
Tόhoku Math. Journ.
32(1980), 317-335.

NONLINEARLY PERTURBED VOLTERRA EQUATIONS*

Dedicated to Professor Taro Yoshizawa on his sixtieth birthday

JACOB J. LEVIN

(Received August 13, 1979)

Abstract. Boundedness and asymptotic behavior as t —> co of solutions
of nonlinearly perturbed Volterra equations are studied. Equations of both
convolution and nonconvolution type are considered. An auxiliary equation
plays an important role in the analysis of each type.

1. Introduction and summary. We investigate the boundedness and
behavior as t -> co of the solution(s), x e C(R+, CN), of the nonlinear
Volterra equation

(1.1) x(t) + [a(t - s)[x(s) + h(s, x(s))]ds = q(t) (0 ^ t < co) ,
Jo

where R+ = [0, co) and CN = {z = colfo zN) \ zi e C1}. The prescribed
functions α, h and q are assumed to satisfy

(1.2)
(1.3)

(1.4)

The norms

(1.5) \x\
N

= ΣI*«I

aeLUR
h e C(R+ x

q e C(R+,

!+, C

C»,

CN)

a -

N)

CN)

N

• Σ l (« = (α,,))
i=i <,i=i

are employed. Thus, (1.2) means that

[\a(s)\ds = Γ Σ K OOÎ s < co (0 ^ t < co) .
JO JO i,j=l

In Section 7 we indicate how the results which follow are extended
to the equation

(1.6) x(t) + [ait, s)[x(s) + h(s, x(s))]ds = q(t) (0 ^ ί < co) ,
Jo

which, of course, reduces to (1.1) when

(1.7) α(ί, s) - α(t - s) .

* This research was supported by the U. S. Army Research Office.
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There are many papers devoted to perturbation problems of the type
discussed here. Among these are [3], [4], [9]-[12], and [15]. The novelty
of the present approach lies in the use of a priori bounds and of auxiliary
equations (which generalize the notion of limit equations). This results
in some new and sharpened forms of known results as well as in con-
siderably simpler proofs.

Equation (1.1) is regarded as a perturbed form of the linear equation

(1.8) x(t) + [a(t - s)x(s)ds = q(t) (0^t<oo) .
Jo

Thus, we will usually assume, in addition to (1.3), that

(1.9) h(t, 0) = 0 (0 ^ t < oo) ,

for each ε > 0 there exists v(ε) > 0 such that | x | <; v and t e R+

imply that | h(t, x)\ ^ ε | x | ,

and sometimes that

for each ε > 0 there exists δ(ε) > 0 such that |x1 | <; δ, \x2\ <̂  δ,

and t G R+ imply that | h(t, xj — h(t, x2) \ ̂  ε | xλ — x2 \ .

Conditions (1.9)-(1.11) state that h vanishes faster than linearly at x = 0.
Clearly, (1.10) implies (1.9), while (1.9) and (1.11) imply (1.10) with v = δ.

The forcing term, q, will usually be assumed to satisfy

(1.12) qeL~(R+, CN)

in addition to (1.4). Moreover, a restriction on the size of the norm

(1.13) ll?IL = sup|g(ί) | ,
0^ί<oo

where | | is defined in (1.5), will be made. Sometimes it will be further
assumed that

(1.14) q = ω+f,

where ω is regarded as the principal component of q and / as a per-
turbation. Thus, for example,

(1.15) ω e C(R\ CN) , ω(t) = ω(t + p) ( - oo < t < oo)

or

(1.16) ωeAP(R\ CN)

will later be assumed as well as

(1.17) f e L~ n C(R\ CN)

(1.18) lim/(ί) = 0 .
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If a) is not identically constant in (1.15), p is taken as the least positive
period of ω. In (1.16), AP denotes almost periodic in the sense of Bohr.

The resolvent, r, of the kernel, α, is defined to be the solution of

(1.19) r(ί) + [a(t - s)r(s)ds = a{t) (0 ̂  t < oo) .
Jo

Relevant known results concerning r are collected in Section 2. One of
these implies

LEMMA 1.1. If (1.2) holds, then (1.19) has a unique solution, r,
which satisfies

(1.20) reLUR\CN2).

