g., [8]).

LEMMA 3.2. If N(p) <; m < N(p + 1), then we have

- 2d + 4 - N(p - 1) - 2p) ^ τ(m) ^ 2P a(m) .

PROOF. By the explicit forms of canonical short-cuts in (3.1), it is
easy to see that we have, for each r, 0 5g r ^ p,

p (i - 1\
Σ \) ' a(m — 2d + 4 — N(i) — r) ^ 7r(m)
i=r \r - 1/

^ Σ (* f) «(m - ΛΓ(i) - r) .
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The desired inequality is easily obtained by adding these inequalities for

PROPOSITION 3.3. Let A > 2 δe cm integer. If N(i) = A* /o?*
i, ίftew we k w Lgr(F) = u.gr(F) — d + log 2/log A.

PROOF. If m is sufficiently large and <W(p) ^ m < JV(p + 1), then
from the inequality in (3.2) it follows that τ(m) ̂  Ί(N(p)) ^ 2P"1 a(N(p) -
2 (̂p - 1) - 2d + 4 - p) ̂  C 2*'1 - A(p-1)d ^ C mw+i°**/i°̂ ><*-«/c*+i>β Thus
we have proved l.gr{F) = l.gr(y) ^ d + log 2/log A. Similarly, we can
prove u.gr{Ί) ^ d Λ- log 2/log A.

PROPOSITION 3.4. Let A and B be positive integers such that
log ((A + 1)1 A) < log 2/2cZ and log B > 2 log (A + 1). Assume that the
sequence N(i) satisfies the following conditions:

(1) (A + 1Y ̂  N(i) ̂  B\
(2) iSΓ(i) - N(i — 1) ̂  A*"1 + 2d - 4 + i for each i, and
(3) there exists an infinite sequence {pj of positive integers such

that NίPi) = {A + l)Pί and N(pi+1) = BPi+1.
Then we have

d < Lgr(F) = d + log 2/log B < d log A/log (A + 1) + log 2/log (A + 1)

^ u.gr(F) ^ d + log 2/log A < d + 1 .

PROOF. Note that the conditions on A and 5 imply d + log 2/log 5 <
d log A/log (A + 1) + log 2/log (A + 1)< d + log 2/log A < d + 1. By the
condition (1), it is easy to see that d + Iog2/logl? <̂  l.gr(F) <; u.gr(F) ^
d + log 2/log A. We prove Lgr(F) = d + log 2/log 5. From the condition
(3) and the inequality in (3.2), it follows that

7(B P ί + 1 ) ^ c'B{pί+1){d+lo*2/losB) , for each i .

This shows Lgr(F) S d Λ- log 2/log B. Thus we have proved l.gr(F) =
d + log 2/log B.

Finally we prove u.gr(F) ^ d log A/log (A + 1) + log 2/log (A + 1).
From conditions (2), (3) and the inequality in (3.2), we have, for large i,

7((A + I)**) ̂  2"- 1. α(iNΓ(ί>f) - ^(p,^) - 2p<)
> C {(A + l)ί)i}ίί)i-1)/Pd<ίlog^/log(^+l)+log2/log (4+1)}

This shows u.gr{F) ^ d log A/log (A + 1) + log 2/log (A + 1). Thus the
proposition is proved.

PROOF OF THEOREM B. By (3.3) and (3.4), there exist, for each
d ^ 2, foliations ^ and ̂ *'d of S x [-1, 1] and leaves Fd and Ff

d of
and ^"S, respectively, such that d < l.gr{Fd) = u.gr(Fd) < d + 1 and
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t
d < l.gr(Fd) < u.gr(Fr

d) < d + 1. The foliation mentioned in Theorem B
is easily constructed by past ing the foliations ^d, ^'d, d = 2, 3, • • • .
This completes t he proof.
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