The critical assumption of our main results is that

(1.21) reL\R+,CN2) ,

that is

(1.22) I M I ^

where | | is defined in (1.5), which is much stronger than (1.20). A
famous theorem of Paley and Wiener [13, p. 60] gives a necessary and
sufficient condition for the satisfaction of (1.21) when

(1.23) a e L\R+, CN2)

holds. Some important kernels satisfying (1.2) but not (1.23), have the

property that their associated resolvent satisfies (1.21), see, e.g., [7] and

[14].
In most of the proofs the equation

(1.24) x{t) + [rit - s)h(s, x(s))ds = θ(t) (0 ̂  t < oo) ,
Jo

where

(1.25) θ(t) = q(t) - [r(t - s)q(s)ds (0 ̂  t < oo) ,
Jo

plays an essential role. Lemma 2.1(ii) states that θ is the solution of
(1.8). Lemma 2.1(iv) states that a solution of (1.1) is also a solution of
(1.24). Under hypothesis (1.21), this has the effect of replacing a kernel,
α, which need not be in L1 with one that is. If assumption (1.10) or
(1.11) is also made, there is the further effect of having the unknown
appear in the integral term in a "small" manner.

We shall employ the
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DEFINITION. A nondecreasing function Γ: R+ —> R+ is called an a
priori bound for (1.1) if

(1.26) xeC([0, t\ CN) satisfies (1.1) on [0, ί) ,

for some t e(0, co]y implies that

(1.27) \x(t)\<>Γ(t) (O^t<t).

The first result establishes an a priori bound for (1.1). Its proof is
given in Section 3.

THEOREM 1. Let (1.2)-(1.4), (1.10), (1.12), and (1.21) hold. Further-
more, let

(1.28) HtflU ^ (1 - α M α / | | r 110/(1 + \\r\\,) (if \\r\\, > 0)

hold for some a e (0, 1). Then

f ( l + I M I i ) | | < 7 l L / ( l — a) (if \\r\\j_ > 0)

" lllίllco (if \\r\\, = 0)

is an a priori bound for (1.1).

An immediate consequence of Theorem 1 and a well known existence
theorem and continuation procedure (see, e.g., [5, p. 877]) is:

COROLLARY la. Let the hypothesis of Theorem 1 hold. Then (1.1)
has a continuous solution on R+

9 and (1.26) with t < oo implies that x
can be continuously extended to R+ as a solution of (1.1).

Combining (1.27) and (1.29) yields

(1.30) \x(t)\ ^ (1 + I M I O I k l L / C L - a) ( O ^ t < t )
whenever (1.26) holds. If t = oo, (1.30) may be regarded as a stability
result for (1.1), in the sense that it shows that H^IL—>0 as | | ί |U—>0.

Another byproduct of Theorem 1 is the following asymptotic equiv-
alence result between solutions of (1.1) and (1.8). Its proof, given in
Section 3, is an immediate consequence of (1.24) and Lemma 2.2 below.

COROLLARY lb. Let the hypothesis of Theorem 1 as well as

(1.31) lim ίmax |Λ(ί, x)\\ - 0 ,
ί->oo (isl^A- )

for each KeR+, hold. Then

(1.32) lim [x(t) - θ(t)\ = 0

is satisfied by every solution x e C(R+, CN) of (1.1).

We now consider the asymptotic behavior as t —> oo of the solution
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of (1.1) without hypothesis (1.31). Since (1.11) is assumed here, (1.1)
has a unique solution. Assumption (1.21) is also made. The central tool
in this study is the auxiliary equation

(1.33) y(t) + Γr(s)H(t - s, y(t - s))ds = ψ(t) ( - oo < t < <χ>) .
Jo

Unlike (1.1), (1.33) is defined on R1. Later it will be seen that in certain
special cases, which are not the only ones investigated here, (1.33) is
reduced to the limit equation, in the sense of [6], associated with (1.24).

It is assumed that

H(t, x) = h{t, x) (0 ^ t < oo, χeCN),He C(Λ1 x CN, CN), H(t, 0) -

0 (— co < t < co), for each ε > 0 there exists δ(e) > 0 such that

\x,\ ^ δ(ε), \x2\£ δ(ε), and teR1 imply that \H(tf x,) - H{t, a?2)| S

ε\x1 — Xn\ where δ is as in (1.11) .

These conditions state that H is an extension of h, which is assumed to
satisfy (1.3), (1.9), and (1.11), to R1 x CN in such a manner that the
analogous conditions hold on R1 x CN. For any h satisfying (1.3), (1.9),
and (1.11) it is obvious that setting H(t, x) = h(t, x) (ί ^ 0) and, for
example, any of

H(t, x) = 0, H(t, x) = h(-~t, x), H(t, x) = -h(-t, x) (ί ^ 0)

defines an H for which (1.34) holds. Thus, (1.34) is not an additional
restriction on h beyond (1.3), (1.9), and (1.11). In the important special
case

(1.35) h(t,x) =

the most "natural" definition of H is

(1.36) H(t, x) = h(x) ( - oo < t < co) .

Other special cases, which will be discussed later, in which there is a
natural extension of h are described by

(1.37) (1.34) holds and H(t, x) = H(t + p, x) ( - oo <£< oo) ,

where p > 0, and by

(1.34) holds and H(t, x) is almost periodic with respect to t, uni-

formly with respect x, for x in any compact subset of CN .

The function ψ in (1.33) will, ultimately, be related to θ and, there-
fore, to q. However, it is convenient to first regard ψ as an independent
function satisfying
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(1.39) ψ e L~(R\ CN)

with, in contrast to (1.13),

(1.40)
-oo«<oo

where | | is defined in (1.5).
For small H^IL, the existence and uniqueness of solutions of (1.33)

is established in the following result, whose proof is sketched in Section
4. The notation y = y+9 below, emphasizes the dependence of the solution
of (1.33) on ψ.

LEMMA 1.2. Let (1.21), (1.34), and (1.39) hold. Furthemore, let

(1.41) l l t lL^d-α^Cα/lklk) (if IMkX))

hold for some αe(0, 1). Then (1.33) has a solution yψβ L°°(R\ CN).
Moreover,

(1.42) || y* - yn\U ^ a^\\ψ\\J(l -a) (n = 0, 1, -...)

(1.43) | | ^ I U ^ I I t l L / ( l - α ) ,
where

yQ(t) = t(t)
(1.44) r

0 +i(ί) = f(t) - r(s)H(t - 8, yn(t - s))ds
Jo

( - < * > < t < c o , n = 0 , 1 , - • • ) .

Also, y — yψ is the unique solution of (1.33) such that \\y\\oo ̂  cKα/Halli) .

Some properties of y+, which are useful in the study of (1.1), are
listed in the following corollaries. Thus, for example, if ψ and H are
almost periodic (the latter in the sense of (1.38)), then so is y+. Cu

denotes the set of uniformly continuous functions. The proofs are almost
immediate consequences of Lemma 1.2. In connection with (1.48), note that

\~r(s)H(t - s, yn(t - s))ds - Γ r(ί - s)H(s, yn(s))ds ,
JO J-oo

and in connection with (1.52) see [1. Chap. 2].

COROLLARY 1.2a. Let the hypothesis of Lemma 1.2 hold. Then

(1.45) ψeC(R\CN)

implies that

(1.46) yn, yΨ e C(R\ CN) (n = 0, 1, -)

and
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(1.47) ψeCu{R\C»)

implies that

(1.48) yn (n = 0, 1, •), Vψ we uniformly equicontinuous on R1 .

COROLLARY 1.2b. Let the hypothesis of Lemma 1.2 hold. Then
( i ) (1.37), (1.45), and

(1.49) ψ(t) = f(t + ρ) ( - - < t < oo) ,

where p > 0, imply (1.46) and

(1.50) ».(«) = ^ ( t + p), yf(t) = yΨ{t + p) ( - oo < * < oo, ^ = 0, 1, - -) .
(ii) (1.38) and

(1.51) ψeXP(R\ CN)

imply that

(1.52) yn,yΨek?{R\CN).

The asymptotic relationship between (1.1) and (1.33) is given in the
next result, whose proof is given in Section 5.

THEOREM 2. Let the hypotheses of Theorem 1 and Lemma 1.2 hold
{for the same a e (0, 1)). In addition, let

(1.53) lim [θ(t) - ψ(t)] = 0 ,
£-»oo

where θ is defined by (1.25). Then

(1.54) lim [χ(f) - y+(t)] = 0 ,
f-»oo

where x and yψ are the unique solutions of (1.1) and (1.33), respectively.

We now show that (1.53) is not a further restriction on the prescribed
functions α, h and q of (1.1). Let the assumptions of Theorem 2,
excluding those relating to ψ (i.e., (1.39), (1.41) and (1.53)), hold. For
simplicity also let \\r\\i > 0, although this is not necessary. Then (1.25),
(1.28), and the remark following (1.11) imply that

(1.55) | |0|L rg (1 - αMα/IML)) = (1 -

Hence, if ψ is defined by

(1.56) f = θ ,

then (1.25) and (1.55) obviously imply that (1.39), (1.41) and (1.53) hold.
In Section 6 it is shown that the hypothesis of Theorem 2 does not

imply that (1.1) and (1.33) are asymptotically equivalent in a sense
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comparable to that of (1.1) and (1.8) in Corollary lb.
The following result, which is an immediate corollary of Theorem 2

and Corollaries 1.2a and 1.2b, shows how asymptotic properties of q
(and corresponding additional assumptions on h) imply asymptotic prop-
erties of the solution, x, of (1.1). For example, if q is asymptotically
periodic of period p, in the sense of (1.14), (1.15), (1.17), and (1.18), and
if h is periodic of period p (or autonomous), in the sense of (1.37), then
x is also asymptotically periodic of period p. Moreover, if the ψ in (1.33)
is taken to be an appropriate periodic function, ΘQ below, rather than θ
as in (1.56), then the periodic component of x is given by yθQ.

COROLLARY 2. Let the hypothesis of Theorem 1 as well as (1.34),
(1.14), (1.7) and (1.18) hold. In addition, assume that

(1.57) ωeL~nC(R\ CN)

(1.58) l i ω l L ^ d - α ^ α / H r l l O / α + llrlL) (if IMI, > 0) ,

where a e (0, 1) is the same in (1.58) and (1.28). Further, let

(1.59) θo(t) = ω(t) - Γr(s)ω(t - s)ds ( - <χ> < t < o o ) .
Jo

(1.60) θλ(t) = f(t) - [r(s)f(t - s)ds + \°r{s)ω(t - s)ds (0 ̂  t< oo) .
Jo Jί

Then

(i.6i) β(t) = βit) + βm

(1.62) 0O e L00 n C(R\ CN)

(1.63) lltfolL^α-α^α/IMIO (if IMk >0)

(1.64) θx e L°° n C(R+, CN) , lim ^(t) = 0
t —>oo

(1.65) lim K ί ) - »,„(«)] = 0 ,
t ->oo

where x and yOo are the unique solutions of (1.1) and (1.33) (with ψ = ΘQ

in the latter), respectively.
Moreover,
( i ) (1.15) and (1.37) (or (1.36)) imply that

(1.66) yθoeC(R\C»), θo(t) = θo(t + p) , yφ) = yφ + p)

(-oo < * < oo) ,

(ii) (1.16) and (1.38) (or (1.36)) imply that

(1.67) 0O, yθoeAF(R\ CN) .

In Corollary 2(i), x is the unique solution of
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(1.68) x{t) + [r(s)H(t - s, x(t - s))ds = θo(t) + θ&t) (0 ^ t < oo)
Jo

as well as of (1.1). Also, ^ 0 is the unique solution of

(1.69) y(t) + Γr(β)JΪ(ί - s, y(* - β))ds - θo(t) ( - oo < t < oo) .
Jo

It follows from (1.62), (1.64), θo(t) = 0O(£ + p), (1.37), and Theorem 14b
of [6] that (1.69) is the limit equation associated with (1.68). (Note,
in [6] it is explained how Theorem 14a is modified in order to obtain
Theorem 14b.) In this case the conclusion (1.65), thus, also follows from
Theorem 14b of [6] and the present Lemma 1.2; the latter is required
for the uniqueness of the solution of (1.69). However, in Corollary
2(ii), (1.69) is only one of a family of limit equations associated with
(1.68); see [6, p. 567] for more on this point. Hence, the results of [6]
do not yield (1.65) in this case. Of course, in the general situation, to
which Theorem 2 and the first part of Corollary 2 pertain, the results
of [6] are not applicable.

2. Preliminaries. Parts (i)-(iii) of the following lemma contain well
known results for (1.8) and (1.19); see, e.g., [8, Chap. 4]. Note that (1.4)
and (1.12) are not hypotheses of (i) and that Lemma 1.1 is an immediate
consequence of (i). Also, while (iv) is concerned with (1.1), it follows
from (ii), (iii), (1.19), and a straightforward calculation. None of (i)-(iv)
invoke (1.21).

LEMMA 2.1. Let (1.2) be satisfied. Then

( i )

(2.1)

for some p 6 [1, °o], implies that (1.8) has a unique solution x e Lfoc(R+, CN).
(ii) (2.1) implies that the solution of (1.8) may be written as

(2.2) x(t) = q(t) - [rit - s)q(s)ds (0 ^ t < oo) .
Jo

(iii)

(2.3) [a(t - s)r(s)ds = (V(£ - s)a(s)ds (0 ^ t < oo) .
Jo Jo

(iv) (1.3), (1.4), and (1.26) imply that

(2.4) x{t) + [r(t - 8)h(8, x(s))ds = θ(t) (O^t
Jo

where θ is defined by (1.25).
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The following elementary lemma is employed in several proofs.

LEMMA 2.2. Let aeL\R+,R+) and let βeL°°(R+, R+) be satisfied.
Then

S t

a(s)β(t — s)ds <; Hαllilimsup/300 .
0 ί-»oo

To verify this, let λ = lim s u p ^ β(t) and let ε > 0. Then β(t) ^
λ + ε on [T, oo) for some T = T(ε). Hence, on [Γ, oo),

Γα(β)£(* - s ) d s ̂  (λ + ε) Γ ra(s)ds + ||/3]U Γ α(s)cte .
Jo Jo Ji-r

Letting ί —>- oo implies that

lim sup I α(s)/3(ί — s)ds ^ (λ + e) || arid .
ί->oo Jo

Since ε is arbitrary, the result now follows.

3. Proof of Theorem 1 and Corollary lb . If \\r\\, = 0, then (1.19)
implies that | |α |L = 0. Hence, (1.1) reduces to x(t) = q(t) and (1.29) is
obviously an a priori bound for (1.1).

Let Hrllx > 0 and let (1.28) hold for some αe(0, 1). Then (1.25) and
(1.28) imply that

(3.1) PIL ^ (1 + IMDHί |L ^ (1 - αMα/lkHO .

Let (1.26) hold. This, by Lemma 2.1 (iv), (2.4) holds. From (2.4) and
(3.1) it follows that

(3.2)

We first show that

(3.3)

If (3.3) does not hold, then (3.2) and (1.26) imply that there exists a
?e(0, ΐ) such that

(3.4) ixWKvia/WrWJ (0 ^ t < t) , \x(t)\ =

Successively employing (3.4), (3.1), (2.4), (1.10), and (3.4) yields

Ma/UrWJ - (1 - (1 - αMα/HrlL) ^ \x(t)\ - \θ(t)\

^ \x(t) - θ(t)\ ^ \\r(t- s)\ \h(s, x(s))\ds
Jo

^ (<xl\\r\\1)\t\r(t-s)\ \x(s)\ds<av(a/\\r\\1),
Jo

a contradiction. Thus (3.3) is established.
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From (2.4), (3.3), (1.10), and (3.1) it follows that, for t e [0, ΐ),

\x(t)\ ^ HrlUmax |Λ(βf α?(β))| + ||^|L

^ llrlWα/HrllO max|x(β)| + (1 + I

Hence, (1.30) holds, which, in view of (1.26), (1.27) and (1.29), establishes
Theorem 1.

In order to establish Corollary lb, let x e C(R+, CN) be a solution of
(1.1). From (1.24), Theorem 1, and (1.31) it follows that

\x(t) - θ(t)\ ^ I \r(s)\ \h(t - 8, α(ί - s))\ds (0 ^ ί < oo) ,
Jo

lim|Λ(ί, x(t))\ = 0 ,

which together with (1.21) and Lemma 2.2 implies (1.32) and proves
Corollary lb.

4. Proof of Lemma 1.2. Since the lemma is trivially true if |j 7* ||x =
0, suppose that \\r\\, > 0. Let (1.41) hold and define {yn} by (1.44). An
elementary induction employing (1.34), with ε = tf/IMIi, shows that

(4.1) yneL°°(R\CN)

(4.2) |h

(4.3) Halloo 5
k=0

for n = 0, 1, . By (4.1) and (4.2), {yn} is a Cauchy sequence in
L°-(R\ CN). Hence there exists a yΨ e L°°(R\ CN) such that

n-*oo

From (4.3) and (4.4), (1.43) follows immediately. From (4.3), (4.4), (1.44),
(1.21), and (1.34) it follows that yΨ is a solution of (1.33). The triangle
inequality and (4.2) yield

|llΛ>+ - Vn\L ^ α + 1 | l*IL/(l - a) (n, m = 1, 2, •) ,

which together with (4.4) implies (1.42).
Suppose that μό e L°°(R\ CN) (j = 1, 2) are solutions of (1.33) with

^ ^α/llrllO. Then (1.33) implies

which together with (1.34) yields
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lift - ftlL ^ WrUa/WrlDWμ, - ft|U = ^ lift - ftlL -

Hence lift — ft|L = 0, which together with (1.33) implies that ft = ft
and completes the proof.

5. Proof of Theorem 2. We first note that hypothesis (1.34) implies
that (1.11) also holds and that Lemma 2.1(iv) implies that xeC(R+, CN)
satisfying (1.1) is also a solution of (1.24). It follows from (1.11), (1.24)
and an argument very similar to one employed in Section 4 that x is
the unique solution of (1.24) (and (1.1)). If \\r\\, = 0, then (1.24) and
(1.33) imply that a (ί) = θ(t) and y+(t) = ψ(t), respectively. In this case,
(1.54) follows immediately from (1.53). Suppose, therefore, that H r ^ X ) .

From (1.27M1.29) we have

(5.1) \x(t)\ ̂  Kα/HrlL) = δCα/IML) (0 ̂  t < - ) ,

where the equality is a consequence of the remark following (1.11). From
(1.41) and (1.43) it follows that

(5.2)

From (1.24), (1.33) and (1.34) we have

(5.3) x(t) - yψit) = - [r(s)[H(t - s, x(t - s)) - H(t - s, y
f
(t - s))]ds

Jo

+ J~r(β)JEΓ(t - s, yΨ(t - s))ds + θ{t) - ψ(t)

on R+. From (5.1)-(5.3) and (1.34) it follows that

(5.4) \x(t) - yΨ{t)\ ^ (α/HrllJ \\τ{s)\ \x(t, s) - y^t - s)\ds
JO

+ (α/|IrI!,)«(«/!Ir||x) jjr(β)|dβ + |0(t) - ψ<ί)|

on R+. Letting t —> oo in (5.4) and invoking (1.21), (1.53) and Lemma 2.2
yields

lim sup I x(t) — yψ{t) \ <̂  α lim sup | x{t) — y^it) \ ,

which, since a 6 (0, 1) implies (1.54) and completes the proof.

6. The non-asymptotic equivalence of (1.1) and (1.33). Corollary lb
may be regarded as providing sufficient conditions for the asymptotic
equivalence of (1.1) and (1.8). In contrast, Theorem 2 only gives suf-
ficient conditions for a partial asymptotic equivalence of (1.1) and (1.33).
That is, for each appropriate q there exist, as has been shown in
Section 1, appropriate φ's such that (1.53) and, therefore, (1.54) hold.
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However, under the hypothesis of Theorem 2, this procedure can not,
in general, be reversed. That is, starting with a ψ which satisfies (1.41),
there does not, in general, exist an appropriate q. In order to illustrate
this phenomenon, it is convenient to make two preliminary observations.

Equation (1.25) has, thus far, only served to define Θ in terms of q.
It can also be regarded as an equation in which θ is the independent
function, satisfying

(6.1) θeC(R+,CN) ,

and q is the unknown function. The following lemma covers this situa-
tion.

LEMMA 6.1. Let (1.2) and (6.1) hold. Then (1.25) has a unique
solution q e C(R+, CN). Moreover,

(6.2) q(t) = θ(t) + Γα(* - s)θ(s)ds (0 ^ t < oo) .
Jo

In view of Lemma 1.1, (1.20) holds here. Hence, the existence and
uniqueness assertions follow from (6.1) and Lemma 2.1(i). Comparison
with (1.19) shows the resolvent associated with — r, and (thus) with
(1.25), is defined as the unique solution, ru of

(6.3) r,(t) - Γr(ί - s)n(s)ds = -r( ί) (0 ^ t < oo) .
Jo

Since (1.19) may, in view of (2.3), be written as

(6.4) -a(t) - [*r(t - s)[-a(s)]ds = -r( ί) (0 ^ t < oo) ,
Jo

it follows from (6.3), (6.4), and the uniqueness assertion of Lemma 1.1
that

(6.5) rx = -a .

Applying Lemma 2.1(ii) to (1.25) and invoking (6.5) yields (6.2).
If

(6.6) h(t, x) = 0 (0 ^ t < oo, χeCN) ,

then, of course, (1.1) and (1.24) are linear equations and

(6.7) (6.6) implies that x = θ .

Let H be consistent with (6.6) and (1.34) and let ψ satisfy (1.39) and
(1.41) for some a e (0, 1). Then (1.33) implies

(6.8) yΨ(t) + Γ r{s)H{t - s, y+(t - s))ds = ψ(t) ( - oo < t < oo) .
Jmax(o,t)
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It follows from (1.21), (1.34), (1.43) and (6.8) that

(6.9) (6.6) implies that lim [yΨ(t) - f(t)] = 0 .

Consider the special case of (1.1), (1.24) and (1.33) in which

(6.10) N=l, a(t) = r 1 / 2 , (6.6) holds .

The r determined by (6.10) and (1.19) satisfies (1.21) [8, p. 209]. Let
a 6 (0, 1) and let

(6.11)

as in (1.41). It is evident from (6.2), (6.10), and (6.11) that there does
not exist a qeL°° such that (6.1) and (1.53) hold. Hence, in view of
(6.6), (6.7), and (6.9), if (6.10) and (6.11) hold, then

x(t) - y+(t)-+> 0 (ί->°o) for all qeLTΓiC.

Thus, (6.10) and (6.11) illustrate the phenomenon described in the first
paragraph of this section.

7. The nonconvolution equation. We now briefly indicate how the
preceding considerations for (1.1) may be carried over to the noncon-
volution equation (1.6).

The analogues of (1.8) and (1.19) are, respectively,

(7.1) x(t) + [ait, s)x(s)ds = q(t) (0 ^ t < co)
Jo

(7.2) r(ί, β) + j'α(ίf f)r(f, s)dξ = α(ί, s) (0 ^ s ^ t < oo) ,

where r is again called the resolvent of a. Unfortunately, there are no
simple L1 analogues of Lemmas 1.1 and 2.1 concerning (7.1) and (7.2).
Since our concern here, as above, is with asymptotic behavior, we make
the following common assumptions, which cover many interesting special
cases:

a(t, s) is Lebesgue measurable in (ί, s) and in t, s separately for

0 ^ s ^ t < oo; α(ί, )eL\[09 t\, CN2) (teR+); (7.2) has, with an

absolutely convergent integral, a similarly measurable unique

(7.3) solution, r(ί, *); r(ί, >)e L\[0, ί], C*2) it e R+);

ί, 8)dξ = jV(ί, f)α(ί, β)df (0 ^ β ̂  ί < oo)

(7.1) has a unique solution for each q satisfying (1.4).



NONLINEARLY PERTURBED VOLTERRA EQUATIONS 331

A sufficient condition for (7.3) is that α(ί, s) is continuous—for others
see [8, Chap. 4] and [2]. Note that if (1.7) holds, the convolution case,
it is easily shown that r(ί, s) = r(t — s).

From (7.3) it follows easily (as in the proof of Lemma 2.1) that,
with (1.4) holding, the unique solution of (7.1) is given by

(7.4) x(t) = q(t) - [r(t, s)q(s)ds (0 ^ t < oo) .
Jo

Moreover, with (1.3) also holding, (1.6) is equivalent to

(7.5) x(t) + [r(t, s)h(s, x(s))ds = θ(t) (0 ^ t < oo) ,
Jo

where

(7.6) θ(t) = q(t) - [\it, s)q(s)ds (0 ^ t < oo) .
Jo

Thus, (7.4), (7.5) and (7.6) are, respectively, the analogues of (2.2), (1.24)
and (1.25).

Our key hypothesis, the analogue of (1.21), is that

(7.7) \*\r(t, s)\ds = Writ, t - s)\ds ^ A < oo (0 ^ t < oo)
Jo Jo

for some constant A 6(0, oo).
In order to guarantee that (7.1) (and (1.6), (7.5)) has continuous

solutions when (1.4) holds, we further assume that

for each ε > 0 and T e R+ there exists <?x(e, T) > 0 such that

(7.8) \t2\a(t2, s)\ds + \h\ait2, s) - α f o , s)\ds ^ ε
Jί χ Jθ

whenever 0 ^ t, ^ t2 ^ Γ, ί2 ^ t, + δx .

Similar to Section 1, a nondecreasing function Γ: R+ -> i?+ is called
an a priori bound for (1.6) if

(7.9) x 6 C([0, ί), C )̂ satisfies (1.6) on [0, t) ,

for some ίe(0, oo]̂  implies that

(7.10) \x(t)\^Γ(t) (0£t<ΐ).

Analogous to Theorem 1 we have

THEOREM 7.1. Let (1.3), (1.4), (1.10), (1.12), (7.3), (7.7) and (7.8) hold.
Furthermore, let
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(7.11) \\q\l ^ (1 - a)v(a/A)/(l + A)

hold for some αe(O, 1). Then

(7.12) Λ(ί) = d + A ) | | g | U / ( l - α )

is an a priori bound for (1.6).

To see this observe that (7.3), (7.6), (7.7) and (7.11) imply

(7.13) \\e\L £ (1 + A)|| f f |U £ (1 - αMα/A) .

Let (7.9) hold. Then (7.5) on [0, t) and (7.13) imply

The same argument by contradiction of Section 3 now yields

\x(t)\<v(a/A) ( 0 ^ ί < ί ) ,

which in turn similarly implies

\x(t)\ ^ (I + A ) \ \ q \ \ j a ~ a) ( 0 £ t < ΐ ) ,

completing the proof.
The existence theorem and continuation procedure for (1.1) referred

to in Section 1 is readily modified to apply to (1.6). It together with
Theorem 1.1 readily yields

COROLLARY 7.1a. Let the hypothesis of Theorem 7.1 hold. Then:
(1.6) has a continuous solution on R+, and (7.9) with t < °o implies that
x can be continuously extended to R+ as a solution of (1.6).

A trivial modification of the proof of Lemma 2.2 yieds

LEMMA 7.1. Let a(t, s) ^ 0 be measurable with respect to s on [0, t]
for each t e R+ and let

(7.14) sup \*a(tf t - s)ds < °o
0^ί<ooJθ

(7.15) lim Γ α(ί, t - s)ds = 0 (0 ^ T < oo) .
<->oo Jt-T

Then, for each β e U°(R+, R+),

lim sup \ a(t, t — s)β(t — s)ds ^ sup I a(t, t — s)ds lim sup β(t) .
*->oo Jo Lθ^ ί<ooJθ J t-* oo

It should be noted that if a(t, s) = |r(t, s)| and if (7.7) holds, then
(7.14) is satisfied but (7.15) need not be. However, in the convolution
case, r(t, s) = r(t — s), (7.15) (with a(t, s) = |r(ί, s)\) is a consequence of
(7.7). This accounts for the hypothesis (7.16) in the following corollary



NONLINEARLY PERTURBED VOLTERRA EQUATIONS 333

of Theorem 7.1 and Lemma 7.1, which is analogous to Corollary lb.

COROLLARY 7.1b. Let the hypothesis of Theorem 7.1, (1.31), and

(7.16) limΓ |r(ί, t - s)\ds = 0 (0 ^ T < oo)
*->oo Jt-T

hold. Then

lim [x(t) - θ(t)] = 0

is satisfied by every solution x e C(R+, CN) of (1.6).

The auxiliary equation for (1.6) is

(7.17) y(t) + (°°i2(ί, t - s)H{t - s, y{t - s))ds = fit) ( - oo < t < oo) .
Jo

It plays the same role for (1.6) that (1.33) does for (1.1). Moreover, the
same hypotheses are made on H and f in (7.17) as were made on them
in (1.33). Concerning R it is assumed that

R(t, s) is measurable in (t, s) and in t, s separately for t, s e R1;

R(t, s) = r(t, s) for 0 <; s ^ t < oo

\ι .J.OJ I \T?(f Q\ I rl Q I I J?(f f o\\ rl a <Γ A <^ ( <^ t <^ \
J-oo Jo ' ^

where A is as in (7.7).

There is, obviously, no loss of generality in employing the same A in
(7.7) and (7.18). Also, if (7.3) and (7.7) hold and if

(7.19) R(t, s) = r(t, s) for 0 ^ s £ t < oo , R(t, s) = 0 otherwise ,

then R(t, s) satisfies (7.18). Thus (7.18) is not an additional restriction
on r(t, s) beyond (7.3), (7.7). However, (7.19) won't be assumed.

Existence and uniqueness of solutions of (7.17) is considered in the
following lemma, whose proof is completely analogous to that of Lemma
1.2.

LEMMA 7.2. Let (1.34), (1.39), and (7.18) hold. Furthermore, let

\\f\l^(l~a)d(a/A)

hold for some a e (0, 1). Then (7.17) has a solution yψ e L°°(R\ CN). More-
over, (1.42) and (1.43) are satisfied, where

Vo(t) = fit)

- \~R(t, t - s)H(t - s, yn(t - s))ds
Jo

( _ o o < ί < o o , Λ = 0 , l , - . . ) .
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Also, y = yψ is the unique solution of (7.17) such that \\y\\oo ^ δ(a/A).

Further assumptions on H, ψ, and R lead to additional properties on
the yn and yψ of Lemma 7.2. This is analogous to, but more technical
than, Corollaries 1.2a and 1.2b; we omit the details.

In order to compare the solutions of (1.6) and (7.17) we need an
additional assumption on R:

(7.20) lim[° \R(t, t - s)\ds = 0 .

Of course, (7.20) is trivially satisfied if R satisfies (7.19). However, (7.19)
is too restrictive an extension of r for some applications, e.g., when r
is periodic in the sense that r(t, s) — r(t + p, s + p) (p > 0) (a consequence
of such periodicity for a and (7.3)).

THEOREM 7.2. Let (7.16), (7.20), and the hypotheses of Theorem 7.1
and Lemma 7.2 hold (for the same a e (0, 1)). In addition let (1.53) hold,
where θ is defined by (7.6). Then (1.54) is satisfied, where x and yψ are
the unique solutions of (1.6) and (7.17), respectively.

The remarks in Section 1 concerning (1.53) not being an additional
restriction also apply here—as does, with appropriate changes, the proof
given in Section 5. Thus, for example, the analog of (5.3) on R+ is

x(t) -

= - [r(t, t - s)[H(t - s, x(t - s)) - H(t - s, yΨ(t - s))]ds
Jo

+ \°°R(t, t - s)H{t - s, yΨ(t - s))ds + θ(t)

which is analyzed with the aid of Lemma 7.1.
Corollaries of Theorem 7.2, analogous to Corollary 2 of Section 1,

can be similarly formulated.
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